Publication: On the Security of IO-Link Wireless Communication in the Safety Domain
cris.customurl | 15293 | |
cris.virtual.department | Elektrische Messtechnik | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.departmentbrowse | Elektrische Messtechnik | |
cris.virtual.departmentbrowse | Elektrische Messtechnik | |
cris.virtual.departmentbrowse | Elektrische Messtechnik | |
cris.virtual.departmentbrowse | Elektrische Messtechnik | |
cris.virtual.departmentbrowse | Elektrische Messtechnik | |
cris.virtual.departmentbrowse | Elektrische Messtechnik | |
cris.virtual.departmentbrowse | Elektrische Messtechnik | |
cris.virtual.departmentbrowse | Elektrische Messtechnik | |
cris.virtualsource.department | c4d4bced-8bf2-4ced-947e-d3867777a8cd | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | 321a596d-ac34-4e64-a57a-0fe9bed251fd | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
dc.contributor.author | Doebbert, Thomas Robert | |
dc.contributor.author | Fischer, Florian | |
dc.contributor.author | Merli, Dominik | |
dc.contributor.author | Scholl, Gerd | |
dc.date.issued | 2022-10-25 | |
dc.description.abstract | Security is an essential requirement of Industrial Control System (ICS) environments and its underlying communication infrastructure. Especially the lowest communication level within Supervisory Control and Data Acquisition (SCADA) systems - the field level - commonly lacks security measures. Since emerging wireless technologies within field level expose the lowest communication infrastructure towards potential attackers, additional security measures above the prevalent concept of air-gapped communication must be considered. Therefore, this work analyzes security aspects for the wireless communication protocol IO-LinkWireless (IOLW), which is commonly used for sensor and actuator field level communication. A possible architecture for an IOLW safety layer has already been presented recently. In this paper, the overall attack surface of IOLW within its typical environment is analyzed and attack preconditions are investigated to assess the effectiveness of different security measures. Additionally, enhanced security measures are evaluated for the communication systems and the results are summarized. Also, interference of security measures and functional safety principles within the communication are investigated, which do not necessarily complement one another but may also have contradictory requirements. This work is intended to discuss and propose enhancements of the IOLW standard with additional security considerations in future implementations. | |
dc.description.version | NA | |
dc.identifier.doi | 10.1109/ETFA52439.2022.9921464 | |
dc.identifier.isbn | 9781665499972 | |
dc.identifier.uri | https://openhsu.ub.hsu-hh.de/handle/10.24405/15293 | |
dc.language.iso | en | |
dc.publisher | IEEE | |
dc.relation.conference | 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA) | |
dc.relation.orgunit | Elektrische Messtechnik | |
dc.rights.accessRights | metadata only access | |
dc.subject | Cryptography and security | |
dc.subject | Computer science | |
dc.title | On the Security of IO-Link Wireless Communication in the Safety Domain | |
dc.type | Conference paper | |
dcterms.bibliographicCitation.booktitle | 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA 2022) | |
dspace.entity.type | Publication | |
hsu.uniBibliography | ✅ |