Publication:
Integrating continuous-time neural networks in engineering: bridging machine learning and dynamical system modeling

cris.customurl 15313
cris.virtual.department Informatik im Maschinenbau
cris.virtual.department Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtual.departmentbrowse Informatik im Maschinenbau
cris.virtualsource.department 090382f0-c182-4559-b252-375e6da3f1bb
cris.virtualsource.department f318ef77-db4b-4956-9a01-97eee1ab0454
dc.contributor.author Zimmering, Bernd
dc.contributor.author Niggemann, Oliver
dc.date.issued 2024-03
dc.description.abstract This paper examines the integration of Continuous-Time Neural Networks (CTNNs), including Neural ODEs, CDEs, Neural Laplace, and Neural Flows, into engineering practices, particularly in dynamical system modeling. We provide a detailed introduction to CTNNs, highlighting their underutilization in engineering despite similarities with traditional Ordinary Differential Equation (ODE) models. Through a comparative analysis with conventional engineering approaches, using a spring-mass-damper system as an example, we demonstrate both theoretical and practical aspects of CTNNs in engineering contexts. Our work underscores the potential of CTNNs to harmonize with traditional engineering methods, exploring their applications in Cyber- Physical Systems (CPS). Additionally, we review key open-source software tools for implementing CTNNs, aiming to facilitate their broader integration into engineering practices.
dc.description.version VoR
dc.identifier.doi 10.24405/15313
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/15313
dc.language.iso en
dc.publisher UB HSU
dc.relation.conference ML4CPS – Machine Learning for Cyber-Physical Systems
dc.relation.orgunit Informatik im Maschinenbau
dc.rights.accessRights open access
dc.subject Cyber-physical system
dc.subject Dynamical systems modeling
dc.subject Neural ordinary differential equation
dc.title Integrating continuous-time neural networks in engineering: bridging machine learning and dynamical system modeling
dc.type Conference paper
dcterms.bibliographicCitation.booktitle Machine learning for cyber physical systems
dcterms.bibliographicCitation.originalpublisherplace Hamburg
dcterms.isPartOf https://openhsu.ub.hsu-hh.de/handle/10.24405/16610
dspace.entity.type Publication
hsu.uniBibliography
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
openHSU_15313.pdf
Size:
302.61 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
145 B
Format:
Item-specific license agreed upon to submission
Description: