Now showing 1 - 3 of 3
  • Publication
    Metadata only
    The time course of distractor-based response activation with predictable and unpredictable target onset
    (Springer, 2019)
    Jost, Kerstin
    ;
    Wendt, Mike
    ;
    ; ;
    Electrophysiological recording in a temporal flanker task (i.e., distractors preceding the targets) has demonstrated that distractor processing is adjusted to the overall utility of the distractors. Under high utility, that is, distractors are predictive of the target/response, distractors immediately activate the corresponding response (as indicated by the lateralized readiness potential, LRP). This activation has been shown to be markedly postponed when the target predictably occurs delayed. To investigate the occurrence and time course of distractor-related response activation under conditions of unpredictable target onset, we randomly varied the stimulus-onset asynchrony (SOA) between distractors and targets and recorded the distractor-evoked LRP. When the distractor utility was high, an LRP occurred shortly after distractor presentation. In case of a long SOA the time course of this LRP was characterized by a drop back to baseline and a subsequent re-activation that reached a substantial level before target onset. These results suggest that distractor processing is characterized by sophisticated adjustments to experienced utility and temporal constraints of the task as well as by further control processes that regulate premature response activation. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
  • Publication
    Metadata only
    Strategic control over extent and timing of distractor-based response activation
    (2017)
    Jost, Kerstin
    ;
    Wendt, Mike
    ;
    ; ;
    In choice reaction time (RT) tasks, performance is often influenced by the presence of nominally irrelevant stimuli, referred to as distractors. Recent research provided evidence that distractor processing can be adjusted to the utility of the distractors: Distractors predictive of the upcoming target/response were more attended to and also elicited stronger motor responses. In an event-related potential (ERP) study, we investigated whether not only the extent of distractor processing (as suggested by these previous results), but also the timing of distractor-based response activation is subject to strategic control. In a temporal flanker task, in which a distractor stimulus preceded the target, we manipulated distractor utility (i.e., by varying the proportion of congruent distractor-target combinations, 75% vs. 25%) as well as the stimulus onset asynchrony (SOA) between distractors and targets (350 ms vs. 1,000 ms) in different blocks of trials. The distractor-locked lateralized readiness potential (LRP) was overall larger in blocks with a high proportion of congruent trials indicating stronger distractor-based response activation when distractor utility was high. Of importance, the LRPs occurred overall later when the SOA was long. This suggests that distractor-based response activation can be postponed and thus adjusted to the temporal factors of the context. Modulations of early visual potentials (P1 and N1) indicate that this postponement of motor activation is related to both sensory-perceptual downgrading of distractor stimuli and reduced activation of task-relevant stimulus-response transformation processes at the time of distractor perception.