Now showing 1 - 3 of 3
  • Publication
    Metadata only
    Techno-economic performance optimization of hydrothermal doublet systems: Application to the Al Wajh basin, Western Saudi Arabia
    (2022-11-01)
    Ezekiel, Justin
    ;
    ;
    Arifianto, Indra
    ;
    Daniilidis, Alexandros
    ;
    Finkbeiner, Thomas
    ;
    Mai, P. Martin
    The Kingdom of Saudi Arabia (KSA) has vast geothermal energy resources. When developed, these markedly strengthen the country's goals of achieving a carbon-neutral economy. To demonstrate the feasibility and techno-economic performance of small-scale, hydrothermal well doublet systems for direct use in KSA, we perform reservoir and wellbore flow and heat-transport simulations as well as an economic analysis. The maximum permissible flowrate is constrained to avoid thermoelastic fracturing in the near-wellbore region. Reservoir conditions of a sedimentary basin along the Red Sea coast (near Al Wajh) provide an ideal study case to which we add economic parameters considered representative for KSA. We derive a Levelized Cost of Heat (LCOH) ranging from 49 to 128 $/MWh for 50-mD hydrothermal doublet systems with an optimal well spacing of 600 m and a flowrate ranging from 110 kg/s to 50 kg/s. LCOH is strongly influenced by decreasing reservoir transmissivity. Also, a minimum injection temperature is required to avoid thermoelastic fracturing. Our economic analysis further highlights that capacity factor and well-drilling cost have the greatest impact on LCOH. Thus, this study provides a guide and workflow to conduct techno-economic investigations for decision-making, risk mitigation, optimizing geothermal-energy-extraction and economic-performance conditions of hydrothermal doublet systems.
  • Publication
    Metadata only
    Numerical analysis and optimization of the performance of CO₂-Plume Geothermal (CPG) production wells and implications for electric power generation
    (2022-01-01)
    Ezekiel, Justin
    ;
    Adams, Benjamin M.
    ;
    Saar, Martin O.
    ;
    CO₂-Plume Geothermal (CPG) power plants can produce heat and/or electric power. One of the most important parameters for the design of a CPG system is the CO₂ mass flowrate. Firstly, the flowrate determines the power generated. Secondly, the flowrate has a significant effect on the fluid pressure drawdown in the geologic reservoir at the production well inlet. This pressure drawdown is important because it can lead to water flow in the reservoir towards and into the borehole. Thirdly, the CO₂ flowrate directly affects the two-phase (CO₂ and water) flow regime within the production well. An annular flow regime, dominated by the flow of the CO₂ phase in the well, is favorable to increase CPG efficiency. Thus, flowrate optimizations of CPG systems need to honor all of the above processes. We investigate the effects of various operational parameters (maximum flowrate, admissible reservoir-pressure drawdown, borehole diameter) and reservoir parameters (permeability anisotropy and relative permeability curves) on the CO₂ and water flow regime in the production well and on the power generation of a CPG system. We use a numerical modeling approach that couples the reservoir processes with the well and power plant systems. Our results show that water accumulation in the CPG vertical production well can occur. However, with proper CPG system design, it is possible to prevent such water accumulation in the production well and to maximize CPG electric power output.
  • Publication
    Metadata only
    Sensitivity of reservoir and operational parameters on the energy extraction performance of combined co2-egr–cpg systems
    (2021-10-01)
    Ezekiel, Justin
    ;
    ; ;
    Adams, Benjamin M.
    ;
    Saar, Martin O.
    There is a potential for synergy effects in utilizing CO2 for both enhanced gas recovery (EGR) and geothermal energy extraction (CO2-plume geothermal, CPG) from natural gas reservoirs. In this study, we carried out reservoir simulations using TOUGH2 to evaluate the sensitivity of natural gas recovery, pressure buildup, and geothermal power generation performance of the combined CO2-EGR–CPG system to key reservoir and operational parameters. The reservoir parameters included horizontal permeability, permeability anisotropy, reservoir temperature, and pore-size-distribution index; while the operational parameters included wellbore diameter and ambient surface temperature. Using an example of a natural gas reservoir model, we also investigated the effects of different strategies of transitioning from the CO2-EGR stage to the CPG stage on the energy-recovery performance metrics and on the two-phase fluid-flow regime in the production well. The simulation results showed that overlapping the CO2-EGR and CPG stages, and having a relatively brief period of CO2 injection, but no production (which we called the CO2-plume establishment stage) achieved the best overall energy (natural gas and geothermal) recovery performance. Permeability anisotropy and reservoir temperature were the parameters that the natural gas recovery performance of the combined system was most sensitive to. The geothermal power generation performance was most sensitive to the reservoir temperature and the production wellbore diameter. The results of this study pave the way for future CPG-based geothermal power-generation optimization studies. For a CO2-EGR–CPG project, the results can be a guide in terms of the required accuracy of the reservoir parameters during exploration and data acquisition.