Publication:
MLM: A Benchmark Dataset for Multitask Learning with Multiple Languages and Modalities

cris.customurl15198
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentData Engineering
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowseData Engineering
cris.virtual.departmentbrowseData Engineering
cris.virtual.departmentbrowseData Engineering
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department3a2553bc-4d23-4bae-a22f-5d92c868792c
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorArmitage, Jason
dc.contributor.authorKacupaj, Endri
dc.contributor.authorTahmasebzadeh, Golsa
dc.contributor.authorSwati
dc.contributor.authorMaleshkova, Maria
dc.contributor.authorEwerth, Ralph
dc.contributor.authorLehmann, Jens
dc.date.issued2020-10-19
dc.description.abstractIn this paper, we introduce the MLM (Multiple Languages and Modalities) dataset - a new resource to train and evaluate multitask systems on samples in multiple modalities and three languages. The generation process and inclusion of semantic data provide a resource that further tests the ability for multitask systems to learn relationships between entities. The dataset is designed for researchers and developers who build applications that perform multiple tasks on data encountered on the web and in digital archives. A second version of MLM provides a geo-representative subset of the data with weighted samples for countries of the European Union. We demonstrate the value of the resource in developing novel applications in the digital humanities with a motivating use case and specify a benchmark set of tasks to retrieve modalities and locate entities in the dataset. Evaluation of baseline multitask and single task systems on the full and geo-representative versions of MLM demonstrate the challenges of generalising on diverse data. In addition to the digital humanities, we expect the resource to contribute to research in multimodal representation learning, location estimation, and scene understanding.
dc.description.versionNA
dc.identifier.doi10.1145/3340531.3412783
dc.identifier.doi10.48550/arXiv.2008.06376
dc.identifier.isbn9781450368599
dc.identifier.scopus2-s2.0-85095865453
dc.identifier.urihttps://openhsu.ub.hsu-hh.de/handle/10.24405/15198
dc.language.isoen
dc.publisherAssociation for Computing Machinery
dc.relation.conferenceCIKM '20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19 - 23, 2020
dc.relation.hasversionhttps://arxiv.org/abs/2008.06376v3
dc.relation.journalACM Conferences
dc.relation.orgunitData Engineering
dc.rights.accessRightsmetadata only access
dc.subjectmachine learning
dc.subjectmultilingual data
dc.subjectmultimodal data
dc.subjectmultitask learning
dc.subjectComputer Science - Learning
dc.subjectStatistics - Machine Learning
dc.titleMLM: A Benchmark Dataset for Multitask Learning with Multiple Languages and Modalities
dc.typeConference paper
dcterms.bibliographicCitation.booktitleCIKM '20: Proceedings of the 29th ACM International Conference on Information & Knowledge Management
dcterms.bibliographicCitation.originalpublisherplaceNew York
dspace.entity.typePublication
hsu.peerReviewed
hsu.uniBibliographyNein
Files