Weiß, Christian H.
Loading...
Alternative name
Weiß, Christian
Status
Active HSU Member
Main affiliation
Job title
Leitung
31 results
Now showing 1 - 10 of 31
- PublicationMetadata onlyWeighted discrete ARMA models for categorical time seriesA new and flexible class of ARMA-like (autoregressive moving average) models for nominal or ordinal time series is proposed, which are characterized by using so-called weighting operators and are, thus, referred to as weighted discrete ARMA (WDARMA) models. By choosing an appropriate type of weighting operator, one can model, for example, nominal time series with negative serial dependencies, or ordinal time series where transitions to neighboring states are more likely than sudden large jumps. Essential stochastic properties of WDARMA models are derived, such as the existence of a stationary, ergodic, and -mixing solution as well as closed-form formulae for marginal and bivariate probabilities. Numerical illustrations as well as simulation experiments regarding the finite-sample performance of maximum likelihood estimation are presented. The possible benefits of using an appropriate weighting scheme within the WDARMA class are demonstrated by a real-world data application.
- PublicationMetadata onlyThe circumstance-driven bivariate integer-valued autoregressive modelThe novel circumstance-driven bivariate integer-valued autoregressive (CuBINAR) model for non-stationary count time series is proposed. The non-stationarity of the bivariate count process is defined by a joint categorical sequence, which expresses the current state of the process. Additional cross-dependence can be generated via cross-dependent innovations. The model can also be equipped with a marginal bivariate Poisson distribution to make it suitable for low-count time series. Important stochastic properties of the new model are derived. The Yule–Walker and conditional maximum likelihood method are adopted to estimate the unknown parameters. The consistency of these estimators is established, and their finite-sample performance is investigated by a simulation study. The scope and application of the model are illustrated by a real-world data example on sales counts, where a soap product in different stores with a common circumstance factor is investigated.
- PublicationMetadata onlyModelling and diagnostic tests for Poisson and negative-binomial count time series(Springer, 2023-12-13)
;Aleksandrov, Boris; ; ;Faymonville, MaximeJentsch, Carsten - PublicationMetadata onlySpace-time integer-valued ARMA modelling for time series of counts(Cornell University Library, 2023-11-28)
;Martins, Ana ;Scotto, Manuel G.; Gouveia, Sónia - PublicationMetadata onlyNonlinear GARCH-type models for ordinal time seriesDespite their relevance in various areas of application, only few stochastic models for ordinal time series are discussed in the literature. To allow for a flexible serial dependence structure, different ordinal GARCH-type models are proposed, which can handle nonlinear dependence as well as kinds of an intensified memory. The (logistic) ordinal GARCH model accounts for the natural order among the categories by relying on the conditional cumulative distributions. As an alternative, a conditionally multinomial model is developed which uses the softmax response function. The resulting softmax GARCH model incorporates the ordinal information by considering the past (expected) categories. It is shown that this latter model is easily combined with an artificial neural network response function. This introduces great flexibility into the resulting neural softmax GARCH model, which turns out to be beneficial in three real-world time series applications (air quality levels, fear states, cloud coverage).
- PublicationMetadata onlyTwo novel distances for ordinal time series and their application to fuzzy clusteringTime series clustering is a central machine learning task with applications in many fields. While the majority of the methods focus on real-valued time series, very few works consider series with discrete response. In this paper, the problem of clustering ordinal time series is addressed. To this aim, two novel distances between ordinal time series are introduced and used to construct fuzzy clustering procedures. Both metrics are functions of estimated cumulative probabilities, thus automatically taking advantage of the ordering inherent to the series' range. The resulting clustering algorithms are computationally efficient and able to group series generated from similar stochastic processes, reaching accurate results with series coming from a wide variety of models. Since the dynamics of the series may vary over the time, we adopt a fuzzy approach, thus enabling the procedures to locate each series into several clusters with different membership degrees. An extensive simulation study shows that the proposed methods outperform several alternative procedures. Weighted versions of the clustering algorithms are also presented and their advantages with respect to the original methods are discussed. Two specific applications involving economic time series illustrate the usefulness of the proposed approaches.
- PublicationMetadata onlyNew characterizations of the (discrete) Lindley distribution and their applicationsA Stein-type characterization of the Lindley distribution is derived. It is shown that if using the generalized derivative in the sense of distributions, one can choose all indicator functions as the characterization functions class. This extends some known recent results about characterizations of the Lindley distribution. In addition, a new characterization based on another independent exponential random variable is also provided. As an application of the novel results, some moment formulas related to the Lindley distribution are obtained. Furthermore, generalized method-of-moments estimators for both the discrete and continuous Lindley distribution are proposed, which lead to a notably lower bias at the cost of an only modest increase in mean squared error compared to existing estimators. It is also demonstrated how the Stein characterization might be used to construct a goodness-of-fit test with respect to the null hypothesis of the Lindley distribution. The paper concludes with an illustrative real-data example.