Now showing 1 - 5 of 5
  • Publication
    Metadata only
    Role of stationary energy storage systems in large-scale bus depots in the case of atypical grid usage
    (VDE Verlag, 2024-06-13) ; ; ;
    Soliman, Ramy
    ;
    The importance of electrifying buses in public transportation is increasing massively during the last few years. This owes to the health detrimental emissions of diesel buses and their effect on the climate changes. Correspondingly, the two transportation companies in Hamburg, the Hamburger Hochbahn AG and Verkehrsbetriebe Hamburg-Holstein GmbH (VHH), decided to electrify their bus depots. This ambitious goal is combined with many challenges concerning the design and operation of the charging infrastructure at the minimum costs. Among others also load management, grid impact, power quality. The aim of implementing the presented model is to search for possible usage of flexibility of electric bus depots in the energy market. This is realized by considering the bus depot as an aggregator of positive or negative flexibility. The offering of this flexibility is based on the predefined atypical grid usage in Germany. This enables electricity customers with an annual energy consumption of more than 100,000 kWh to save in grid fees for their load regulation in coordination with grid operators. Nevertheless, the operation of the bus depot has the highest priority in this study to guarantee the ability of buses to travel their routes. This paper analyses three different scenarios for atypical grid usage: the role of load management, the role of a second-life stationary battery and the combination of both cases. As a result, the required supplying periods and capacities of the stationary battery are calculated. Finally, a combined scenario between the supply from the stationary battery and the supply from the grid is presented.
  • Publication
    Metadata only
    Investigation of parameters impacting the energy consumption of electric buses
    The process of electrification of the public transportation sector is resulting in a growing number of electric buses on the streets. Modelling and simulating the electric bus fleets can not only identify possible issues in time but can also provide valuable inputs for the optimal integration of these buses into existing operational plans and management systems. One of the important requirements for accurate modelling is knowledge of the energy consumption of the buses. This paper uses a data-driven approach to analyze the factors impacting energy consumption. The considered factors are: average daily temperature, trip length, total trip time, state of charge at the beginning of the trip, and average vehicle speed during the trip. Additionally, the impact of different buses and routes is analyzed by considering their ID numbers. The data from 96 different electric buses were collected in the city of Hamburg for 13 months. The analysis of individual parameters provides an insight into the actual operation of electric bus fleets. Additionally, using correlation analysis, it is possible to understand the relationship among all mentioned parameters. The analysis of the energy consumption of electric buses provided in this paper offers valuable inputs for future studies and the successful electrification of further bus fleets.
  • Publication
    Metadata only
    Assessment of bus depot infrastructure under various uncertainties to maximize system reliability
    Designing the infrastructure of bus depots involves numerous factors and considerations, but it is often subject to uncertainties that can affect the efficiency, cost, and overall performance of the depots. This study analyzes various sources of possible uncertainties encountered during the design phase of bus depots and highlights their potential impact. Generally, uncertainties in bus depot infrastructure design can arise from several aspects, including technological advancements and regulatory changes. Also, financial constraints and evolving operational requirements play an important role. The adoption of emerging technologies, such as electric buses, introduces uncertainties regarding the charging infrastructure, energy storage capacity, and compatibility with existing depot layouts. This study considers operational uncertainties, such as changes in the loading of transformers or the occurrence of blackouts, which consequently pose challenges to depot design. This is realized by employing many sensitivity case studies to evaluate various operation and design options under different uncertainty scenarios. The analysis in this study can be used to calculate the loading of transformers at bus depots in advance. Additionally, it is possible to estimate the required stationary battery in the bus depot for supplying the buses during different blackout times.
  • Publication
    Metadata only
    Energy consumption of battery-electric buses: review of influential parameters and modelling approaches
    The electrification of public transportation fleets worldwide can pose a challenge to multiple stakeholders, such as the fleet operator or the operator of the local electrical grid. One of the important prerequisites for the successful integration of these fleets into the existing system is the knowledge of the energy consumption of the buses during their trips. The energy consumption varies depending on multiple factors such as the vehicle or route-related parameters, operational, and environmental parameters. This paper gives an overview of the latest research regarding these influential factors. Another essential prerequisite for the implementation of intelligent management systems for electric bus fleets is the forecasting of energy consumption. Researchers take different approaches to tackle this issue. A review of the latest research considering empirical approaches, physical models, regression, and machine learning is also provided in this paper. The findings of this paper provide a quick overview of different aspects of the energy consumption of electric buses and can therefore support other researchers or decision-makers in their work.
  • Publication
    Open Access
    Abschätzung der Auswirkungen einer Umstellung auf Elektro-Busse auf das deutsche Energiesystem
    (Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg, Fakultät für Elektrotechnik, Professur für Elektrische Energiesysteme, 2020) ; ; ;