Publication:
Prediction of Flow and Heat Transfer in a Czochralski Crucible using LES with Interface Tracking

cris.customurl 15074
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department Strömungsmechanik
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtual.departmentbrowse Strömungsmechanik
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department ba61e71a-d073-4609-89b6-c10b460b09a8
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department #PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.author Raufeisen, A.
dc.contributor.author Botsch, Tobias
dc.contributor.author Kumar, Vivek
dc.contributor.author Breuer, Michael
dc.contributor.author Durst, Franz
dc.date.issued 2007
dc.description.abstract The Czochralski (Cz) method is the preferred process for growing large silicon single crystals for wafers which are used in electronic and photonic devices. The liquid silicon (P r = 0.013) is contained in an open crucible which is rotating, while the counterrotating crystal is pulled from the melt. Due to this setup, centrifugal and Coriolis forces, buoyancy, and Marangoni convection occur in the fluid as well as thermal radiation from the surface and the phase change due to crystallization. The shape of the interface between melt and crystal is crucial for the quality of the resulting crystal. Therefore, the influences of all effects on the crystallization front need to be investigated. Unfortunately, the flow inside the melt is fully turbulent (Re ≈ 10^4, Ra ≈ 10^7), which makes numerical predictions difficult. It can be shown that the turbulent structures in this case are highly anisotropic and thus classical RANS models are not applicable. Highly accurate Direct Numerical Simulations (DNS) require high resolution and therefore use massive computational resources. Large Eddy Simulation (LES) combines the advantages of both: The large turbulent scales are computed directly, whereas the small scales are modeled. Thus a relatively high accuracy is achieved with moderate computational effort, so that parametric studies can be conducted easily.
dc.description.version NA
dc.identifier.citation Raufeisen, A., Botsch, T., Kumar, V., Breuer, M., Durst, F.: Prediction of Flow and Heat Transfer in a Czochralski Crucible using LES with Inter- face Tracking, ITI Conference on Turbulence 2005, Sept. 25–28, 2005, Bad Zwischenahn, Germany, In: Progress in Turbulence II, eds. Oberlack, Khujadze, Günther, Weller, Frewer, Peinke and Barth, Springer Proceedings in Physics, vol. 109, ISBN 978–3–540–32602–1, pp. 289–292, Springer Verlag, Berlin Heidelberg New York, (2007).
dc.identifier.isbn 978-3-540-32602-1
dc.identifier.uri https://openhsu.ub.hsu-hh.de/handle/10.24405/15074
dc.language.iso en
dc.publisher Springer
dc.relation.conference ITI Conference on Turbulence 2005, Sept. 25–28, 2005, Bad Zwischenahn, Germany
dc.relation.orgunit Strömungsmechanik
dc.rights.accessRights metadata only access
dc.title Prediction of Flow and Heat Transfer in a Czochralski Crucible using LES with Interface Tracking
dc.type Conference paper
dcterms.bibliographicCitation.booktitle Progress in Turbulence II
dcterms.bibliographicCitation.originalpublisherplace Berlin
dspace.entity.type Publication
hsu.peerReviewed
hsu.uniBibliography Nein
oaire.citation.endPage 292
oaire.citation.startPage 289
Files