Publication:
Expressing uncertainty in neural networks for production systems

cris.customurl14220
cris.virtual.departmentInformatik im Maschinenbau
cris.virtual.departmentInformatik im Maschinenbau
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentbrowseInformatik im Maschinenbau
cris.virtual.departmentbrowseInformatik im Maschinenbau
cris.virtual.departmentbrowseInformatik im Maschinenbau
cris.virtual.departmentbrowseInformatik im Maschinenbau
cris.virtual.departmentbrowseInformatik im Maschinenbau
cris.virtual.departmentbrowseInformatik im Maschinenbau
cris.virtualsource.department090382f0-c182-4559-b252-375e6da3f1bb
cris.virtualsource.departmentf318ef77-db4b-4956-9a01-97eee1ab0454
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorMultaheb, Samim Ahmad
dc.contributor.authorZimmering, Bernd
dc.contributor.authorNiggemann, Oliver
dc.date.issued2021
dc.description.abstractThe application of machine learning, especially of trained neural networks, requires a high level of trust in their results. A key to this trust is the network's ability to assess the uncertainty of the computed results. This is a prerequisite for the use of such networks in closed-control loops and in automation systems. This paper describes approaches for enabling neural networks to automatically learn the uncertainties of their results.
dc.description.versionNA
dc.identifier.doi10.1515/auto-2020-0122
dc.identifier.issn2196-677X
dc.identifier.issn0178-2312
dc.identifier.scopus2-s2.0-85102590202
dc.identifier.urihttps://openhsu.ub.hsu-hh.de/handle/10.24405/14220
dc.language.isoen
dc.relation.journalAutomatisierungstechnik : AT
dc.relation.orgunitInformatik im Maschinenbau
dc.rights.accessRightsmetadata only access
dc.titleExpressing uncertainty in neural networks for production systems
dc.typeResearch article
dspace.entity.typePublication
hsu.peerReviewed
hsu.uniBibliography
oaire.citation.endPage230
oaire.citation.issue3
oaire.citation.startPage221
oaire.citation.volume69
Files