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Abstract 

This paper deals with the mathematical framework of near-field acoustic holography based on 

finite elements in application to the acoustic response of a fluid within a closed cavity to the 

enclosure boundary conditions. The finite element method is an effective implementation of the 

modal approach for arbitrary geometries and provides advantages for certain wavenumber intervals 

in rooms. An inverse implementation of the direct problem can benefit from using generalized 

coordinates with modally reduced system matrices. A solution can be obtained via singular value 

decomposition together with Tikhonov regularization. This paper investigates acoustic mode 

spectrums of acoustic transfer functions, which has a major effect on the reconstruction of particle 

velocities from given sound pressures in a simple cavity model. It is found that the largest 

considered modal wavenumber in the acoustic transfer matrix should be twice the maximum 

excitation wavenumber. Furthermore, the relation between reconstruction errors and the 

detectability of evanescent waves depending on the wavenumber of excitation is considered. The 

proposed method is validated experimentally by reconstructing particle velocities on the inner 

boundaries of an Airbus A400M fuselage based on measurements of the inner pressure field. 

Results are compared with structural velocities measured with a laser Doppler vibrometer.  
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I. INTRODUCTION 

One of the tasks of an acoustic engineer is to eliminate noise by studying the dominance of 

interior sound sources. Requirements such as finite time resources and large regions that are 

inaccessible for measurement lead to the approach of model-based inverse source problems. 

However, which inverse technique to use depends strongly on the direct problem formulation and 

the acoustic environment, and it is well known that there is no optimum way to locate the sources 

of noise. One can choose from a broad range of acoustic source reconstruction tools, and the need 

remains for high-resolution methods for localizing sound sources in interior domains. A wide 

variety of inverse methods can be derived from direct acoustic problem formulations. 

Near-field acoustic holography1 (NAH) and its subsequent statistically optimized complement2 

originate from Fourier optics3 and have led to a breakthrough in the field of applied inverse 

problems in acoustics. Those methods involve measuring on a hologram plane close to a radiating 

structure to capture evanescent waves and to reconstruct acoustic quantities in the source plane 

with a resolution of less than half an acoustic wavelength. The input data can be either the sound 

pressure or its gradient.4 The violation of the inherent free-field assumption due to reflection in the 

context of Fourier-based NAH can be tackled through field separation techniques5,6 or by using 

simple geometries with well-defined boundary conditions.7 The pressure fields of volumes with 

irregular geometry can be calculated using numerical methods such as the boundary element 

method (BEM),8 which is especially useful for free-field applications because its formulation meets 

the Sommerfeld radiation condition. Moreover, it is used widely for inverse localization of interior 

sound sources.9–11 The disadvantages of BEM are (i) having to integrate over a singular kernel and 

(ii) the computational load needed to generate frequency-dependent fully populated acoustic 

transfer matrices. 
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Another approach results from the ability to predict acoustic sound radiation using spherical 

sources with application to the free field12,13 and enclosed sound fields.14,15 Reversing this approach 

leads to methods such as the Helmholtz-equation least-squares method16 or the equivalent-source 

method (ESM-based NAH) for reconstructing interior sound fields.17,10 However, ESM-based 

NAH results in a complicated optimization problem: not only the source strength but also the 

number and position of the elementary sources and receivers must be determined, and the solutions 

depend strongly on the geometry as well as on the wavelength, an issue that persists regarding 

source localization.18–20 Another way of source localization is to directly measure and invert the 

transfer function between sources and receivers,21,22 although achieving high resolution requires 

considerable measurement effort. 

Inverse source formulations are mathematically linear ill-posed problems, therefore direct or 

iterative regularization can alleviate the implied errors.23 Tikhonov regularization is a direct 

method with wide application for solving inverse problems.24 However, because it is not easy to 

choose the regularization parameter,25,26 methods for doing so always involve an approximation in 

the form of a trade-off between over-smoothing and error amplification.27 

With precise information about interior Green’s functions satisfying Neumann or Dirichlet 

boundary conditions, an equivalent solution to the Kirchhoff integral equation used in BEM-based 

NAH can be found.28 This procedure is called the modal approach29 or the Green’s function 

method,30 and it is usually applied to problems with well-separated acoustic modes31 where the 

ratio of the cavity dimensions to the acoustic wavelength is less than three.32 However, the classical 

modal approach is not feasible for arbitrary geometries, and alternative methods are required. 

Wave-based computational methods such as the finite difference method33 or the finite element 

method34 (FEM) are used widely to solve direct problem formulations in arbitrary acoustic 
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domains. However, inverse sound source localization based on the modal approach remains limited 

to geometries for which the wave equation is separable.35 

The aim of the first inverse field problems solved with finite elements was to reconstruct a 

complete pressure field using just a few microphones in a cavity.36,37 Another approach minimized 

the acoustic potential energy in a discretized cavity to identify the dominant sound sources.38 

However, doing so leads to matrices of impractical size for which iterative inversion is mandatory. 

Furthermore, in computational examples in which finite elements were used to approximate an 

acoustic free field, the sound sources were found effectively by fitting parameters of a sparsity 

promoting Tikhonov functional.39 Because large finite element models entail many degrees of 

freedom, an eigenvalue problem with modally reduced matrices can be solved instead to describe 

the system properties.40 Therefore, an inverse approach arises from impedance-based sub-

structuring techniques,41,42 and it uses the approximation of the acoustic modes of a sub-cavity to 

reconstruct local sources based on mixed or uniform boundary conditions. However, because these 

modes are non-physical ones, many sound pressure measurements or measurements of sound 

pressure gradients on surrounding virtual surfaces are required. Furthermore, the dimensions of the 

virtual sub-cavities are restricted by the measurement distance when capturing evanescent waves. 

Other FEM-based approaches attempt to reconstruct iteratively the boundary admittance in 

arbitrarily shaped volumes using a reduced matrix formulation based on the Robin boundary 

condition.43 The main concern here is to determine the boundary admittance assuming a given 

excitation. This leads to another family of methods aimed at reconstructing the boundary 

admittance directly either by using BEM44 or by iteratively updating a finite element model based 

on sensitivity functions.45,46 

The motivation behind the intended formulation of FEM-based NAH is to use the advantages 

of the numerical modal approach for interior sound fields to inversely reconstruct acoustic sources 
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resulting from structural vibrations. In the proposed approach, sound pressure measurements in a 

cavity are related to the normal particle velocities on the cavity boundary by a linear approximation 

of the acoustic environment with finite elements. Because there are several FEM software 

packages, this approach may equip a wider range of practitioners with methods for localizing sound 

sources. The proposed procedure is from the same FEM-based family as the sub-structuring 

approach but avoids having to measure sound pressures or particle velocities on virtual boundary 

surfaces. 

This paper is organized as follows. Section II describes the theory behind extracting an acoustic 

transfer function from a finite element model. In Section III, the application of the modal approach 

to a simple two-dimensional (2D) cavity model covers the main aspects of the inverse solution in 

FEM-based NAH. Section IV provides experimental results obtained from the cavity of a full-scale 

Airbus A400M fuselage. Finally, conclusions are drawn in Section V. 

 

II. MATHEMATICAL FORMULATION 

A. Modal approach methodology 

The model depicted in FIG. 1 represents a harmonic sound field in an arbitrarily shaped volume 

𝑉 enclosed by a boundary Π with 𝐫b ∈  ℝ3×1 (with time dependence 𝑒−j𝜔𝑡), where 𝜔 is the 

acoustic angular frequency and j is the imaginary unit (j2 = −1). Calculation of the steady-state 

sound pressure 𝑝 at points of observation 𝐫m ∈  ℝ3×1 in the measurement domain Ω is possible 

using Green’s second identity applied to acoustic quantities:47 

𝑝(𝐫m) = ∮ 𝐺(𝐫m|𝐫b)
𝜕𝑝

𝜕𝐧
(𝐫b) 𝑑𝐫b − ∮

𝜕𝐺(𝐫m|𝐫b)

𝜕𝐧
𝑝(𝐫b)𝑑𝐫b, (1) 
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which is a representation of the sound pressure at any field point in Ω as an integral involving the 

sound pressure and its surface gradient on Π. The measurement domain is source free and does not 

coincide with the boundary. 

 

FIG. 1. Geometric definition of an interior measurement region Ω bounded by the surface Π. Note 

that the normal vector 𝐧 is directed outward. 

The direct BEM inserts the general expression of the free-space Green’s function for a harmonic 

point monopole into Eq. (1) to express the pressure field in terms of a monopole and dipole source 

distribution on the surrounding surface. By contrast, the modal solution has a well-defined 

boundary condition to eliminate one term in Eq. (1). Commonly, a vanishing surface gradient is 

used (Neumann boundary condition): 

𝜕𝐺(𝐫m|𝐫b)

𝜕𝐧
= 0, (2) 

which represents a homogeneous equilibrium relationship with the normal particle velocity 

specified on the boundary. The sound pressure surface gradient is replaced by Euler’s equation: 

−
𝜕𝑝

𝜕𝐧
(𝐫b) = j𝜔𝜚𝑣(𝐫b), (3) 

which leads to a Fredholm integral equation of the first kind: 
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𝑝(𝐫m) = −j𝜔𝜚 ∮ 𝐺N(𝐫m|𝐫b)𝑣(𝐫b)𝑑𝐫b , (4) 

where 𝜚 is the density of the fluid. With this, one tries to construct a Green’s function to express 

the solution of the boundary value problem as an integral of the product of a kernel function and 

the known normal particle velocity on the boundary. The Neumann Green’s function 𝐺N(𝐫m|𝐫b) 

represents the integral kernel and 𝑣(𝐫b) encompasses the complex excitation function that 

superimposes the surface motion 𝑣s(𝐫b) of the surrounding structure with the particle motion as 

the result of an arbitrary local boundary admittance 𝑌(𝐫b). To take both quantities into account, a 

mixed boundary condition is proposed, namely48,49 

𝑣(𝐫b) =  𝑣s(𝐫b) + 𝑌(𝐫b)𝑝(𝐫b). (5) 

Note that 𝑌(𝐫b) depends on the wave angles of incidence. The required Green’s function must 

satisfy the inhomogeneous Helmholtz equation  

(∆ + 𝑘2)𝐺N(𝐫m|𝐫b) =  −𝛿(𝐫 − 𝐫b), (6) 

which relates the three-dimensional (3D) Dirac delta function 𝛿(𝐫 − 𝐫𝑏) at the origin on the 

boundary Π to the sound pressure at any field point in the volume Ω. Here, 𝑘 is the acoustic angular 

wavenumber. In the modal contribution theory, Green’s functions 𝐺N(𝐫m|𝐫b) can be expanded as 

a series of 𝐸 solutions in terms of eigenfunctions:29 

𝐺N(𝐫m|𝐫b) = ∑
1

∭ 𝜑𝑛(𝐫m)2𝑑𝐫m

 

𝐸

𝑛=1

𝜑𝑛(𝐫m)𝜑𝑛(𝐫b)

 (𝑘𝑛
2 − 𝑘2)

. (7) 

The eigenvalues are in ascending order 0 ≤ 𝑘1 ≤ 𝑘2  ≤ ⋯ ≤ 𝑘𝑛, with the eigenfunctions 𝜑𝑛 

creating a complete set of orthogonal functions that satisfy the first-order homogeneous boundary 

condition in Eq. (2). This characteristic functions are known as uncoupled rigid-wall modes with 

their corresponding resonance wavenumbers 𝑘𝑛. By substituting Eq. (7) into Eq. (4), the given 
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excitation function 𝑣(𝐫b) can be integrated over Π. Consequently, this leads to the linear mapping 

of the sound field from Π to Ω through an impedance term: 

𝑝(𝐫m) = −j𝜔𝜚 ∑
𝜑𝑛(𝐫m)

∭ 𝜑𝑛(𝐫m)2𝑑𝐫m

1

(𝑘𝑛
2 − 𝑘2)

∮ 𝜑𝑛(𝐫b)𝑣(𝐫b) 𝑑𝐫b.

𝐸

𝑛=1

 (8) 

This represents the direct problem formulation with Neumann boundary conditions, where a 

pressure field 𝑝(𝐫m) is determined uniquely by the velocity boundary condition 𝑣(𝐫b). The first 

term in Eq. (8) incorporates an undamped acoustic mode normalized by a shape-specific factor. 

According to the following resonance denominator, the influence of a mode grows if the 

wavenumber 𝑘 is close to the mode eigenvalue 𝑘𝑛. This leads to a decay of modal excitation 

amplitudes away from the radiation circle in inverse proportion to the difference of the squared 

wavenumbers. The third term in Eq. (8) grows if the phase velocities 𝑣(𝐫b) of the excitation 

function and an acoustic mode 𝜑𝑛(𝐫b) overlap. It also accounts for dissipative boundary segments 

leading to modal coupling by their equivalent pressure field in Eq. (5). Furthermore, this term 

describes the evanescence triggered by inhomogeneous wave components outside the radiation 

circle. Although these waves do not play a critical role in forward mapping, they are crucial for 

backward projection. 

 

B. Inverse problem for modal approach 

In backward projection, 𝑣(𝐫b) in Eq. (8) is replaced by the Dirac delta function 𝛿(𝐫 − 𝐫b). With 

the sifting property, one obtains the impedance  

𝑍(𝐫m|𝐫b) = −j𝜔𝜚 ∑
𝜑𝑛(𝐫m)𝜑𝑛(𝐫b)

∭ 𝜑𝑛(𝐫m)2𝑑𝐫m

1

(𝑘𝑛
2 − 𝑘2)

.

𝐸

𝑛=1

 (9) 

Discrete sampling generates the standard form used to reconstruct the particle velocities 𝐯 ∈ ℂ𝐵×1 

at boundaries based on sound pressures 𝐩 ∈ ℂ𝑀×1 given by50 
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𝐩 = 𝐙𝐯. (10) 

This expression relates the 𝐵 unknown particle velocities on Π to the 𝑀 known sound pressures in 

the hologram domain Ω. Inverting the rectangular acoustic transfer matrix 𝐙 ∈ ℂ𝑀×𝐵 is an ill-posed 

problem because unavoidable measurement and rounding errors occur in interaction with discrete 

sampling and evanescent-like waves. Thus, the compact singular value decomposition (SVD) 

generates an orthogonal projection for the matrix 𝐙 with rank 𝑅, which is given by  

𝐙 = 𝐔𝚺𝐕𝐻. (11) 

The columns of the unitary matrices 𝐔 ∈ ℂ𝑀×𝑅 and 𝐕𝐻 ∈ ℂ𝑅×𝐵 contain orthonormal basis 

vectors (singular modes). Superscript 𝐻 denotes the Hermitian transpose. Small perturbations in 𝐩 

can be heavily amplified by the inverse of Eq. (11), depending on the decay properties of the 

singular values on the main diagonal of 𝚺 ∈  ℝ𝑅×𝑅. Tikhonov regularization defines a regularized 

pseudoinverse and leads to the solution 𝐯̃ ∈ ℂ𝐵×1 by smoothing the perturbation effects due to the 

reciprocal of small singular values. Therefore, the regularization parameter 𝜇 generates a trade-off 

between error amplification and over-smoothing for the overdetermined system of linear equations  

𝐯̃ =  𝐕(𝚺𝑇𝚺 + 𝜇2𝐈)−1𝚺𝑇𝐔𝐻𝐩, (12) 

where 𝐈 ∈ ℝ𝑅×𝑅 is the identity matrix. For reproducible regularization, one can obtain the optimal 

value of parameter 𝜇o using the minimization of the mean-square errors between the given 

excitation and the inversely calculated particle velocities: 

𝜇o = min
𝜇

‖𝐯 − 𝐯̃(𝜇)‖2

‖𝐯‖2
. (13) 

In NAH-based sound-field reconstruction, to identify the sinks and sources of the sound, there 

is no need to deduce what fraction of the particle motion in 𝐯̃ is induced by the structural velocity 

and what fraction is induced by the admittance regarding Eq. (5). Nevertheless, applying Eq. (13) 

requires knowledge about the boundary condition connected to the sound pressure in the hologram 
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plane. While that information might be available in simulations, it is not available in experiments 

due to the finite measurement precision. In situations in which the vibrating surface is a smooth 

one, the structural velocity dominates the particle motion, particularly in highly reverberant cavities 

subjected to structural vibration. In such cases, measurements with a laser Doppler vibrometer 

(LDV) lead to good approximations of the normal particle velocity at the fluid–structure interface. 

 

C. FEM-based NAH 

For an irregularly formed cavity of volume 𝑉̅ with 𝐷 degrees of freedom, nodal coordinates 𝐫̅ ∈

ℝ3×1, and negligible damping, the FEM relates the unknown sound pressures 𝐩̅ ∈ ℂ𝐷×1 with the 

given excitation 𝐪̅ ∈ ℂ𝐷×1. They are connected through the assembled stiffness matrix 𝐊 ∈ ℝ𝐷×𝐷 

and mass matrix 𝐌 ∈ ℝ𝐷×𝐷 with entries 𝑘𝑖𝑗 and 𝑚𝑖𝑗 as 

𝑘𝑖𝑗 = 𝑐2 ∫ ∇𝑁(𝐫̅)𝑖∇𝑁(𝐫̅)𝑗𝑑𝑉̅

𝑉̅

 (14) 

 and 

𝑚𝑖𝑗 = ∫ 𝑁(𝐫̅)𝑖𝑁(𝐫̅)𝑗𝑑𝑉̅

𝑉̅

, (15) 

where 𝑁(𝐫̅) is a nodal shape function using finite element discretization and 𝑐 is the speed of sound. 

No fluid–structure interaction is considered. From the standard FEM literature, we have33 

(𝐊 − 𝐌𝜔2)𝐩̅ = −j𝜔𝜚𝑐2𝐪̅. (16) 

In the case of a point source with source strength 𝑞(𝐫̅), the load vector 𝐪̅ with entries 𝑞̅𝑖 

connected to nodal coordinates 𝐫̅b becomes 

𝑞̅𝑖 = ∫ 𝑁(𝐫̅)𝑖𝑞(𝐫̅)𝛿(𝐫̅ − 𝐫̅b)𝑑𝑉̅

𝑉̅

. (17) 
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The main advantage of this approach is that it can be reformulated on a more efficient modal basis 

with generalized coordinates. To keep things simple, no damping matrix is taken into account. The 

formulation is in conjunction with Eq. (8), where the excitation term also comprises any damping 

caused by a normal boundary admittance. According to Bathe,40 the vector of unknown sound 

pressures transforms to 

𝐩̅ = 𝚿𝛈, (18) 

with the projection matrix 𝚿 ∈  ℝ𝐷×𝐸 and unknown generalized sound pressures 𝛈 ∈  ℂ𝐸×1. 

Substituting Eq. (18) into Eq. (16) yields 

(𝐊 − 𝐌𝜔2)𝚿𝛈 = −j𝜔𝜚𝑐2𝐪̅. (19) 

Note that the number of degrees of freedom limits the number of columns (eigenvectors) in the 

projection matrix (𝐸 ≤  𝐷). The solution of the eigenvalue problem 

𝐊𝚿 = 𝐌𝚿𝛀2 (20) 

delivers the 𝐌-orthonormal projection matrix 𝚿 and the angular eigenfrequencies 𝜔̅𝑛, which are 

on the main diagonal of 𝛀 ∈  ℝ𝐸×𝐸. The orthogonality relationship for the normalized 

eigenvectors can be written as  

𝚿𝑇𝐌𝚿 = 𝐈 (21) 

and 

𝚿𝑇𝐊𝚿 = 𝛀2. (22) 

The identity matrix 𝐈 and 𝛀 have the same size. Pre-multiplying by 𝚿𝑇 in Eq. (19) leads to  

𝚿𝑇(𝐊 − 𝐌𝜔2)𝚿𝛈 = −j𝜔𝜚𝑐2𝚿𝑇𝐪̅. (23) 

With Eqs. (21) and (22), this form can be rewritten as 

(𝛀2 − 𝐈𝜔2)𝛈 = −j𝜔𝜚𝑐2𝚿𝑇𝐪̅. (24) 

Pre-multiplying by (𝛀2 − 𝐈ω2)−1 and 𝚿 together with Eq. (18) gives 
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𝐩̅ = −j𝜔𝜚𝑐2𝚿(𝛀2 − 𝐈𝜔2)−1𝚿𝑇𝐪̅. (25) 

This result is equivalent to the receptance matrix in structural mechanics with damping 

neglected.51 Treating 𝑞 in Eq. (17) as a unit load leads to a discrete version of the impedance 

function in Eq. (9) with rigid-wall eigenvalues 𝑘̅𝑛 resulting from the above FEM formulation: 

𝐙 = −j𝜔𝜚 ∑
𝛙̂𝑛𝛙̌𝑛

𝑇

(𝑘̅𝑛
2 − 𝑘2)

𝐸

𝑛=1

. (26) 

 The projection vector 𝛙𝑛 ∈  ℝ𝐷×1 approximates the 𝑛th equivalent normalized eigenvector 

from Eq. (7) and represents the 𝐸th column of 𝚿. Choosing the 𝑀 measurement nodes and the 𝐵 

boundary nodes of the finite element mesh in the projection vector 𝛙𝑛 produces 𝛙̂𝑛 ∈ ℝ𝑀×1 and 

𝛙̌𝑛
𝑇 ∈ ℝ1×𝐵. From here, the procedure according to Eqs. (10)–(12) can be adapted to solve the 

system of linear equations in Eq. (25). 

 

III. NUMERICAL EXAMPLE 

The model in FIG. 2 separates the effects of evanescent-like waves from the influence of modal 

wavenumber spectra on a discrete inverse acoustic interior-source problem. Particular attention is 

paid to the backward projection of the sound field in Cartesian coordinates onto the boundary of a 

simple room model. This room is a rectangular parallelepiped with sides 𝑎 and 𝑏. It has acoustically 

rigid walls in the x and y directions and is infinite in the z direction (the 𝑧 coordinate is omitted). 

In the computer implementation, the model is sampled spatially with a square patch of size of 

ℎ =  𝜋 30𝑘⁄ . So that the ratio of the wavelength to the cavity dimension does not exceed three, the 

edge lengths are chosen with 𝑘𝑎 2𝜋⁄ = 2.9 and 𝑘𝑏 2𝜋⁄ = 1.1. Input sound pressures for the 

backward projection are evaluated in Ω for a distance of 𝑑 = 10ℎ from the boundary Π. The 

acoustic excitation is applied in terms of an inhomogeneous Neumann boundary condition on the 

bottom (𝑦 =  0), namely  
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𝑣(𝑥) =  𝑒−j𝑘e𝑥. (27) 

The excitation wavenumber 𝑘e is defined in the range from zero to 4𝑘 and is shown in FIG. 3 as a 

point moving along the 𝑘𝑥 axis.  

 

FIG. 2. Analytical room model with sides 𝑎 and 𝑏 in the 𝑥 − 𝑦 plane for the inverse modal approach 

with a gap 𝑑 between the measurement region Ω and the boundary Π. Both domains are sampled 

with resolution ℎ of one sixtieth of the acoustic wavelength. An inhomogeneous Neumann 

boundary condition is applied to the bottom boundary at 𝑦 = 0. 

Because the eigenvalues and eigenfunctions are known,32 the projection from the acoustic 

excitation on Π to the pressure field in Ω is formulated according to Eq. (8). Integration over Π 

leads to a sum of a resonance term multiplied by an excitation term. The first depends on the cavity 

dimensions and the second grows in an alternating manner if the excitation and the axial modal 

wavenumber coincide: 

𝑝(𝑥, 𝑦) = −
𝜔𝜚

𝑎𝑏
∑ ∑

𝜀𝑟𝜀𝑠 cos(𝑘𝑟𝑥) cos(𝑘𝑠𝑦)

𝑘𝑟𝑠
2 − 𝑘2

∞

𝑠=0

∞

𝑟=0

𝑘e(−1𝑟𝑒j𝑘e𝑎 − 1)

𝑘r
2 − 𝑘e

2
. (28) 
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The wavenumbers of the acoustic modes and their weighting by means of volume integration 

can be written as 

𝑘𝑟𝑠 = √𝑘𝑟
2+𝑘𝑠

2 ,  𝑘𝑟 =
𝑟𝜋

𝑎
 ,  𝑘𝑠 =

𝑠𝜋

𝑏
, (29) 

𝜀𝑟 =  {
1, 𝑟 = 0
2, 𝑟 > 0

 ,  𝜀𝑠 =  {
1, 𝑠 = 0
2, 𝑠 > 0

. (30) 

 

A. Resolution of evanescent waves 

The resolution limits cannot be described mathematically by considering the resonance term or 

the excitation term in Eq. (28) separately. However, this information is essential because the 

amplitude decay of acoustic waves in the direction from Π to Ω limits their reconstruction accuracy 

on the boundary. In the presented example, an evanescent-like decay from boundaries in the 𝑘𝑥 

(index 𝑟) and 𝑘𝑦 (index 𝑠) directions results from the summation of cosine terms with alternating 

sign and wavelengths larger than 𝑘. The alternating property together with the reactive contribution 

of modes excited to forced vibration outside their resonance range determines the modal 

participation as well as the evanescent-like behavior in FIG. 3. The decay takes place in the 

wavenumber domain 𝑘𝑟𝑠 > 𝑘e > 𝑘. The corresponding modes interfere destructively in Ω, 

whereby the acoustic energy is stored close to the bottom boundary (see FIG. 4). 
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FIG. 3. Schematic of wavenumber domains in 𝑘𝑥 − 𝑘𝑦 plane: radiation circle (radius 𝑘), modal 

wavenumber (radius 𝑘𝑟𝑠), and excitation circle (radius 𝑘e). Destructive interference of acoustic 

modes (indicated with 𝑟ev and 𝑠ev) dominates the region outside the excitation circle when 𝑘𝑟𝑠 >

𝑘e > 𝑘. 

In FIG. 4, the resulting pressure field in the complete volume results from Eq. (28) with 

𝑘e =  2.5𝑘. It is drawn in the upper sub-figure, comprising the bottom propagative and decaying 

parts. The dashed line denotes the transition from super resolution of evanescent waves to blurred 

data in the hologram plane. With no additional random error, the distance of the transition line from 

the bottom boundary (hereinafter referred to as the “radiation distance”) theoretically becomes 𝑏, 

since even very small pressure amplitudes can be detected. 
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FIG. 4. Real part in [Pa] of the normalized (a) total pressure field in a rigid two-dimensional (2D) 

rectangular cavity with velocity excitation on the bottom boundary (𝑘e = 2.5𝑘). The lower sub-

figures represent the (b) propagative (𝑘𝑟𝑠 < 𝑘) and (c) evanescent (𝑘𝑟𝑠 > 𝑘e) fractions of the 

upper figure. The radiation distance is marked by the distance between the dashed line and the 

bottom boundary. 

In realistic applications, the measurement precision is limited by the dynamic range (DNR) of 

the measurement system, which is defined as the logarithmic value of the ratio of the maximum 

sound pressure |𝑝|max to the minimum sound pressure |𝑝|min in Ω. With complete cancellation of 

modes below |𝑝|min, the connection between the pressure field at receiver points and acoustic sinks 

and sources on the boundary can be disturbed. This situation appears if an evanescent pressure field 

falls under the noise floor, depending on the DNR, before reaching the hologram plane. Thus, the 

radiation distance of inhomogeneous waves from the boundary Π to the field Ω occurs in the sum 
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of waves 𝑘𝑟ev
 and 𝑘𝑠ev

. A shortfall of the mean sound pressure amplitude along the dashed line in 

the x direction in FIG. 4 under 

|𝑝|min =
|𝑝|max

10
𝐷𝑁𝑅

20

 (31) 

is defined as the threshold for detecting the radiation distance from the boundary in FIG. 5. Results 

for three DNR values with a decreasing noise floor from 20 dB to 40 dB are depicted. It becomes 

clear that excited waves with wavelengths around the radiation circle propagate through the entire 

cavity, whereas with increasing spatial frequency of the excitation, destructive interference takes 

place that causes evanescent-like parts of the pressure field to fall below the noise floor |𝑝|min. 

Thus, with a high noise floor the radiation distance decreases. This in turn leads to blurred input 

data, with much adverse impact on the ill-posed problem. 
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FIG. 5. Radiation distance of evanescent-like waves with respect to the dynamic range (DNR). 

From the point at which the radiation distance falls below the simulated noise floor, the 

wavenumber spectra of the pressure field can be detected only partially, thereby leading to blurred 

reconstruction input data. 

Equation (11) contains the ill-posedness represented by small singular values belonging to 

evanescent waves. FIG. 6 shows the first singular values 𝜎𝑤 (𝑤 = 1,2,…,30) on the main diagonal 

of 𝚺. Boundary points on the bottom boundary (𝑦 = 0, 𝑥) and all measurement points in Ω are 

involved in the acoustic transfer matrix. Performing a Fourier transform on the columns 𝑤 in 𝐔 

and 𝐕𝐻 extracts the wavenumbers 𝑘u and 𝑘v in singular vectors. The columns contain the basis 

vectors (modes). It is noteworthy that the most-weighted first seven singular values belong to 

supersonic singular modes. Thus, large singular values correspond to the contribution of modes 
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with wavenumbers just below the radiation circle. The direct problem formulation is well-posed 

because the influence of high spatial frequencies is attenuated by small weights 𝜎𝑤. The opposite 

applies to inverse problems in which the reciprocals of small singular values in FIG. 6 dominate 

the inverse solution. Here, inhomogeneous excitation (𝑘e > 𝑘) on the boundary undergoes a rapid 

decay in the pressure field. Depending on the measurement precision, these waves are only partially 

detectable and thus generate erroneous results because of amplification of imprecise input data. 

 

FIG. 6. (a) Amplitudes of first 30 singular values of acoustic transfer matrix from bottom boundary 

to measurement region in a rigid 2D rectangular cavity. Wavenumbers (𝑘u, 𝑘v) of corresponding 

singular vectors in (b) and (c) result from discrete Fourier-transform of columns in 𝐔 and 𝐕𝑯. The 

first seven supersonic singular modes are the most-weighted. An inverse solution is sensitive to the 

reciprocal of small singular values (𝑤 > 15) in combination with imprecise input data. 

A. Reconstruction error in relation to wavenumber spectra and perturbed input data 
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Tikhonov regularization leads to a smooth solution of the ill-posed system of linear equations 

in Eq. (12), which is divided by the patch size ℎ to obtain particle velocities (in units of meters per 

second) on plane diaphragms. The regularization parameter is from Eq. (13) and minimizes the 

error norm between the given excitation function and the inverse solution. Furthermore, this 

procedure ensures comparable solutions. However, an additional random error with Gaussian 

distribution and zero mean is added to the real and imaginary parts of each discrete sound pressure 

value in the hologram plane Ω. The associated standard deviation is given by |𝑝|max 30⁄ . This 

statistical assumption approximates a DNR of 30 dB of a hypothetical measurement system. 

The reconstruction error in FIG. 7 results from Eq. (13) with inserted optimal regularization 

parameter 𝜇o in a Monte-Carlo simulation with 100 repetitions. It is divided into three regions. In 

the first region (𝑘e/𝑘 <  1), there is a highly resolved inverse solution above 𝑘𝑟𝑠/𝑘 = 1 because 

no evanescent waves occur near the radiation circle. In the region below 𝑘𝑟𝑠/𝑘 = 1, the modal 

wavenumbers do not fully comprise the excitation wavenumber. The second region 

(1 ≤ 𝑘e/𝑘 < 2) is a transition zone in which the number of evanescent waves increases and the 

results depend strongly on the modal wavenumber spectrum. The necessary modal spectrum for 

reconstructing particle velocities on boundaries should comprise twice the excitation wavelength. 

In the third region (2 ≤ 𝑘e/𝑘 ≤ 3), the physical limitation due to the finite sampling distance 𝑑 in 

combination with a vanishing radiation distance of evanescent waves in FIG. 5 leads to blurred 

results, regardless of the wavenumbers involved in the reconstruction process. These results 

suggest measuring as close as possible to the radiating boundary while keeping the modal 

wavenumber high enough to take full advantage of the resolution of physical sensors in realistic 

applications. 
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FIG. 7. Reconstruction error in [%] between the given and the reconstructed particle velocity at the 

bottom boundary according to Eq. (13) with a DNR of 30 dB represented by a random error with 

Gaussian distribution added to the pressure field. No interpolation is used because each square 

represents the mean of 100 simulation runs for one wavenumber set. 
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FIG. 8. Photograph of the fuselage interior with a microphone measurement frame in the back, 

wooden floor panels on the ground and rubber mats covering the central wing box. The sector of 

measurements with the LDV is cross-hatched. 

IV. EXPERIMENTS 

The experimental setup shown in FIG. 8 is an Airbus A400M fuselage with a total length of 

30 m and that is suspended freely using pendulum supports. All the response measurements were 

performed at the Helmut Schmidt University/University of the Federal Armed Forces Hamburg. 

The measurement setup for the full-scale fuselage is shown schematically in FIG. 9. It is closed by 

a loading ramp at one end and is open in the flight direction. At the open side, the boundary 

condition of an acoustically hard wall is approximated by a rigid metal wall with a sound absorber 

encircling the fuselage front. The gap between the absorber and the skin is 3 cm. Wooden plates 

cover the floor of the cylindrical structure. The interior sound pressures were measured using an 

automated scanning robot. Minimizing the influences of evanescent-like waves, 93 microphones 
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were fixed on the moveable frame, with the distance to the fuselage skin bounded by the frame 

height. A 10 cm spacing between microphones at a conformal distance of 30–50 cm to the aircraft 

skin provided response data with high spatial sampling. Sound pressure slices were measured down 

14 m of the fuselage interior with a robot step size in the x direction of 10 cm. There was a 

microphone gap in the lower right corner to permit entry to the back of the frame. Loudspeakers 

outside the fuselage generated the acoustic excitation. The structural velocities were measured at 

the upper half inside the cylindrical skin section over a length of 6 m with an out-of-plane LDV 

that was decoupled from the vibrating structure by foam absorber pads. All the measured Fourier 

spectra were normalized by the excitation signal spectrum, and the normalization procedure used 

the same reference signal as the sound pressure measurements. 

 

FIG. 9. Schematic of measurement work spaces in Airbus A400M fuselage. A conformal 

microphone ring frame consisting of 93 microphones was moved automatically to measure the 

response due to the acoustic excitation. A rotatable laser Doppler vibrometer (LDV) measured the 
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response of the out-of-plane structural velocity to the excitation signal of loud speakers in the upper 

half of the cylindrical structure. 

A. Numerical implementation of inverse problem 

The sum of the contribution of infinite standing-wave modes of the fuselage cavity represents a 

general solution to the finite sound field subjected to velocity boundary conditions. However, the 

underlying mathematical model must be as simple as possible. The objective is to eliminate 

unnecessary details such as ribs and stiffeners. Because of the irregular shape of the cavity, the 

modal properties cannot be determined in closed form by an analytical solution with geometries 

for which the wave equation is separable.35 This problem can be tackled using the numerical 

technique described in Section II-C. Nevertheless, that approach demands the computation of pairs 

of eigenvalues and eigenvectors for a 3D model with many degrees of freedom. A simplification 

is proposed whereby the Neumann problem is formulated by rigid-wall modes of a constantly 

extruded cross section.52 The length is chosen arbitrarily as 𝐿 = 20 m, which is larger than the 

microphone measurement zone in FIG. 9. In this practical example, separating the numerical and 

analytical acoustic modes leads to a reduced model based on a 2D eigenvalue problem. The 

resulting cavity model in FIG. 10 is discretized into triangular elements with three nodes and an 

element edge length of ℎ̅ =  𝜋 6𝑘⁄ ; it contains no ribs or stiffeners. Isoparametric linear functions 

interpolate the geometric and acoustical quantities. In Fig. 10, the squares are reconstruction points 

on the boundary, and the diamonds indicate where a microphone was placed on the moveable 

frame. Because the modal characteristics in the axial direction are assumed to be known (rigid 

wall), the eigenvalue problem is reduced to a one-dimensional (1D) and a 2D acoustically hard-

walled system model connected in series. 
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FIG. 10. Finite element mesh of 2D simplified cavity model of experimental setup. Diamonds mark 

microphone positions. Squares coincide with positions on the floor panels and on the fuselage skin 

where the velocity is reconstructed. The model ignores irregularities such as ribs and stiffeners. 

Pre-sorted sets of eigenvalues and eigenvectors are used to combine both models into a 3D 

model. From Eq. (22), the angular eigenfrequencies 𝜔̅2D of the 2D model on the main diagonal of 

𝛀2D are given by  

𝛀2D = √𝚿2D𝑇
𝐊2D𝚿2D, (32) 

where 𝐊2Dand 𝚿2D are the stiffness matrix and the projection matrix, respectively, of the 2D model 

in FIG. 10. The wavenumber eigenvalues of the 3D model are given by  

𝑘̅𝑛 = √
(𝜔̅𝑙

2D)2

𝑐2
+ (

𝑚𝜋

𝐿
)

2

. (33) 
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Double indices are mapped comprising the 𝑙th angular eigenfrequency and the 𝑚th analytical 

eigenvalue of a 1D standing wave onto the single index 𝑛 to get the eigenvalues in ascending order, 

namely 0 ≤ 𝑘̅1(𝑙, 𝑚) ≤ 𝑘̅2(𝑙, 𝑚) ≤ ⋯ ≤ 𝑘̅𝑛(𝑙, 𝑚). With Eq. (33), the 2D eigenvalue problem is 

solved once for the mesh in FIG. 10 with an element length of ℎ̅ =  𝜋 6𝑘max⁄  corresponding to the 

highest analyzed frequency of 140 Hz. Each eigenvalue leads to a vanishing determinant of the 

undamped impedance matrix connected to the 3D model. It is paired with its corresponding 

eigenvector 𝛙𝑛 ∈  ℝ1×𝐷(𝐿 ℎ̅⁄ ) by  

𝛙𝑛 = 𝚿𝑙
2D cos (

𝑚𝜋𝐱̅

𝐿
) . (34) 

It is known from Eq. (18) that 𝚿2D has dimensions 𝐷 × 𝐸, where D is the total number of 

degrees of freedom in the 2D finite element model in FIG. 10 and E is the number of eigensolutions 

involved in the inverse calculation. The vector 𝐱̅ ∈ ℝ𝐿 ℎ̅⁄ ×1 contains the sampled coordinates in the 

axial direction of the 3D model between zero and 𝐿. The length of the 𝐿 ℎ̅⁄  entries matches the 

element size of the 2D finite element mesh to obtain a regularly spaced discretization. The index 𝑙 

picks the 𝑙th column (eigenvector) in 𝚿, in the same manner as in Eq. (33), to obtain pairs of 

eigenvalues 𝑘̅𝑛 and eigenvectors 𝛙𝑛 ∈  ℝ1×𝐷(𝐿 ℎ̅⁄ ) of the 3D model in ascending order. Selecting 

the boundary nodes and measurement nodes gives the transfer matrix according to Eq. (26): 

𝐙̃ = −j𝜔𝜚 ∑
𝜀𝑛

𝐿

𝛙̂𝑛𝛙̌𝑛
𝑇

(𝑘̅𝑛
2 − 𝑘2)

𝐸

𝑛=1

. 
(35) 

The normalization factor 𝜀𝑛 for the cosine function appears to be 1 for the mode with a zero 

axial wavenumber and 2 for all other modes. With Eqs. (10)–(12), a solution to the inverse problem 

is obtained.  
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B. Reconstruction of structural velocity 

FIG. 11 depicts the spatially distributed amplitude of the reconstructed particle velocities 

together with the amplitude of the structural velocities measured with the LDV. The boundary is 

divided into patches of length 𝜋 6𝑘⁄  to decrease the computation time because the SVD leads to 

lengthy numerical computations for a large number of degrees of freedom. This leads to different 

spatial resolutions for the reconstructed velocities, where the resolution of the measurement grid is 

adapted to the reconstruction points. The results for the three selected frequencies agree well. A 

decrease of the reconstruction error with an increasing modal wavelength is noticeable. The 

experimental results are consistent with the findings for the transition zone using the simplified 

numerical example in FIG. 7. 
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FIG. 11. Unwrapped image plot (colorbar in units of  (m/Vs)10−3) of measured (with LDV) 

and reconstructed structural velocity amplitude for (a) 55 Hz, (b) 105 Hz, and (c) 140 Hz in the 

LDV measurement workspace. In each sub-figure, the measured results are displayed on the left 

and the reconstructed results are shown on the right (all values on the axes in image plots are in 

meters). The maximum modal wavenumber is three times the acoustic wavenumber (𝑘̅𝑛 𝑘⁄ = 3). 

The resolution of the evaluation points depends on the considered frequency. Sub-figure (d) depicts 

the reconstruction error over the maximum modal wave number in the acoustic transfer matrix. 

V. CONCLUSIONS 

With the objective of reconstructing inversely the active sources of sound in an interior domain 

due to structural vibrations, the numerical implementation of the modal approach via FEM was 
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extended to NAH. The approach adopted in this study relates sound pressure measurements in a 

cavity to the normal particle velocities on its boundary. It was applied first in closed-form solution 

to a simple 2D room model. The analysis revealed the dependency of the resolution of the backward 

projection on the dynamic range as well as on the ability to detect evanescent-like waves near 

radiating boundaries. These findings are identical with those known from classical NAH. Within 

this example, the modal spectrum necessary for reconstructing particle velocities on boundaries 

should comprise twice the excitation wavelength. 

An experimental application of the FEM-based NAH to the reconstruction of the velocity field 

in a highly reverberant full-scale fuselage was realized. The required acoustic transfer functions 

resulted from a linear approximation of the acoustic environment with finite elements utilizing a 

2D model with a constant cross section. The focus here was on an acceptable model reduction 

ensuring a sufficient resolution of the reconstructed velocity fields. It was found that the 

wavenumber spectra in the computed frequency response function can have a large influence on 

the reconstruction results. A ratio of the modal wave number to the acoustic wavenumber of at least 

two leads to satisfactory results. However, partially measured structural velocities might be 

unavailable in a different scenario. Therefore, different parameter-choice methods must be 

evaluated. Furthermore, because no large axial dependency is expected for the occurring structural 

and acoustic wavelengths, the optimal regularization parameter that is obtained can be used to 

calculate sound-field quantities where there are no comparative results from LDV measurements. 
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