Avdevicius, Edvard
Loading...
2 results
Now showing 1 - 2 of 2
- PublicationMetadata onlyEnergy market predictions with hybrid neural network 1D-CNN-BiGRUElectricity price forecasting is important for managing supply and demand, planning investments in energy projects, ensuring energy security and efficient use of resources. This paper presents a hybrid neural network of two types of neural networks: the convolutional neural network (CNN) and the recurrent neural network (RNN) for energy market data analysis to forecast electricity prices. CNN is used to extract features from the raw data by applying a convolution operation on the temporal axis with different filters. At the same time, bidirectional gated recurrent units (BiGRU) of RNN are used for subsequent analysis of the temporal dependence of the extracted features, allowing the historical data to be considered. BiGRU is particularly useful for applications where the current input depends on past and future contexts. Thus, the ID-CNN-BiGRU method allows effective time series analysis and prediction of future values and can be widely used in the tasks of forecasting electricity prices, stocks, traffic, and other time series. The results indicate that the presented model is promising for use in a highly dynamic energy market.
- PublicationOpen AccessÜberblick über hybride neuronale Netze mit CNN- und RNN-Schichten für Zeitreihenprognosen(Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg, Fakultät für Elektrotechnik, Professur für Elektrische Energiesysteme, 2023-12)
; ; ; ; In diesem Beitrag wird der Einsatz hybrider neuronaler Netze für Zeitreihenprognosen in verschiedenen Bereichen wie Energie, Verkehr, Finanzen und Umweltüberwachung untersucht. Es werden die grundlegenden Bausteine hybrider neuronaler Netze und die Verwendung struktureller Lösungen wie der Bidirektionalität vorgestellt. Außerdem werden die Genauigkeit, Anwendbarkeit und Nutzbarkeit von vier Hybridmodellen bewertet, die Faltungsschichten und rekurrente Einheitenblöcke zur Vorhersage zukünftiger Werte von Zeitreihendaten verwenden. Das Papier zeigt die Funktionalität des Modells, um automatisch zeitliche Muster aus historischen Daten zu extrahieren und zeitliche Vorhersagen zu treffen. Darüber hinaus werden die Ergebnisse von Open-Loop-Simulationen von Szenarien unterschiedlicher Komplexität vorgestellt sowie Schlussfolgerungen und Perspektiven für die weitere Forschung beurteilt. Dieses Paper dient als Übersicht für Forscher und Praktiker, die an der Verwendung neuronaler Netze für Zeitreihenprognosen interessiert sind.