Now showing 1 - 2 of 2
  • Publication
    Metadata only
    Generic methodology for electrical grid resilience using V2S of large-scale electric bus depots
    The transition towards sustainable energy systems has led to an increasing integration of renewable energy sources and the electrification of transportation. As the adoption of electric vehicles (EVs) continues to grow, leveraging their capabilities to enhance the resilience of electrical grids becomes an intriguing possibility. EVs are capable of providing emergency power supply in a variety of situations. When traditional power sources are unavailable or unreliable, EVs can be used as backup power sources to provide electricity to homes, businesses, hospitals, and other critical infrastructure. One of the primary benefits of using EVs for emergency power supply is their ability to store large amounts of energy in their batteries. In addition to their energy storage capabilities, EVs can also be used as mobile power sources. Overall, the use of EVs for emergency power supply has the potential to improve preparation, response, and to provide a more reliable source of electricity during power outages and other emergencies. This study presents an optimization methodology of calculating possible support of electric bus depots in emergencies using Mixed-Integer Linear Programming (MILP). It targets simulating possible utilization of mobile energy storage in the improvement of power system resilience through Vehicle-to-Storage (V2S) implementation.
  • Publication
    Metadata only
    Optimal Design of Modular Electrical Infrastructure for Large-Scale Electric Bus Depots
    Owing to the immense climate changes recently, the city of Hamburg has decided to allow the purchase of only emission-free buses for public transportation. Meanwhile, Hamburg focuses on the implementation of electric buses. For this purpose, the two public transportation companies in Hamburg which are the Hamburger Hochbahn AG (HOCHBAHN), and the Verkehrsbetriebe Hamburg-Holstein GmbH (VHH) decided to build new charging infrastructure for electric bus depots. In addition, they started by electrifying their existing stations. This study proposes an optimal method for electrifying bus depots by modularizing the subsystems in electrical power systems. An approach that allows the study of different configurations of power system components. Analyzing these configurations results in the conclusion of the most technically feasible configuration, achieving the lowest cost. Furthermore, the model objectives include reducing the required area, which is a challenging criterion for bus depots in many cities. Mixed-Integer Quadratic Programming (MIQP) is used to generate this combination based on predefined constraints that must satisfy all implemented constraints of the system.