Publication:
Regularization and Model Selection for Item-on-Items Regression with Applications to Food Products' Survey Data

cris.customurl 15194
cris.virtual.department Statistik und Datenwissenschaften
cris.virtual.department Statistik und Datenwissenschaften
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Statistik und Datenwissenschaften
cris.virtual.departmentbrowse Statistik und Datenwissenschaften
cris.virtual.departmentbrowse Statistik und Datenwissenschaften
cris.virtual.departmentbrowse Statistik und Datenwissenschaften
cris.virtual.departmentbrowse Statistik und Datenwissenschaften
cris.virtual.departmentbrowse Statistik und Datenwissenschaften
cris.virtualsource.department f110cd25-6e60-4097-8acb-efe8aff5ccd3
cris.virtualsource.department 31edecf7-7403-4067-abdd-724c5fd8f149
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Hoshiyar, Aisouda
dc.contributor.author Gertheiss, Laura H.
dc.contributor.author Gertheiss, Jan
dc.date.issued 2023-09-28
dc.description Grant GE2353/2-1, Deutsche Forschungsgemeinschaft (DFG)
dc.description.abstract Ordinal data are quite common in applied statistics. Although some model selection and regularization techniques for categorical predictors and ordinal response models have been developed over the past few years, less work has been done concerning ordinal-on-ordinal regression. Motivated by survey datasets on food products consisting of Likert-type items, we propose a strategy for smoothing and selection of ordinally scaled predictors in the cumulative logit model. First, the original group lasso is modified by use of difference penalties on neighbouring dummy coefficients, thus taking into account the predictors' ordinal structure. Second, a fused lasso type penalty is presented for fusion of predictor categories and factor selection. The performance of both approaches is evaluated in simulation studies, while our primary case study is a survey on the willingness to pay for luxury food products.
dc.description.version NA
dc.identifier.doi 10.48550/arXiv.2309.16373
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/15194
dc.language.iso en
dc.relation.orgunit Statistik und Datenwissenschaften
dc.rights.accessRights metadata only access
dc.subject Group Lasso
dc.subject Cumulative Logit
dc.subject Likert-Scale
dc.subject Luxury Food
dc.subject Proportional Odds Model
dc.subject Sensometrics
dc.title Regularization and Model Selection for Item-on-Items Regression with Applications to Food Products' Survey Data
dc.type Preprint
dspace.entity.type Publication
hsu.uniBibliography
Files