Now showing 1 - 2 of 2
  • Publication
    Open Access
    Sammelband zum Workshop: Entwicklungen und Forschungsergebnisse der Professur für Elektrische Maschinen und Antriebssysteme 2023
    (Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg, 2024-03-19)
    Benninger, Moritz
    ;
    ; ; ;
    Kowalski, Matthias
    ;
    ; ;
    Zellmer, Florian
    ;
    In diesem Sammelband werden die aktuellen Entwicklungen und Forschungsergebnisse der Professur für Elektrische Maschinen und Antriebssysteme im Jahr 2023 vorgestellt. An der Professur wurden zwei Promotionen abgeschlossen und erfolgreich verteidigt. Das Thema der Dissertation von Herrn Pedram Quseiri Darbandeh lautet „Fault Diagnosis in a Permanent Magnet Synchronous Motor using Deep Learning“. Er untersucht hier sehr strukturiert und umfangreich die Möglichkeiten der datenbasierten Fehlerklassifizierung in Abhängigkeit verschiedener Sensorsignale, Datenaufbereitungsmethoden und verschiedener Trainingsmethoden für neuronale Netze. Herr Johannes Liebrich hat zum Thema „Entwicklung einer Methode zur Chrakterisierung von Hochtemperatur-Supraleitern” promoviert. Die Arbeit liefert wichtige Erkenntnisse zu Schadensmechanismen und dem Ermüdungsverhalten von Supraleitern. Der entwickelte Versuchsstand kann zudem auch zur mechanischen Untersuchung weiterer Materialproben unter kryogenen Bedingungen verwendet werden. Mit den gewonnenen Erkenntnissen werden in Folgeprojekten supraleitende Spulen erforscht, welche für den Einsatz in Windenergieanlagen geeignet sind. In diesem Jahr konnten zwei Forschungsprojekte abgeschlossen werden. Zum einen ein ZIM-Projekt, welches die Entwicklung einer mobilen und flexibel einsetzbaren Prüfmethode für entmagnetisierte Bauteile zum Ziel hatte. Hierbei ist es möglich mit einer festen Sensoranordnung auf die globale Magnetisierung eines Prüflings in einer magnetisch geschirmten Kammer zu schließen und das Magnetfeld für unterschiedliche Abstände zu ermitteln. Zum anderen wurde das Verbundprojekt KOBRA abgeschlossen, bei dem die Professur einen deutlich leistungsfähigeren Anodenantrieb auf Basis einer „Flux-Switching-Machine“ erforscht und messtechnisch validiert hat. Zudem wurde ein neues ZIM-Projekt zur Entwicklung eines intelligenten Wellenschwingungs-Torsionssensors eingeworben (AI-Torque).
  • Publication
    Open Access
    Abschlussbericht zum ZIM‐Projekt „Intellus ‐ Polymer / Polymeraktuator ‐ Elektromagnetische Simulation ‐ Entwicklung eines Prüfstandes und Durchführung von Testreihen“
    (Helmut-Schmidt-Universität / Universität der Bundeswehr, 2022-01) ;
    Im Projekt „Polymeraktuator ‐ Entwicklung eines leichten und flexiblen Polymeraktuators nach dem Prinzip eines elektromechanischen Linearmotors“ hat die Helmut‐Schmidt‐Universität / Universität der Bundeswehr Hamburg (HSU) sich hauptsächlich mit der Auslegung des Aktuators und dessen Komponenten mithilfe analytischer und numerischer Berechnungen sowie der messtechnischen Evaluation der Prototypen und der Integration in ein Demonstrator‐System beschäftigt. Im Arbeitspaket 1 wurden zunächst diverse Umsetzungsmöglichkeiten zur Ausarbeitung des Aktuators untersucht. Neben dem im Projektantrag vorgestellten Konzept des tubularen Linearmotors wurden Linearmotoren in flacher Bauweise und verkettet Zugankermagnete in Betracht gezogen, welche aber im Sinne der geplanten Anwendung nicht als vielversprechender als der tubulare Linearmotor eingeschätzt wurden. In Arbeitspaket 2 wurde erfolgreich eine elektromagnetische Auslegung des Linearmotors vorgenommen. Dazu wurde zunächst eine analytische Berechnungsmethode erarbeitet, mit der auf Grundlage der Berechnung des magnetischen Feldes im Motor innerhalb geringer Berechnungszeiten sehr genau die Kraft des Motors berechnet werden kann. Mithilfe dieser Methode konnte ein analytisches Modell des Aktuators erarbeitet und durch Finite Elemente (FE) Simulationen validiert werden. Anschließend wurde die Geometrie des Motors auf Basis verfügbarer Magnetgrößen und mechanischer Randbedingungen, die sich auch aus ersten Aufbauversuchen des Aktuators ergaben, optimiert. Die Zielgröße bei der Optimierung ist die Kraftdichte bezogen auf das Motorgewicht, welche in Arbeitspaket 1 als kritische Zielgröße definiert wurde. Auf dieser Grundlage dieser Optimierung wurde beim Projektpartner emtronic die Protottypenfertigung durchgeführt. Ein weiterer Aspekt in Arbeitspakt 2, der sich während des Projekts ergab, ist die Konzeption und rechnerische Analyse der Positionssensorik. Dazu wurde eine Sensorkonfiguration bestehend aus drei Kondensatoren erarbeitet, welche die Läufermagnete detektieren. Dieses Konzept wurde anhand vereinfachter 2D Simulationen analysiert. Im Rahmen des Arbeitspakets 6 wurde der Motor messtechnisch analysiert. Der Schwerpunkt der Motorvermessung lag bei der Messung der Motorkraft. Dazu wurde ein Prüfstand konzeptioniert und aufgebaut, in dem ein Prototyp eingespannt und dessen aufgebrachte Motorkraft mithilfe eines Zug‐ und Schubkraftsensors bidirektional gemessen werden kann. An diesem wird der Läufer des Motors befestigt, während der Ständer feststeht. Der Kraftsensor ist dabei an einen Spindelantrieb gekoppelt, sodass die Motorkraft auch in Abhängigkeit der Läuferposition gemessen werden konnte. Es wurden außerdem die Temperatur des Motors an der Außenseite in Abhängigkeit verschiedener Erregungszustände gemessen. Das letzte von der HSU bearbeitete Arbeitspakt 8 befasst sich mit der Integration des neuen Aktuators in ein Demonstrator‐System. Als Zielsystem war ein Muskelhandschuh für Anwendungen in der Rehabilitation vorgesehen. Dazu wird auf einem Stoffhandschuh ein Drahtseil an einem Finger befestigt und an den Unterarm durchgeleitet, wo der Motor angebracht wird, sodass über eine Ansteuerung des Motors der Finger bewegt werden kann.