Niggemann, Oliver
Loading...
Status
Active HSU Member
Main affiliation
Job title
Leitung
19 results
Now showing 1 - 10 of 19
- PublicationOpen AccessEnd-to-end MLOps integration: a case study with ISS telemetry data(UB HSU, 2024-03)
; ;Geier, Christian; ;Creutzenberg, Martin ;Pfeifer, Jann ;Turk, SamoKubeflow integrates a suite of powerful tools for Machine Learning (ML) software development and deployment, typically showcased independently. In this study, we integrate these tools within an end- to-end workflow, a perspective not extensively explored previously. Our case study on anomaly detection using telemetry data from the International Space Station (ISS) investigates the integration of various tools—Dask, Katib, PyTorch Operator, and KServe—into a single Kubeflow Pipelines (KFP) workflow. This investigation reveals both the strengths and limitations of such integration in a real-world context. The insights gained from our study provide a comprehensive blueprint for practitioners and contribute valuable feedback for the open source community developing Kubeflow. - PublicationOpen AccessIntegrating continuous-time neural networks in engineering: bridging machine learning and dynamical system modelingThis paper examines the integration of Continuous-Time Neural Networks (CTNNs), including Neural ODEs, CDEs, Neural Laplace, and Neural Flows, into engineering practices, particularly in dynamical system modeling. We provide a detailed introduction to CTNNs, highlighting their underutilization in engineering despite similarities with traditional Ordinary Differential Equation (ODE) models. Through a comparative analysis with conventional engineering approaches, using a spring-mass-damper system as an example, we demonstrate both theoretical and practical aspects of CTNNs in engineering contexts. Our work underscores the potential of CTNNs to harmonize with traditional engineering methods, exploring their applications in Cyber- Physical Systems (CPS). Additionally, we review key open-source software tools for implementing CTNNs, aiming to facilitate their broader integration into engineering practices.
- PublicationOpen AccessTowards the generation of models for fault diagnosis of CPS using VQA models(UB HSU, 2024-03)
;Merkelbach, Silke; ;Enzberg, Sebastian von; Dumitrescu, RomanIn many use cases cyber-physical systems are employed to produce products of small batch sizes as efficiently as possible. From an engineering standpoint, a major drawback of this flexibility is that the architecture of the cyber-physical system may change multiple times over its lifetime to accommodate new product variants. To keep a cyber-physical system working normally it has become common to employ fault diagnosis algorithms. These algorithms partly rely on physical first-principles models that need to be updated when the architecture of the system changes which usually has to be done manually. In this article we present a practical approach to obtain such a first-principles model through evaluating piping and instrumentation diagrams (P&IDs) with visual questions answering (VQA) models. We demonstrate that it is possible to leverage VQA models to construct physical equations which are a preliminary stage for the creation of models suitable for fault diagnosis. We evaluate our approach on OpenAIs GPT-4 Vision Preview model using a P&ID we created for a benchmark water tank system. Our results show that VQA models can be used to create physical first-principles models. - PublicationMetadata only
- PublicationMetadata onlyAnomaly Detection with Autoencoders as a Tool for Detecting Sensor Malfunctions(2022-01-01)
; ; ;Reif, Sebastian; One possibility to extend the service life of engi-neering structures is to provide adequate maintenance based on Structural Health Monitoring (SHM). Typically, SHM involves a sensor network which is spatially distributed at the surface or within the structure to be monitored. Each sensor measures at least one physical quantity, the data of all sensors then have to be properly evaluated to derive the health state and to predict the remaining service life. Health issues may be detected by machine learning methods by looking for anomalous behaviour in sensor data. Hereby the problem is that malfunctions differ excessively in the representation of the data collected by sensors such that specialisation of methods on anomaly types is required. The current contribution suggests the simulation of sensor malfunction based on established criteria by creating different types of artificial anomalous data indicating different types of issues. Several proposed autoencoder approaches are verified for different anomaly representations, which are artificially introduced in a set of data. The final solutions are different autoencoder specialized on different types of simulated anomaly data, making the conclusions drawn from the measured data more reliable. As a case study, data of a numerical experiment of fibre pull-out are considered. - PublicationMetadata only
- PublicationOpen Access
- PublicationOpen Access