Publication: Expressing uncertainty in neural networks for production systems
cris.customurl | 14220 | |
cris.virtual.department | Informatik im Maschinenbau | |
cris.virtual.department | Informatik im Maschinenbau | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtual.departmentbrowse | Informatik im Maschinenbau | |
cris.virtualsource.department | 090382f0-c182-4559-b252-375e6da3f1bb | |
cris.virtualsource.department | f318ef77-db4b-4956-9a01-97eee1ab0454 | |
cris.virtualsource.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
dc.contributor.author | Multaheb, Samim Ahmad | |
dc.contributor.author | Zimmering, Bernd | |
dc.contributor.author | Niggemann, Oliver | |
dc.date.issued | 2021 | |
dc.description.abstract | The application of machine learning, especially of trained neural networks, requires a high level of trust in their results. A key to this trust is the network's ability to assess the uncertainty of the computed results. This is a prerequisite for the use of such networks in closed-control loops and in automation systems. This paper describes approaches for enabling neural networks to automatically learn the uncertainties of their results. | |
dc.description.version | NA | |
dc.identifier.doi | 10.1515/auto-2020-0122 | |
dc.identifier.issn | 2196-677X | |
dc.identifier.issn | 0178-2312 | |
dc.identifier.scopus | 2-s2.0-85102590202 | |
dc.identifier.uri | https://openhsu.ub.hsu-hh.de/handle/10.24405/14220 | |
dc.language.iso | en | |
dc.relation.journal | Automatisierungstechnik : AT | |
dc.relation.orgunit | Informatik im Maschinenbau | |
dc.rights.accessRights | metadata only access | |
dc.title | Expressing uncertainty in neural networks for production systems | |
dc.type | Research article | |
dspace.entity.type | Publication | |
hsu.peerReviewed | ✅ | |
hsu.uniBibliography | ✅ | |
oaire.citation.endPage | 230 | |
oaire.citation.issue | 3 | |
oaire.citation.startPage | 221 | |
oaire.citation.volume | 69 |