Now showing 1 - 10 of 23
  • Publication
    Metadata only
    Concept of a 5G Hybrid Wireless Campus Network as Testbed for Industrial Applications
    (Springer, 2023-01-01) ; ;
    Solzbacher, Bettina
    ;
    The 5th generation technology standard for broadband cellular networks (5G) is currently being deployed at a large scale. In addition to the expansion of public 5G networks, (private) 5G campus networks are also set up in many areas. However, in parallel with the development of 5G, numerous other wireless solutions have also evolved, primarily using unlicensed frequency bands. In addition to various versions of the consumer grade IEEE 802.11-based WLAN standards and Bluetooth, a number of specific wireless solutions for predominantly industrial data communication have been established. The advantages of these comparatively simpler, non-5G wireless technologies are lower price levels, higher availability of established products on the market, and improved energy efficiency, which often lead to a significant commercial success and justify their beneficial use. This contribution presents a hybrid campus wireless network infrastructure, which is intended to fulfill various requirements as a testbed, especially in the areas of automation, logistics and traffic. A focus is on wireless coexistence, functional safety requirements and functionalities in conjunction with the associated security for safety.
  • Publication
    Metadata only
    IO-Link Wireless Sensitivity Testing Methods in Reverberation Chambers
    (2022-09) ;
    Krush, Dmytro
    ;
    Krüger, Dirk
    ;
    Communication reliability is a challenging requirement, which implies the need for over-the-air (OTA) testing. Reverberation chambers (RCs) are widely used for OTA tests in various fields. Due to their properties, such as inherent radio channel emulation or the arbitrary orientation of the equipment under test (EUT) in the test volume, they can be used as advantageous test environments for wireless products in the field of industrial manufacturing automation, such as for the IO-Link Wireless (IOLW) standard. In this paper, the different OTA sensitivity test procedures total isotropic sensitivity (TIS), average fading sensitivity (AFS) and mean channel packet error (MCPE) method, which is based on the fundamental channel model of the wireless standard, are described and evaluated in various variants. A core aspect of the proposal is the impact of the possible use of frequency hopping of the wireless equipment under test. The respective advantages and disadvantages are shown. Overall, TIS proves to be a suitable alternative for IOLW OTA sensitivity testing.
  • Publication
    Metadata only
    Precision measurement of the application-dependent current consumption of a wireless transceiver chip in the time and frequency domain
    (Copernicus Publishing, 2022-06-13) ; ;
    Modern production concepts generate a demand for reliable, energy-efficient, fast, and secure wireless communication solutions. Therefore, the current consumption should not increase substantially due to additional cryptographic operations. This paper shows a principle current measurement method that is exemplary of a transceiver for the IO-Link Wireless protocol. Low-pass filtering and single-sided amplitude spectrum analysis are used to evaluate the main information of the current measurement. An uncertainty estimation is realized using statistical measurement data and considering the measurement setup in order to approximate the combined standard uncertainty. The results show that the current consumption only increases slightly when using additional cryptographic operations. This can be measured with acceptable uncertainty.
  • Publication
    Metadata only
    Fast Spectrum Monitoring System for the 2.45 GHz ISM-Band Based on Standard RF-Transciever Chips
    (VDE Verlag, 2022)
    Solzbacher, Bettina
    ;
    ; ;
    To ensure a high quality of service for industrial radio systems, frequency planning is indispensable. Frequency monitoring is very advantageous for minimizing possible collisions in the exchanged data packets and for quickly detecting unwanted interferers. Spectrum analyzers currently available on the market for the ISM band are significantly above the price level of the radio systems used. The measurement data and analyses from these measurement systems are also not made available online. The fast spectrum monitoring system is intended to remedy this situation. In addition to continuous online monitoring of the 2.45 GHz ISM band, it offers the possibility of providing evaluations and analyses of occupied frequency channels with low latency. In addition, detected radio systems can be quickly classified and interferers extracted. The analysis results can be transmitted directly to the operational radio systems using suitable communication interfaces or made available in the cloud for long-term evaluations. The development was based on the premise of combining this system with an IO-Link wireless system. The focus was on the rapid provision of analysis results from radio systems with fast frequency changes, as is typical for Bluetooth. With the help of this analysis data, the possible uses in the area of safety & security applications should also be discussed.
  • Publication
    Metadata only
    Safety Architecture Proposal for Low-Latency Sensor/Actuator Networks using IO-Link Wireless
    In the field of production automation, IO-Link Wireless (IOLW) offers energy-efficient and cost-effective solutions for networking wireless sensors and actuators close to the machines on the industrial shop-floor. In this paper, a concept is presented to enhance IOLW with security-for-safety and safety features in order to make safety critical systems in industrial environments with performance characteristics dedicated to demanding applications feasible. As data security is of paramount importance, security mechanisms already implemented in other wireless protocols are investigated and security-for-safety mechanisms for IOLW are introduced. Potential cryptographic algorithms are evaluated for IOLW with respect to energy consumption and timing. Taking performance parameters into account, which are crucial for industrial manufacturing processes, a safety protocol data unit (SPDU) is described and evaluated for different payload length and cycle times. Finally, an outlook towards the implementation of a demonstrator setup completes this work.
  • Publication
    Metadata only
    Sensing Reverberation Chamber Loading for IO-Link Wireless Testing
    (IEEE, 2021-08) ;
    Krush, Dmytro
    ;
    ;
    Reverberation chambers (RCs) can be used as repeatable and shielded test environments for electromagnetic compatibility testing and performance evaluation of wireless com-munication devices, as they inherently emulate a Rician/Rayleigh fading environment. Loading a RC with radio frequency (RF) absorbing material leads to an increasing coherence bandwidth (CBW) of the radio channel within the RC, where the appropriate value can be tailored to specific test specifications. In this paper the CBW is directly measured by the wireless system under test. Measurements were carried out with different loadings and the link quality indication (LQI) was used to determine an appropriate RC loading.
  • Publication
    Metadata only
    IO-Link Wireless Device Cryptographic Performance and Energy Efficiency
    (Institute of Electrical and Electronics Engineers Inc., 2021-03-10) ;
    Krush, Dmytro
    ;
    ;
    Jockram, Jonas
    ;
    ;
    In the context of the Industry 4.0 initiative, Cyber-Physical Production Systems (CPPS) or Cyber Manufacturing Systems (CMS) can be characterized as advanced networked mechatronic production systems gaining their added value by interaction with different systems using advanced communication technologies. Appropriate wired and wireless communication technologies and standards need to add timing in combination with security concepts to realize the potential improvements in the production process. One of these standards is IO-Link Wireless, which is used for sensor/actuator network operation. In this paper cryptographic performance and energy efficiency of an IO-Link Wireless Device are analyzed. The power consumption and the influence of the cryptographic operations on the trans-mission timing of the IO-Link Wireless protocol are exemplary measured employing a Phytec module based on a CC2650 system-on-chip (SoC) radio transceiver. Confidentiality is considered in combination with the cryptographic performance as well as the energy efficiency. Different cryptographic algorithms are evaluated using the on chip hardware accelerator compared to a cryptographic software implementation.
  • Publication
    Metadata only
    Study of a Safe and Secure Ecosystem based on IO-Link Wireless and a 5G Campus Network
    Wireless networks support highly flexible manufacturing processes and are recognized as a crucial pillar towards the digitization of industrial production (automation). While 5G is currently being marketed as universal solution for future wireless communication, high density of sensor and actuator nodes in industrial manufacturing environments with respect to latency times and reliability, still represents an enormous technical challenge. In the field of production automation standards, IO-Link Wireless (IOLW) is already in operation offering energy-efficient and cost-effective solutions, even with battery-powered smart sensor devices. In this paper, the deterministic ultra-reliable low-latency communication (URLLC) features of 5G are combined with the outstanding performance characteristics of IOLW with respect to robustness and latency to realize even highly demanding safety applications in industrial environments.
  • Publication
    Metadata only
    Coexistence Management Methods and Tools for IO-Link Wireless
    Wireless communication systems are enabler technologies for modern and flexible production concepts, essentially within the Industry 4.0 directive. For reliable low-latency wireless communication, the availability of frequency spectrum is a general prerequisite. IO-Link Wireless (IOLW) is a vendor-independent wireless communication standard, which operates in the 2.4 GHz ISM (Industrial, Scientific, Medical) band and especially addresses the requirements of industrial discrete manufacturing processes. The 2.4 GHz ISM band is used by various other radio systems, making coexistence management a fundamental challenge. Blacklisting and frequency hopping schemes are specified to increase the IOLWcoexistence behavior. In this paper coexistence management methods and tools, which can be employed for IOLW are presented. These tools can be used to enhance the coexistence behavior and thus the reliability, and at the same time, reduce energy consumption. After an introduction and a detailed presentation of IOLW, a software tool is presented that allows to implement an intelligent frequency management by adapting blacklists to the respective coexistence and boundary conditions. This is based on generic measurements, which are also shown in this paper. Finally, a conclusion and an outlook for further integration into an overall system are given.