Now showing 1 - 2 of 2
  • Publication
    Metadata only
    Prevention of Sensor Disturbances caused by IEMI
    (2023) ;
    Rathjen, Kai-Uwe
    ;
    In this paper, we present a filter circuit that can be used to prevent sensor disturbances caused by intentional electromagnetic interference (IEMI). Sensors are an increasingly important component in almost all electrical systems, and faulty sensor readings can cause major problems. We show that sensor disturbances can be caused by IEMI and that sensors with Inter-Integrated Circuit (I²C) interfaces are particularly susceptible to this type of interference. We present a filter circuit that can be connected directly to I²C sensors in order to prevent disturbances caused by IEMI. Through both simulation and experimental testing, the effectiveness of the filter in preventing errors in sensor readings without impacting the functionality of the I²C communication is demonstrated.
  • Publication
    Metadata only
    Simulation of Resonances in Power Electronic Circuits for EMC Prediction
    (2023) ;
    Rathjen, Kai-Uwe
    ;
    Landskron, Norman
    ;
    ; ;
    The use of wide-bandgap semiconductors in modern power electronics creates new challenges in EMC. These result, among other things, from high frequencies and steep switching slopes. In addition, parasitic elements of semiconductors, passive components and the printed circuit board can cause resonances, which become noticeable in oscillations. In this work, a possibility is presented to simulate resonances in a power electronic circuit. The circuit used is a series-LC resonant converter with SiC-MOSFETs. An impedance model of the resonant load is generated with consideration of parasitic elements. The accurate simulation is validated by comparison with time domain measurements. EMC measurements of conducted and radiated emissions are done. It is shown that the resonances lead to emissions which can be predicted using the time domain simulation.