Publication:
MLM: A Benchmark Dataset for Multitask Learning with Multiple Languages and Modalities

cris.customurl 15198
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department Data Engineering
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Data Engineering
cris.virtual.departmentbrowse Data Engineering
cris.virtual.departmentbrowse Data Engineering
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department 3a2553bc-4d23-4bae-a22f-5d92c868792c
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Armitage, Jason
dc.contributor.author Kacupaj, Endri
dc.contributor.author Tahmasebzadeh, Golsa
dc.contributor.author Swati
dc.contributor.author Maleshkova, Maria
dc.contributor.author Ewerth, Ralph
dc.contributor.author Lehmann, Jens
dc.date.issued 2020-10-19
dc.description.abstract In this paper, we introduce the MLM (Multiple Languages and Modalities) dataset - a new resource to train and evaluate multitask systems on samples in multiple modalities and three languages. The generation process and inclusion of semantic data provide a resource that further tests the ability for multitask systems to learn relationships between entities. The dataset is designed for researchers and developers who build applications that perform multiple tasks on data encountered on the web and in digital archives. A second version of MLM provides a geo-representative subset of the data with weighted samples for countries of the European Union. We demonstrate the value of the resource in developing novel applications in the digital humanities with a motivating use case and specify a benchmark set of tasks to retrieve modalities and locate entities in the dataset. Evaluation of baseline multitask and single task systems on the full and geo-representative versions of MLM demonstrate the challenges of generalising on diverse data. In addition to the digital humanities, we expect the resource to contribute to research in multimodal representation learning, location estimation, and scene understanding.
dc.description.version NA
dc.identifier.doi 10.1145/3340531.3412783
dc.identifier.doi 10.48550/arXiv.2008.06376
dc.identifier.isbn 9781450368599
dc.identifier.scopus 2-s2.0-85095865453
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/15198
dc.language.iso en
dc.publisher Association for Computing Machinery
dc.relation.conference CIKM '20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19 - 23, 2020
dc.relation.hasversion https://arxiv.org/abs/2008.06376v3
dc.relation.journal ACM Conferences
dc.relation.orgunit Data Engineering
dc.rights.accessRights metadata only access
dc.subject machine learning
dc.subject multilingual data
dc.subject multimodal data
dc.subject multitask learning
dc.subject Computer Science - Learning
dc.subject Statistics - Machine Learning
dc.title MLM: A Benchmark Dataset for Multitask Learning with Multiple Languages and Modalities
dc.type Conference paper
dcterms.bibliographicCitation.booktitle CIKM '20: Proceedings of the 29th ACM International Conference on Information & Knowledge Management
dcterms.bibliographicCitation.originalpublisherplace New York
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography Nein
Files