Wienken, Eike Steffen
Loading...
2 results
Now showing 1 - 2 of 2
- PublicationMetadata onlyPEM fuel cell cooling system for the effective use of waste heatUsing fuel cells in energy generation makes it possible to provide clean energy in line with the demand. Fuel cells offer a major advantage over other renewable energy sources whose generation is dependent on external influences. However, fuel cells cannot compete economically with conventional energy generation systems such as diesel generators. Such an economical constraint is partly due to the higher energy requirements of hydrogen storage. Metal hydride storage systems offer the possibility of reducing the energy intensity of storage due to low storage pressures. Heat is also required to operate such storage systems, which can be provided from the fuel cell's waste heat. To extract the heat from the fuel cell, a novel cooling circuit structure for large-scale applications is presented and simulated, considering the requirements of the metal hydride storage system regarding temperature (60 °C) and mass flow (60 kg/min). The architecture of the cooling concept consists of a primary and a secondary circuit, whereby the primary circuit is responsible for cooling the fuel cell and the secondary circuit for extracting the heat. Finally, simulation data are presented, which show the system behaviour in the event of changes in the fuel cell's electrical load and the heat consumer's thermal load. This coupling strategy shows that the cooling system is suitable for extracting the waste heat and keeping all essential parameters constant.
- PublicationOpen AccessHydrogen in stationary applications: Coupling the electricity, gas and mobility sectors (Digi-HyPro)(2022)
; ; ; ; ; ; ; ;Wildner, Lukas ;Schulze, Matthias; ; ;Kutzner, Helge ;Gizer, Gökhan ;Bellosta von Colbe, José María ;Taube, Klaus ;Hamedi, HomaBrinkmann, Torsten