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Abstract

The availability and capability of today’s internet allow several novel chal-
lenging interactive multimedia applications like Networked Music Perfor-
mances (NMP). A Networked Music Performance is an online artistic collab-
oration with musicians located at different geographic locations connected
using the internet. While offering manifold artistic possibilities, many tech-
nical challenges like the resulting latency and the possibility of packet loss
have to be considered. This work depicts three enhancements for NMP ap-
plications which improve error robustness, the algorithmic delay, and the
spatial listening experience, respectively.

To counteract the possibility of packet loss or network jitter-caused tardy
arrival of packets, this work derives two methods to conceal errors during
audio replay at the receiver side. The first, auto-regressive model-based
variant facilitates concealing the audible impact of missing packets with high
quality but is computationally expensive. Several ways of computing the
auto-regressive model are presented and compared. The second method,
based on wave-form substitution, constitutes an efficient, cheap alternative.
The proposed methods are evaluated subjectively with a listening test and
objectively with measurements of perceptual quality.

The application of audio codecs in NMP sessions is inevitable in most
scenarios due to the restricted data rate and in particular the upload rate
of private internet accesses. Besides reducing the data rate the codec must
feature a small algorithmic latency to restrict the overall latency to a certain
extent. A novel audio coding approach which features smaller delays than
widely used low-delay codecs and a clearly reduced data rate in contrast
to delay-less codecs is presented. It is constructed using the Adaptive Dif-
ferential Pulse Code Modulation (ADPCM) codec approach in subbands in
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0 Abstract

combination with a Vector Quantizer (VQ) resulting in the Vector-Quantized
Adaptive Differential Pulse Code Modulation (VQ-ADPCM) codec. The pro-
posed codec is capable of encoding broadband audio with a data rate of
64 kbit/s and algorithmic delay of about 1 ms. The perceptual quality is
compared to well-known codecs using perceptually motivated measurements.

The last contribution is intended to improve the acoustic spatial scenery
within a NMP. For this purpose, a pseudo stereo conversion method providing
a broad stereo panorama for single channel sound sources is derived. The
method enhances the spaciousness of the stereo mix at the receiver without
adding timbral coloration or reverberation and therefore offers an improved
listening experience for NMP participants. The proposed method is based on
the design of a complementary filter pair, which can be applied in time- and
frequency-domain. Additionally, the integration within a virtual surround
mixer based on Head-Related Impulse Responses (HRIRs) is demonstrated.
Virtual surround mixing allows the arbitrary positioning of several sound
sources in a virtual room. The extension with the proposed pseudo-stereo
approach even facilitates to define sound sources of a certain size instead of
single point sources.

The three proposed enhancements are purely based on digital signal pro-
cessing and therefore can be implemented in the software layer of any NMP
system without demanding any changes to the actual musical performance,
the utilized hardware, or the available network structure.
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Kurzfassung

Die weitreichende Verfügbarkeit und Leistungsfähigkeit des heutigen Inter-
nets erlaubt einige sowohl neuartige als auch herausfordernde interaktive
Multimediaanwendungen wie die sogenannte Networked Music Performance
(NMP). Eine NMP beschreibt eine künstlerische Online-Kollaboration von
Musikern, die räumlich getrennt, aber durch das Internet verbunden sind.
Dieser Ansatz erlaubt vielfältige künstlerisch Möglichkeiten. Allerdings müs-
sen auch viele technische Schwierigkeiten, wie die Übertragungslatenz und
die Möglichkeit von Paketverlusten, in Betracht gezogen werden. Diese Ar-
beit zeigt drei Erweiterungen für NMP-Anwendungen auf, welche jeweils
die Fehlerrobustheit, die Übertragungslatenz und das räumliche Hörerleb-
nis aufwerten.

Um der Möglichkeit eines Paketverlustes oder dem Netzwerk-Jitter-ge-
schuldetem, verspätetem Eintreffen von Paketen entgegen zu wirken, werden
zunächst Methoden vorgestellt, die es erlauben Fehler in der Wiedergabe am
Empfänger zu verschleiern. Die erste Variante, basierend auf einem autore-
gressiven Modell, ermöglicht das Verbergen von hörbaren Beeinträchtigun-
gen durch fehlende Pakete bei hoher Qualität, ist allerdings in der Berech-
nung sehr aufwendig. Mehrere Ansätze um autoregressive Signalmodelle zu
ermitteln werden hierbei aufgezeigt und verglichen. Die zweite Methode,
basierend auf der Substitution von Wellenformen, stellt eine bezüglich des
Rechenaufwands günstigere Alternative dar. Die Methoden werden mit Hilfe
eine Hörtests subjektiv und durch Messungen der wahrgenommenen Qualität
objektiv beurteilt.

Die Anwendung von Audiokompressionsverfahren in einer NMP-Session
ist in den meisten Szenarien unvermeidlich, da die Datenrate und insbeson-
dere die Uploadrate von privaten Internetzugängen beschränkt ist. Neben der
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Reduktion der Datenrate muss der verwendete Audio Codec eine möglichst
geringe Latenz aufweisen, um die Gesamtübertragungslatenz einzuschränken.
Ein neuartiger Audiokodierungsansatz, der geringere Latenzen als weit ver-
breitete Niedriglatenz-Codecs und dennoch kleinere Datenraten als latenz-
freie Codecs aufweist, wird vorgestellt. Das Kompressionsverfahren basiert
auf der Anwendung der Adaptiven Differentiellen Pulse Code Modulation
(ADPCM) in Teilbändern. In Kombination mit einem Vektorquantisierer (VQ)
resultiert der Vektorquantisierte Adaptive Differentielle Pulse Code Modula-
tion (VQ-ADPCM)-Codec. Der vorgestellte Codec ist imstande breitbandige
Audiosignale mit 64 kbit/s und einer algorithmischen Latenz von 1 ms zu
enkodieren. Die wahrgenommene Qualität wird mit wohl-bekannten Codecs
anhand psychoakustisch-motivierter Messverfahren verglichen.

Der letzte Beitrag ist vorgesehen, die räumliche akustische Szenerie in-
nerhalb einer NMP zu verbessern. Hierfür wird ein Pseudo-Stereo-Verfahren,
welches breite Stereopanoramen für einkanalige Klangquellen liefert, hergeleitet.
Die Methode verbessert die Räumlichkeit des Stereomixes beim Empfänger
ohne das Nutzsignal zu verfärben oder zu verhallen. Dadurch wird dem
NMP-Nutzer ein verbessertes Hörerlebnis geboten. Der vorgestellte Ansatz
basiert auf dem Entwurf eines komplementären Filterpaares, welches in Zeit-
und Frequenzbereich angewendet werden kann. Zusätzlich ist die Integration
des Ansatzes in einem virtuellen Surround-Mischer basierend auf kopfbezoge-
nen Impulsantworten (HRIR) veranschaulicht. Virtuelles Surround-Mischen
erlaubt das beliebige Platzieren von Klangquellen in einem virtuellen Raum.
Die Erweiterung mit der präsentierten Pseudo-Stereo-Methode ermöglicht
nun sogar das Platzieren von Quellen verschieden Größe anstatt von Punkt-
quellen.

Die drei vorgestellten NMP-Verbesserungen basieren ausschließlich auf
digitaler Signalverarbeitung und können deshalb in der Softwareschicht jeglichen
NMP-Systems realisiert werden, ohne dabei Adaptionen der musikalischen
Darbietung, der genutzten Hardware oder der verfügbaren Netzwerkstruktur
zu erfordern.



1
Introduction

Virtual telepresence is a broadly known phenomenon that allows nearly in-
stant communication and interaction of several individuals without the re-
striction of being jointly localized. This presence can be based on pure text
(E-Mail, SMS, Chat, Instant Messaging), audio (Broadcast, Telephony, Au-
dio Instant Messaging), and video (Video Conferencing, Video Telephony).
Most of these communication schemes are widely accepted by the public
and therefore, extensively present in our daily life. Additionally, these telep-
resence methods share the property of being realized with a network in-
frastructure since classical analog broadcast and telephony system are more
and more replaced by their digital IP-based successors. The utilization of
a packet-based comunication network even facilitates novel and fascinating
applications like Networked Music Performances (NMP).

A NMP describes the online musical interaction of several musicians by
connecting their instruments to internet-linked devices and utilizing specific
software for the task of sending and receiving audio streams to and from
other participants. A simplified illustration of a NMP session with three
clients A, B, and C is shown in Fig. 1.1. All clients feature a sending and
receiving module, respectively. The analog signal of whatever instrument has
to be digitized with an Analog-Digital-Converter (A/D), optionally encoded
to reduce the data rate of the upload stream, and embedded within a trans-
port protocol to be sent over the internet to all other receivers within the
sending module. The receiver module is responsible for extracting the audio
data from the packets, optionally decode it, buffer the data, and to render
the received streams to the chosen replay format. The last step to replay the
data is to apply Digital-Analog-Converter (D/A) to recreate analog signals
for feeding it to speakers or headphones. This simplified NMP model is not
respecting the synchronization of the musicians and the replay hardware or
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1 Introduction

Figure 1.1: Simplified NMP session with 3 participants.

any network specific adaptions since this work is focused on the digital audio
signal processing aspects of the described NMP scenario. Furthermore, it
shall be noted that the considered NMP scenario takes place in the public
Wide Area Network (WAN), denoted as the internet. The performance of a
NMP session within a private WAN or Local Area Network (LAN) would be
significantly improved and potentially not require all enhancements proposed
in this work.

Several aspects and problems of NMPs were already accurately analyzed.
The most significant drawback of NMP sessions is the resulting delay be-
tween a sound source and the replay device. Amongst others, the following
processing steps significantly contribute to the overall delay [Car09]: A/D
conversion, blocking, encoding, packetization, sending, routing, cable propa-
gation, receiving, decoding, buffering, D/A conversion. It is well-known how
delay in verbal telecommunication degrades the quality of a conversation
since one starts to interrupt other speakers. Musical interaction is drasti-
cally more sensitive to delay. Several studies [CGLT04, CSZ+04, CWT09]
experimentally determined an upper bound which is acceptable for musi-
cians to perform. Depending on the musical style, values in the range of
30 to 50 ms were measured. Different studies involve prediction of a par-
ticipants performance to synthesize similar acoustic events at the receiver
side [OFF, VC14]. Thereby, the transmission delay can be at least partially
compensated. Alexandraki [AB14] suggested to resynthesize a pre-recorded
musical piece at a remote location using control data from a live performance
to reduce latency and data rate.
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Another typical problem of NMPs is the deviation in the sampling fre-
quency of several NMP clients. The sampling frequency of most audio devices
is derived from a high-frequency quartz clocks which slightly differ in their
nominal frequency due to component tolerances or different local tempera-
tures. Different sampling rates necessarily cause data over- or under-runs
and hence audible impairments. Therefore, the so-called clock drift has to
be properly compensated by measuring the frequency offset and readjust-
ing one of the clocks [CW09] or resampling adaptively [PEV10]. Integrating
visual cues to allow familiar communication between musicians potentially
enhances NMP systems. A solution to transmit additional, synchronized
video signals within the same transport stream to avoid additional jitter and
therefore packet loss is presented in [CS11a]. Another approach to transmit
visual cues without the necessity of transmitting video and therefore clearly
increasing data rate is to virtually conduct other musicians [CS11b].

Goals

Many commercial and academic NMP systems with different characteris-
tics and features, as listed in Tab. 1.1, were developed and distributed. The
plurality of systems suggests that the general NMP technology is already
well-engineered in terms of transmission, synchronization, and interfacing.
Therefore, the aim of this work shall not be the definition of a new system,
providing any further academic value, but the proposal of several enhance-
ments to enrich all existing and future systems in different aspects.

Known NMP systems share a similar software architecture which is sketched
in Fig. 1.2. A software module handling the recording of the signal to be sent
feeds an audio encoder to compress the recorded audio data before sending it
using the network sender module. Peer-to-peer based NMP implementations
require multiple network receivers running in parallel to collect the network
packet stream of every participant. The streams have to be decoded to be
placed in a replay buffer that counteracts inconsistent transmission delays
caused by the network. Server-client based implementation where the mix-
ing takes place at the server solely require a single receiver. In case of missing
packets the audio concealment module is used to fill the gap in the received
audio stream. Before replaying the audio data, the buffered streams have to
be rendered to achieve a replayable audio format. The focus of this work lies
on the blue-marked software modules Audio Concealment, Audio Encoder
and Decoder, and Audio Renderer. The remaining modules are not further
discussed. The goals of this study are defined in the following:
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Figure 1.2: Generic NMP software architecture. Modules covered in this
work are marked in blue.

• Generic Low-Delay Audio Error Concealment in Chapter 2:
The IP network as a communication channel is highly non-deterministic
and error-prone due to varying load conditions and therefore, the timely
arrival of a network packet containing audio data can never be guar-
anteed. Therefore, packet loss and the resulting audio error must be
concealed by replacing the missing data of a lost packet with synthe-
sized audio to prevent a drastic decrease in audio quality. Two error
concealment techniques are derived that allow to synthesize audio data
generically since they are operating in the time domain and therefore,
are not bound to any specific audio codec. The first approach synthe-
sizes a concealment signal based on an auto-regressive model. Multi-
ple approaches to compute the auto-regressive model are analyzed and
compared using perceptually motivated measurements. The second ap-
proach was developed to have an alternative algorithm featuring very
low computational complexity and is based on wave form substitution.

• Low-Delay Audio Coding in Chapter 3:
Besides the possible data loss caused by the network, one has to con-
sider the limited data rate of most NMP users. Especially typical net-
work links used at home can’t exhibit the necessary data rate to send
and receive multiple high-quality audio streams. Hence, the application

5



1 Introduction

of an audio codec to compress the audio data is inevitable. A novel au-
dio coding approach is presented that features smaller algorithmic delay
than codecs typically applied in the application field of global interac-
tive audio communication and still achieves high data compression.
The delayless Adaptive Differential Pulse Code Modulation (ADPCM)
encoding approach is utilized in subbands and combined with a Vec-
tor Quantizer (VQ) yielding the Vector-Quantized Adaptive Differential
Pulse Code Modulation (VQ-ADPCM).

• Efficient Auditory Virtualization in Chapter 4:
The third goal is to allow the NMP user an enriched acoustic experi-
ence. Musicians are used to hear accompanying musicians and them-
selves in a natural environment, like a rehearsal room or a concert hall.
Hearing the dry single-channel recorded instruments of the other mu-
sicians leads to an unusual and unpleasant hearing experience. The
spaciousness and spatial width of the stereo mix can be increased using
the proposed pseudo stereo method which blindly estimates a stereo
signal from mono sources using a pair of especially designed filters.
The complementary design of the filter prevents timbral coloration of
the sound sources and guarantees downmix compatibility to allow the
recording and mixing of NMP sessions. The integration of the pro-
posed pseudo stereo method within a virtual surround render method
is additionally depicted. Applying the proposed stereo method within
the virtual surround renderer allows to define the size of sound sources.

6



2
Error Concealment

Whenever communication takes place in a packet-switched network instead
of a circuit-switched network, the possibility of data arriving too late or not
at all has to be considered. This is caused by the dynamic routing process
which results in a varying inter-arrival time of network packets called network
jitter. Furthermore, transport problems like congestions at a certain node
within the routing path can occur and may lead to strong jitter and loss.
To prevent an impairment of the signal quality by jitter, large buffers at the
receiver are typically applied.

Certainly, an interactive application should limit the receiving buffer
to the smallest possible length to allow low-delay communication. Hence,
strongly-delayed and lost packets must be handled differently. Packet Loss
Concealment (PLC) can be applied to fill the gap in the digital audio sig-
nal caused by the missing packet. Various simple PLC methods like muting
or repetition of previous packets are known. A PLC example is shown in
Fig. 2.1. The unconcealed waveform x(n) (Fig. 2.1a), segmented in frames
of 256 samples, is incomplete since frame m is missing due to a lost packet.
The muting (Fig. 2.1b) and repetition (Fig. 2.1c) are capable of filling the
gap to allow replay but due to the clear discontinuity in the waveform, a
drastic impact on the audio quality can be expected. In contrast, advanced
concealment methods (Fig. 2.1d) allow to produce a well-fitted concealment
signal with clearly decreased quality impact.

Several contributions in the area of PLC, especially in the area of Voice
over IP (VoIP), have been made. Surveys of some basic PLC methods are
listed in [PHH98, WSD00]. Most approaches are not directly applicable for
NMP due to their additional algorithmic delay, caused by sender-based re-
pair, and the insufficient audio quality for full-range audio, though. Advanced
methods like Waveform Similarity Overlap-Add [SYRG96], Linear Prediction

7



2 Error Concealment
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Figure 2.1: Packet loss concealment with different techniques.
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2.1 Auto-Regressive Modeling (AR)

[GM01], or Hidden Markov Models [RMAJ06] were used to conceal packet
losses in VoIP systems. Nevertheless, concealing in the broadband audio case
was not investigated. Preihs et al. compared the application of Kalman fil-
ters and Linear Prediction to conceal packet loss in broadband audio without
delay [SP12].

In the following, two different approaches are investigated that allow a
signal-matched synthesis of audio signals. The first method is a model-based
synthesis approach whereas the second can be described as waveform substi-
tution. Both methods are solely utilizing previous time-domain audio signals
to create concealment signals and therefore can be applied with any audio
codec. PLC methods designed for a specific codec and utilizing additional
information are expected to show better performance but are not generically
applicable.

2.1 Auto-Regressive Modeling (AR)

It is well-known that speech can be authentically reproduced using the source-
filter model ([RS78]). The sound of many instruments can be modeled the
same way as is shown in [KKZS03, vTSM10]. The source-filter model de-
scribes the process of sound production basically as a filtering operation of
the source signal, which is typically a combination of a periodic impulse train
and white gaussian noise to simulate voiced and unvoiced excitation, respec-
tively. The source-filter model is usually auto-regressive (AR) and threfore
the model output

y(n) =
1

a0

(a1y(n− 1) + · · ·+ apy(n− p)) + x(n) =

=
1

a0

(
p∑

i=1

aiy(n− i)
)

+ x(n) , (2.1)

consists of prior model outputs y(n−i) weighted with p filter coefficients ai in
addition with the excitation signal x(n). The representation in the z-domain

H(z) =
1

p∑
i=0

aiz−i
(2.2)

shows that the model is a purely recursive infinite impulse response (IIR)
filter which can be used to extrapolate a given sequence [KR02]. To conceal
a lost frame m, the model-based concealment system, as shown in Fig. 2.2,
can be applied as follows:

9



2 Error Concealment

Figure 2.2: AR model-based concealment system overview.

1. Model Computation: Create a signal model from previous data xp(n)
by computing prediction coefficients ai. Multiple strategies for the
computation for different prediction filter realizations are known as
shown in the following section.

2. Filter initialization: The recursive extrapolation filter has to be prop-
erly initialized to perform extrapolation since the output depends on
the filter states as can be seen in Eq. (2.1).

3. Extrapolation: Feed the extrapolation filter with silence to perform the
actual extrapolation and obtain the concealment signal xc(n). Typi-
cally, N + O samples are synthesized to allow cross-fading with the
following block. N denotes the block length and O the amount of
overlapping samples.

4. Cross-Fade: To allow continuous transition from the concealed to the
next intact block, cross fading over O samples is applied

2.1.1 Computation of Model Parameters

The process of audio data extrapolation can also be interpreted as the linear
prediction of unknown samples

ŷ(n) =

p∑

i=1

aiy(n− i) (2.3)

from previous data y(n − i). The difference between predicted signal and
original signal is denoted prediction error

e(n) = y(n)− ŷ(n) = y(n)−
p∑

i=1

aiy(n− i)) (2.4)

10



2.1 Auto-Regressive Modeling (AR)

Figure 2.3: Transversal prediction filter realization.

and can be computed using the transversal filter structure of Fig. 2.3. When-
ever a cost function J(n) describing the squared prediction error

J(n) = E{e2(n)} (2.5)

is minimized by a set of prediction coefficients ai, one can a expect a pre-
diction signal close to the original one. Several techniques to compute the
prediction filter coefficients are derived in the following.

Least Mean Square (LMS)

A classical optimization technique called steepest descent can be applied
to minimize J iteratively. The coefficients ai are recursively updated by
subtracting the weighted derivative of the cost function

ai(n+ 1) = ai(n)− µ

2

∂J(n)

∂ai
, i ∈ (1, . . . , p). (2.6)

The weighting 1
2
µ allows to control the adaption speed. Inserting the squared

error cost function Eq. (2.5) and solving the derivative leads to

∂J(n)

∂ai
= 2E

{
e(n)

∂e(n)

∂ai

}
= 2E{e(n) y(n− i)}. (2.7)

Inserting Eq. (2.7) into Eq. (2.6) and neglecting the expectation value results
in the LMS update formula

ai(n+ 1) = ai(n) + µ e(n) y(n− i), i ∈ (1, . . . , p). (2.8)

Convergence of the LMS is solely guaranteed when

0 < µ <
2

p−1∑
i=0

y(n− i)2

(2.9)

11



2 Error Concealment

is fulfilled [Hay91]. The LMS algorithm can be extended to perform the filter
adaption with a constant speed and hence independent of the signal power.
Therefore, a normalized time-variant gradient step size

µ(n) =
λ

σ2(n) + σmin
(2.10)

is applied instead of the fixed one in Eq. (2.6). The base step size is divided
by the squared euclidean norm σ2(n), which is

σ2(n) =

p−1∑

i=0

y(n− i)2 (2.11)

for a transversal filter of length p. Numerical stability is improved by adding
the constant σmin in the divisor to avoid divisions by small values, occur-
ring for quiet or silent signals y(n). The resulting normalized least mean
squares (NLMS) algorithm is adjustable via the base step size λ.

Autocorrelation Method (ACM)

Another way of computing the coefficients of a transversal prediction filter ac-
cording to the Minimum Mean Square Error (MMSE) criterion is to estimate
a stochastic process for a limited series of data and replace the expectation
value of the product in Eq. (2.5) using an autocorrelation instead of approx-
imating it with least mean squares. Setting the gradient of the cost function
to 0 results in

∂J

∂ai
=
∂E{e2(n)}

∂ai
= 2E

{
e(n)

∂e(n)

∂ai

}
!

= 0. (2.12)

Substituting e(n) with Eq. (2.4) yields

− 2

(
E{y(n)y(n− i)} −

p∑

i=1

akE{y(n− k)y(n− i)}
)

!
= 0. (2.13)

The expression E{y(n)y(n− i)} represents the definition of the autocorrela-
tion function ryy(i) and therefore, Eq. (2.13) can be reformulated to

p∑

k=1

akryy(k − i) = ryy(i), i ∈ (1, . . . , p). (2.14)

These so-called Yule-Walker equations can be efficiently solved using the
Levinson-Durbin recursion [Dur60].

12



2.1 Auto-Regressive Modeling (AR)

Figure 2.4: Lattice prediction filter realization.

Gradient-Adaptive Lattice (GAL)

Besides transversal filters in form of direct and transposed digital filter struc-
tures, the class of lattice filters, as shown in Fig. 2.4, can be utilized in filter
and prediction applications [OS09]. The forward and backward prediction
error fi and bi per lattice stage i are described by

fi(n) = fi−1(n)− ki bi−1(n− 1) (2.15)

bi(n) = bi−1(n− 1)− ki fi−1(n), i ∈ (1, . . . , p).

The prediction error is iteratively minimized throughout the lattice stages
and therefore, the 0th stage f0(n) = b0(n) = x(n) is the current input signal
x(n). Similar to Eq. (2.6) the method of steepest descent

ki(n+ 1) = ki(n)− 1

2
µi(n)

∂Ji
∂ki

, i ∈ (1, . . . , p) (2.16)

can be applied to iteratively adapt the lattice prediction coefficients to mini-
mize the cost function Ji = E{f 2

i (n) + b2
i (n)} in lattice stage i. Inserting the

derivative of the cost function

∂Ji
∂ki

= 2E

{
fi(n)

fi(n)

∂ki
+ bi(n)

bi(n)

∂ki

}
(2.17)

= −2E{(fi(n) bi−1(n− 1) + bi(n) fi−1(n))} (2.18)

into Eq. (2.16) results in the coefficient update rule

ki(n+ 1) = ki(n) + µi(n) (fi(n) bi−1(n− 1) + bi(n) fi−1(n)) . (2.19)

The stage-dependent adaption step size is power-adaptive

µi(n) =
λ

σ2
i (n) + σmin

(2.20)

as in the case of LMS (Eq. (2.10)) but individually for every lattice stage.
The error power in stage i is computed as the recursive average

σ2
i (n) = λσ2

i (n− 1) + (1− λ) (f 2
i−1(n− 1) + b2

i−1(n− 1)), (2.21)

13



2 Error Concealment

where λ controls the memory of the averaging as well as the base adaption
speed. The direct-form filter coefficients ai can be obtained from the lattice
parcor coefficients ki using the following algorithm [OS09].

Algorithm 1 Compute transversal filter coefficients from lattice filter coef-
ficients.

1: for i = [1, . . . , p] do

2: a
(i)
i = ki

3: if i > 1 then
4: for j = [1, . . . , i− 1] do

5: a
(i)
j = a

(i−1)
j − ki a(i−1)

j−1

6: end for
7: end if
8: end for
9: aj = a

(M)
j , j = [1, . . . , p]

Burg method

The optimum coefficients for a lattice prediction filter can be obtained in
a similar manner. Substituting the prediction error in stage i in the cost
function

Ji = E{fi(n)2}+ E{bi(n)2} (2.22)

using Eq. (2.15) leads to

Ji =E{(fi−1(n) + ki bi−1(n− 1))2}+ E{(bi−1(n− 1) + ki fi−1(n))2} (2.23)

=E{f 2
i−1(n) + b2

i−1(n− 1)}(1 + k2
i ) + 4 kiE{fi−1(n)bi−1(n− 1)}. (2.24)

Computing the derivative with respect to the filter coefficients ki

∂Ji
∂ki

= 2 kiE{f 2
i−1(n) + b2

i−1(n− 1)}+ 4E{fi−1(n)bi−1(n− 1)} (2.25)

and setting it to 0 yields

ki = − 2E{bi−1(n− 1)fi−1(n)}
E{f 2

i−1(n) + b2
i−1(n− 1)} . (2.26)

Assuming an ergodic process allows defining the Burg estimator for a block
of length N [Hay91]

ki = −
2

N−1∑
n=i+1

(fi−1(n) bi−1(n− 1))

N−1∑
n=i+1

(
f 2
i−1(n) + b2

i−1(n− 1)
) . (2.27)
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2.2 Waveform Substitution (WS)

2.1.2 Initialization, Extrapolation and Fading

After obtaining the prediction filter coefficients from previous samples to ex-
trapolate audio data, one has to prepare the synthesis filter by setting the
internal states to meaningful initial values. The initialization depends on
the utilized filter implementation. In the case of direct-form I filter struc-
ture, using previous values is sufficient. Using the transposed direct-form II
implementation requires a reverse filter operation as shown in [OS09].

The actual extrapolation is then performed by feeding N+O zero samples
to the initialized recursive synthesis filter and hence let the filter oscillate.
The length of the concealment signal should be larger than the block length
N to allow cross-fading as explained in the following.

Smooth, transient-less transition from the concealed audio data block m
to the next intact block m+ 1 can be guaranteed by cross-fading

ym+1(n) = w(n) ym+1(n) + w(O − n) ym(N + n), n ∈ (0, . . . , O). (2.28)

Experiments in [FZ14] have confirmed that constant-amplitude windowing
functions

w(n) + w(O − n) = 1 (2.29)

are perceptually superior to constant-power windowing functions

w2(n) + w2(O − n) = 1, (2.30)

which are typically used in mixing applications. This is due to the strong cor-
relation of original and concealed audio signals. A mathematical derivation
of this phenomenon is found in A.3.

2.2 Waveform Substitution (WS)

The discussed model-based concealment is capable of concealing lost packets
but features the drawback of being computationally expensive since an auto-
regressive model has to be computed for every lost frame, before it can be
applied. Therefore, another concealment method was developed that allows
to restore an audio stream impaired by packet loss in a computationally less
complex way [FZ14]. This approach is based on waveform substitution (WS).
Multiple periods are extracted from previous data and reshaped to form the
concealed frame.

The concealment system’s module-wise structure is depicted in Fig. 2.5.
Prior data xp(n) is optionally refined by the pre-processing module before it is
fed to the zero-crossing analysis (ZCA) module, which delivers the extraction
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2 Error Concealment

Figure 2.5: WS concealment system overview.

borders zc(n). Multiple periods of the unaltered signal xp(n) are cut out
using zc(n) by the extraction module. This step produces the extracted
concealment signal xe(n), which is potentially repeated until the block length
N + O is reached. The alignment module is supposed to align the phases
of xe(n) to the tail of xp(n) and hence assure a smooth phase transition.
In addition, the phase transition is enhanced further by extrapolating a few
samples using the extrapolation module and cross-fading the extrapolation
of xp(n) with xe(n). Similar to Sec. 2.1 a cross-fade in the next intact block
is performed. Every module is explained in greater detail in the following.

Pre-processing

Two optional enhancement steps are contemplated to improve the following
ZCA process. First, non-linear functions are utilized to enhance the ZCA
performance as shown in [Hes79]. Two non-linear function

fNL1(x) =
√
|x| (2.31)

fNL2(x) =
√
|x| · sgn(x) (2.32)

were chosen which solely differ in symmetry as can be seen in Fig. 2.7a).
In addition to the nonlinearities, the analysis band width is restricted

using a finite impulse response (FIR) lowpass of order 20 with a normalized
cut-off frequency ωc = 0.01 · 2π. The FIR filter, plotted in Fig. 2.7b), is
applied in forward and backward direction to the buffer of previous data
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Figure 2.6: Exemplary waveform substitution concealment. Two previous
frames m− 2 and m− 1 in a). Corresponding zero crossings in b). Aligned,
extracted concealment signal in c). Concealed waveform in d).
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Figure 2.7: Pre-processing non-linearities and filters.

xp(n) to avoid any group delay influences and to maintain the position of the
zero crossings [OS09].

Zero-Crossing Analysis

Zero-crossings are chosen to identify a periodic excerpt since they are known
to be a useful low-level semantic audio feature [Ler12]. The position of a
zero-crossing can easily be identified by comparing the sign of two consecutive
samples. Identified zero-crossing are stored in a binary vector

zc(n) =

{
1 if x(n) · x(n− 1) < 0

0 else.
(2.33)

The resulting vector zc(n), illustrated in Fig. 2.6b), can be enhanced by im-
posing a minimum zero-crossing interval

δzc =

⌈
fs

2 · fmax

⌉
, (2.34)

resulting from the largest assumed fundamental frequency fmax of the input
signal and the sampling frequency fs. On the contrary, the smallest expected
fundamental frequency fmin can be respected by analyzing at least

Np =

⌈
β · fs
fmin

⌉
(2.35)

prior values and hence guarantee that the searched interval is sufficiently
large to hold a single period of fmin. The interval can be optionally increased
by choosing a safety margin β ≥ 1.
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2.3 Evaluation

Extraction

A single or multiple periods are extracted from the original xp(n) by cutting
out at the boundaries defined by the last entries of zc(n). For example, the
last 5 zero crossings from Fig. 2.6b) were utilized to define the extraction
boundaries in Fig. 2.6a).

Alignment

In the next step, xe(n) is phase-aligned to the end of xp(n) by circularly
shifting it by l samples

xs(n) = xe(n− lmodNe) (2.36)

to yield the aligned concealment signal xs(n). Several approaches to compute
the shifting offset l were analyzed in [FZ14]. The resulting aligned excerpt
xs(n) of length Ne is shown in Fig. 2.6c).

Extrapolation

The continuity from xp(n) to xs(n) can be improved by extrapolating Nf

values of xp(n) and cross-fade them with the first samples of xs(n). Again,
several methods to perform the extrapolation were reviewed in [FZ14].

Fade-Out

Similar to the model-based concealment system, the concealment signal is of
length N + O and therefore, longer than the actual blocks to allow cross-
fading with the next intact block as described in Eq. (2.28). The concealed
waveform xc(n) is depicted in Fig. 2.6d).

2.3 Evaluation

The evaluation of the two proposed concealment strategies is performed in
terms of complexity and perceptual quality which is assessed using an auto-
mated measurement. Typical measurements like the Signal-Noise-Ratio (SNR),
Total Harmonic Distortion (THD), or any broadband error power measure-
ments are not of interest since the only relevant criterion to evaluate the
concealment is the perceived quality.

The first evaluation aspect to be considered is the simulation of lost pack-
ets. For this purpose, a test signal x(n) is loaded from a wavefile, downmixed
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2 Error Concealment

to a single channel, and segmented into M frames of length N . Next, a ran-
dom sequence mrnd with an uniform distribution of length M with amplitudes
between 0 and 1 is computed. Whenever the packet loss rate rdrop exceeds
the value of mrnd

rdrop ≥ mrnd (2.37)

the corresponding frames are assumed to be lost. For every lost frame, the
concealment methods from Sec. 2.1 and Sec. 2.2 are applied to conceal the
resulting gap in the waveform. The evaluation is performed for every item of
the EBU Sound Quality Assessment Material (SQAM) [EBU08] and several
configurations of the proposed concealment methods. The SQAM dataset
consists of 70 various test-signals like synthetic signals in addition to record-
ings of various instruments, speech, vocals, orchestras, and popular music
pieces. The test tracks are sampled with a rate of 44100 Hz due to their
distribution in CD form and are also available online in an uncompressed
format. The perceptually motivated measurement tool is presented in the
following.

2.3.1 Measuring Perceptual Audio Quality With PEAQ

Finding the optimal way of evaluating the audio quality of a signal process-
ing algorithm remains an unsolved problem. Listening to the algorithms
output of carefully designed test items within a well-defined spatial environ-
ment by several trained listeners and the subsequent formal rating is one of
several possibilities. This approach is called a listening test and typically
the preferable choice. In contrast, measuring audio quality is a non-trivial,
much discussed topic due to the subjective properties of hearing. Therefore,
representing perceptual quality in any objective metric seems inappropriate
on a first glance. Nevertheless, the International Telecommunication Union
(ITU) recommended a method for objective measurements of perceived au-
dio quality (PEAQ) [ITU01] that is intended to yield similar results like a
listening test according to ITU-R BS.1116-1 [ITU97].

The PEAQ evaluation process takes place as drafted in Fig. 2.8. A test
signal is processed with the device under test (DUT) which is typically an
audio codec but in this case we apply packet loss simulation in addition with
the proposed concealment methods. The resulting processed signal and the
unprocessed reference signal are fed to the actual evaluation software. The
PEAQ algorithm computes several perceptually motivated features based on
a psychoacoustical model representation of processed and unprocessed test
signals. The features are combined to produce an overall rating called Objec-
tive Difference Grade (ODG). The ODG values range from −4 to 0 to assess

20



2.3 Evaluation

Figure 2.8: PEAQ evaluation process.

the audio impairments of the DUT from “very annoying” to “impercepti-
ble”. An open-source implementation [HZ15] is utilized that has proven its
usefulness in several studies.

2.3.2 Comparison of the Concealment Quality

Model-based Synthesis

First, it shall be exposed which configurations of the concealment methods
are beneficial for the purpose of hiding the audio quality impact caused by
lost network packets. Four methods to compute auto-regressive models were
presented in Sec. 2.1.1 and applied in the proposed model-based concealment
method of Sec. 2.1. The resulting average ODG scores, measured with the
PEAQ tool in basic mode on the SQAM data set, using a block size and
prediction order of N = P = 128 samples and a packet loss rate of rdrop =
0.01 are plotted over SQAM items in Fig. 2.9a). Muting lost frames is the
chosen reference method and yields an average score of −2.33 corresponding
to “Slightly annoying” impairment of audio quality. The unexpectedly good
score is caused by the silent parts of the test material. Within speech or
percussion instrument tracks, many silent parts occur which are not impaired
by a simulated lost packet. It is also noticeable that packet loss in broad
band, complex signals like the orchestral and pop music pieces are rated less
severe than for single instruments. Applying the AR concealment increases
the measured perceptual quality significantly, as it is apparent in the clear
gap between the curves in Fig. 2.9a).

Applying the Burg method to perform model-based error concealment
improves the average ODG score to −0.44. The improvement of almost 2
ODG scores clearly proves the quality improvement caused by the proposed
concealment method. The ACM method yields a slightly worse score of
−0.74, followed by GAL yielding a score of −0.75, and at last NLMS with a
score −1.38. It is already apparent that the choice of the predictor is essential
for the concealment quality and the Burg method is the most promising
approach whereas the NLMS can’t be advised.

Varying the block length N for a fixed loss rate rdrop = 0.01 and pre-
diction order p = 64 reveals the advantage of longer blocks as can be seen
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in Fig. 2.9b). This is caused by the fact that a constant amount of 3 previ-
ous frames is utilized to compute the AR models and longer data sequences
tend to yield more accurate models. However, the muting concealment is
rated superiorly for longer blocks as well. The author assumes that longer
but fewer gaps in the audio are rated less disturbing by PEAQ. Figure 2.9c)
shows the influence of an increasing packet loss rate. As expected, the per-
ceptual quality is clearly degraded in a similar fashion for all measurements.
The superiority of the block-based methods is also visible in form of a clear
ODG offset of about 0.5 in comparison to the GAL-based concealment. The
order of the predictor for a fixed block length and error rate is visualized in
Fig. 2.9d). All predictors benefit from an increased order as shown by the
similar rising trend of the curves. Apparently, the block-based methods are
advantageous in this application and the Burg method is the most promising
one and therefore solely utilized in the following. Unfortunately, the Burg
method is also quite expensive in terms of computational costs.

To justify the application of PEAQ for the measurement of audio quality
impairments caused by network errors in NMP scenarios, a listening test was
performed in addition. The listening test was realized with mushraJS [KZ14]
which is a web-based listening test platform according to ITU recommenda-
tion BS.1534-2 [ITU14]. Five tracks of the SQAM data set were shortened
to 10 seconds and processed similar to the PEAQ measurement. Solely the
packet loss rate was increased to rdrop = 0.02 to allow an easier identification
of the artifacts. The participants were asked to rate the overall audio quality
and score it within the range of [0, . . . , 100]. The results of the 23 partic-
ipants, shown in Fig. 2.10, clearly confirm the automated measurements in
terms of predictor preference. For every test item the Burg predictor was
rated best, followed by ACM, GAL, NLMS, and the muting reference. The
similarity of the measurement and listening test indicate that the PEAQ tool
is at least a well-suited quality indicator for PLC.

Waveform Substitution

As well as the model-based concealment approach, the waveform substitu-
tion methods allows several configurations. As exposed in Sec. 2.2, different
pre-processing, alignment, and extrapolation methods are available. To find
the configuration yielding the best average ODG score, all possible config-
urations were computed using the parameters as before. The evaluation in
[FZ14] showed that the pre-processing using a non-linearity and a filter, in
addition to the phase alignment based on amplitude and slope matching in
combination with linear extrapolation led to the best result.

Applying the evaluation mechanism from the previous section and using
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Figure 2.10: Listening test results of AR concealment for 5 SQAM items.

the same parameters of block length N = 128 and error rate of rdrop = 0.01
leads to an average ODG score of −1.32 and hence an improvement of 1
ODG1. As expected, the simple WS approach performs significantly worse
than the Burg method but still outperforms the AR concealment using the
NLMS predictor when the prediction order is set to p = 64. Varying the
block length N and the loss rate rdrop as shown in Fig. 2.11b+c) results in a
similar curve trend as the AR concealment.

2.3.3 Comparison of the Concealment Complexity

The proposed concealment strategies in their best-performing setting are
compared in terms of computation cost by analyzing the amount of real
multiplications. Remaining operations like additions, comparisons or the
computation of absolute values are neglected. The AR concealment consists
of three basic steps: The model computation using the Burg method, filter
initialization, and the actual filtering. The corresponding amount of multipli-
cations are denoted in Tab. 2.3.3. In contrast, the WS concealment requires
only the computation of the zero crossings, the extrapolation, and the op-
tional pre-processing consisting of an FIR filter and the nonlinearity. Besides
the extrapolation of a fixed length, all steps depend on the minimal analysis
length Np from Eq. (2.35). The accumulated multiplications of both methods

1The measurements of [FZ14] were repeated and led to slightly different results. The
superiority of the WS for certain parameter settings in contrast to the AR concealment
could not be confirmed.
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Table 2.1: Computational costs of AR and WS concealment denoted in mul-
tiplications.

AR WS

Burg 15 pN − 5p2+p
2

FIR Filter 42Np

Filter Initialization p2 Nonlinearity 2Np

Filtering 3
2
pN Zero Crossings Np

Extrapolation 5
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Figure 2.12: Multiplications of AR and WS (with and without pre-
processing) concealment plotted against Burg prediction order p for block
length N = 128 and WS analysis length Np = 661.

for N = 128 and Np = 661, corresponding to a minimal frequency of 80 Hz,
a sampling frequency of 44.1 kHz and a safety margin β = 1.2, are plotted
in Fig. 2.12 against the prediction order. It can be observed that the AR
complexity increases quadratically and intersects the constant curve of the
WS concealment at a order of p = 2. Significantly more multiplications are
required to compute the concealment using higher orders which are required
for best perceptual quality. The main complexity of the WS concealment
is caused by the pre-processing due to the FIR filter and the nonlinearity.
Disabling the pre-processing drastically decreases the complexity and even
undershoots the AR complexity for an order of p = 1.

2.4 Summary

Any network-based communication technology requires packet loss conceal-
ment strategies to retain a certain audio quality in the case of lost network
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2.4 Summary

packets. Two time-domain methods were presented which clearly improve
the audio quality in comparison to muting frames in the error case. The first
method is based on auto-regressive modeling and delivers physically moti-
vated synthesis signals which are of high quality but expensive in terms of
computational costs. For this reason, a second method was developed that
mainly substitutes missing samples with a waveform which consists of rear-
ranged previous data. It is drastically simpler to compute but is still able
to deliver an enhanced listening experience. Both methods solely require
previous time-domain signals and therefore are generically utilizable with
any audio codec. The two approaches were evaluated using a perceptually
motivated measurement routine, called PEAQ, aiming at predicting the out-
come of a listening test. The practicability of the method was demonstrated
by additionally performing a listening test yielding results with comparable
trends to the measurements. The evaluation on the SQAM dataset with
varying method and simulation parameters showed that the auto-regressive
concealment using the Burg method is clearly the best performing approach.
Improvements of up to 2 ODG in comparison to the muting of lost frames for
typical parameters can be achieved. The waveform substitution concealment
is only capable to increase the ODG score by 1. Comparing the complexity
analytically by evaluating the multiplications depicts that the Burg method
with typical parameters is clearly more expensive in terms of computational
costs for higher order.
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3
Vector-Quantized ADPCM

3.1 Codec Overview

Continuous audio replay in the case of unstable network conditions can be
guaranteed with the methods from the previous chapter. However, another
property of the utilized network, namely the data rate of internet connec-
tion, drastically influences the quality of NMP sessions. Assuming that
an NMP participant sends and receives audio streams with a typical sam-
pling frequency fs = 48 kHz and a CD-like quality having wb = 16 bits
per sample, the resulting data rate for every up- and down-stream yields
Rb = fs ·wb = 750 kbit/s. In the case of 4 participants and a non-centralized,
server-based communication architecture, each participant requires approxi-
mately 2.25 Mbit/s up- and down-stream rate.

A survey of the European Commision in the year 2012 investigated house-
hold internet connection and quality in europe. The average upload speed in
Germany was identified as 0.74 Mbit/s for DSL connections of any type and
2.9 Mbit/s for cable connection [EC12]. The nationwide survey ordered by
the german federal network agency affirmed that the effectively usable down
and upload speed are cleary below the advertised offers of internet service
providers [BNA13].

Therefore, audio data compression techniques also known as audio cod-
ing have to be utilized to allow NMP sessions with typical household internet
connections. The development of MPEG-2 Audio Layer III (MP3) [ISO93]
allowed users to replay their music collections with mobile devices and to
exchange music online by significantly reducing the size required for the stor-
age of the media content. This very popular method was further enhanced
and led to MPEG-4 Advanced Audio Coding (AAC) [ISO97] and MPEG-4
High-Efficiency Advanced Audio Coding (HE-AAC) [ISO09]. Amongst oth-
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3 Vector-Quantized ADPCM

ers, these codecs are massively applied in nowadays entertainment and com-
munication technologies. The core idea of reducing the data rate is to remove
irrelevant and redundant information from the audio signal. Irrelevant sig-
nal components are identified using a psychoacoustical model that allows to
compute a spectral representation of temporarily and instantaneous masked
components. Those masked components can be quantized coarsely in con-
trast to the relevant non-masked components. The analysis and quantization
is performed in the time-frequency domain using a Modified Discrete Cos-
inus Transform (MDCT) [Mal90] or a hybrid filter bank based on MDCT
and polyphase filter banks. Since the quantized spectrum potentially still
features redundancy, entropy coding can be applied to further reduce the
data rate of the source signal.

These MPEG audio coding approaches are surely capable of drastically
reducing the data rate and still feature a good listening experience in terms
of audio quality. In particular, in noisy listening environments the resulting
audio quality is sufficient even for lowest bit rates. In the case of interactive
communication scenarios like NMP or gaming the bit rate is unfortunately
not the most important requirement. These applications are extremely delay-
sensitive and hence, the signal processing should feature lowest delays. The
MPEG codecs have a significant algorithmic delay of 54 ms for mp3, 55 ms
for AAC, and 129 ms for HE-AAC in the best case, respectively [GLS+04].
Therefore, these audio codecs cannot be applied in a NMP scenario. To
counteract the problem of missing practicability in low-delay scenarios, the
AAC-LD mode was developed. It slightly outperforms mp3 in terms of qual-
ity but only features an algorithmic delay of 20 ms [AGHS99]. The delay
minimization was achieved by using an adapted filter bank and avoiding
block switching.

The algorithmic delay can be significantly decreased by reducing the
frame size and the transform length, respectively. The Constrained Energy
Lapped Transform (CELT) of the OPUS codec [VTMM10, VMTV13] oper-
ates with frame sizes of 120 samples corresponding to 2.5 ms in the lowest
delay configuration. In addition to the 2.5 ms lookahead, the OPUS codec
features an overall algorithmic delay of only 5 ms and still yields audio quality
compatible to HE-AAC at a bitrate of 64 kbit/s [Dya11]. It was specifically
designed to be utilized in real-time Internet applications like NMP. Nowa-
days, it is integrated in several browsers, VoIP software, and NMP realiza-
tions.

Lower delays are also possible when switching from transform-based ap-
proaches based on psychoacoustics to prediction-based methods. The Ultra-
low Delay Audio Coder (ULD) [HKK+04, HKSW06] is capable of deliver-
ing high audio quality while producing only 5.4 ms of algorithmic delay at
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3.1 Codec Overview

Figure 3.1: Blockscheme of VQ-ADPCM encoder.

fs = 48 kHz. It is based on linear prediction in the time-domain and a scalar
quantizer combined with pre- and post-filters to shape the quantization noise.
The delay is caused by the essential lookahead which is necessary to design
the prefilter based on a psychoacoustical analysis. This audio codec already
proved its usefulness in NMP scenarios [CKS06].

Another widely used proprietary audio codec is the aptX R© codec family.
It is based on prediction and quantization as well, but in contrast to the
ULD, the processing takes place in subbands. The predictor and quantizer
are adapted using quantization error feedback. This scheme is called Adap-
tive Differential Pulse Code Modulation (ADPCM). The low-latency variant
features data rate reduction of factor 4 and an algorithmic delay of 1.89 ms
at fs = 48 kHz [APT]. The delay is caused by the filter bank which divides
the fullrange input signal in subband signals.

Another subband ADPCM (SB-ADPCM) approach was presented by
Keiler [Kei06b]. It claims nearly transparent quality with a minimum bit rate
of 128 kbit/s showing an algorithmic delay of ≈ 3 ms using 8 subbands. The
broadband ADPCM approach from Holters et al. [HHZ08] doesn’t show any
delay at all. The 3 bit and 4 bit variants result in a bitrate of 144 kbit/s and
192 kbit/s, respectively. Noise shaping is performed using adaptive shelving
pre-and-post filters [HZ08] or noise feedback [HHZ08].

Since the delay of the lastly described codec is already optimal, this chap-
ter shall reveal how the bit rate of an ADPCM codec can be further decreased
when a tiny delay is allowed. Further reducing the bit rate helps to estab-
lish NMP sessions with multiple users when the user is bound to a typical
household Internet connection. The proposed codec design of this work con-
sists of multiple ADPCM codecs in multiple subbands. In contrast to the
mentioned subband ADPCM codecs [Kei06b, APT], a vector quantizer (VQ)
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3 Vector-Quantized ADPCM

Figure 3.2: Blockscheme of VQ-ADPCM decoder.

will be applied to the subband signals instead of a scalar quantizer. It is
well-known that VQ’s are taking advantage of non-linear dependencies of
the source [MRG85]. In other words, quantizing a non-memoryless source
with a VQ is always beneficial and a certain coding gain can be expected
since subband signals are still highly correlated.

The combination of a filter bank, ADPCM prediction tools, and a VQ
was already attempted in [MZFR00]. But the simple evaluation therein does
not allow a classification of this codec within the aforementioned codecs in
terms of quality and hence, a new design of the codec structure followed by
a global optimization for the purpose of NMP is performed in this study.

In fact, the presented approach, sketched in Fig. 3.1, consists of an anal-
ysis filter bank (AFB) to divide the input signal x(n) in M critically sam-
pled subband signals x1(b), . . . , xM(b) where b represents the time index of
the subband signals. Each subband signal is individually processed by an
ADPCM subband encoder SBEm. The outputs of the subband encoders
e1(b), . . . , eM(b) are jointly quantized using the VQ resulting in the quan-
tized subband error signals ẽ1(b), . . . , ẽM(b). The vector of quantized error
samples is transmitted solely using the codebook vector ib without further
side information. The encoding process is illustrated in Fig. 3.3, where the
signals of every processing step is shown.

The corresponding decoder is shown in Fig. 3.2. The quantized subband
encoder outputs ẽ1(b), . . . , ẽM(b) are reconstructed using a lookup operation
utilizing the index ib. Therefore, the codebook CB has to be known in
encoder and decoder. In every band, a subband decoder SBDm is applied to
compute the reconstructed subband signals ỹ1(b), . . . , ỹM(b). The wideband
output signal y(n) is obtained by applying the synthesis filter bank (SFB) to
the subband signals. In the following sections, all necessary components of
the codec structure and the evaluation of the proposed coding approach are
presented.
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Figure 3.3: Signals involved in the encoding process: a) Broadband input
signal x(n) , b) subband signals x1,...,M(b), c) subband residuals e1,...,M(b) ,
and d) quantized subband signals ẽ1,...,M(b).
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(a) (b)

Figure 3.4: Blockscheme of analysis (a) and synthesis (b) filter bank.

3.2 Filter bank

Dividing a broadband signal x(n) into several critically sampled subband
signals x1(b), . . . , xM(b) with the help of a filter bank, as shown in Fig. 3.4,
to allow individual processing of the corresponding frequency components is
a classical digital signal processing task. Many designs and implementations
of filter banks are known and utilized in various applications. In the case of
SB-ADPCM, subband processing is advantageous since the predictor in every
band can be optimally adjusted for characteristics of the audio signal within
a certain frequency range. For example, it is expected that low-frequency
bands mainly consist of harmonic stationary sounds whereas high-frequencies
tend to have a noisier characteristic. Figure 3.5 shows the spectrogram of a
snippet from the SQAM viola sample for M = 4 subbands. Apparently, the
lowest band m = 1 shows the strongest tonality whereas the upper bands
look noisier.

Therefore, a predictor operating in a low-frequency band is likely to ben-
efit from a high order and a slow adaption. The prediction error energy of a
lattice predictor of order p = 80 and base step size λ = 0.001 and a second
predictor of order p = 30 and base step size λ = 0.3 is plotted in Fig. 3.5 for
the SQAM viola example. In Band m = 1, the energy of the higher-order
slow predictor E1

es is significantly below the energy of the actual signal E1
x

and hence a clear prediction gain

PG = 10 · log 10

(∑N−1
n=0 x

2(n)∑N−1
n=0 e

2(n)

)
(3.1)

can be achieved. The error energy of the fast predictor E1
ef is even higher

than the energy of the actual signal. However, in subband m = 4 a clearly de-
creased error energy can be obtained by applying the fast predictor, whereas
the slow predictor does not achieve any prediction gain. Thus, the average
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prediction gain can be maximized by applying individually adjusted predic-
tors.

If the subbands are equally spaced and hence feature the same normalized
bandwidth π

M
, the subband signals can be subsampled without loosing any

information. If the subsampling factor is equivalent to the amount of bands
M the corresponding filter bank is denoted critcally sampled.

3.2.1 Cosine-Modulated Filter Bank

A popular way to design a filter bank is to derive the analysis filters Hm(z)
and synthesis filters Gm(z) by modulating a prototype lowpass filter HP (z)
of length N

hm(n) = 2hp(n) cos

(
(2m+ 1)

π

2M

(
n− N − 1

2

)
+
π

4
(−1)m

)
(3.2)

gm(n) = 2hp(n) cos

(
(2m+ 1)

π

2M

(
n− N − 1

2

)
− π

4
(−1)m

)
. (3.3)

The modulation corresponds to a shift in frequency domain and hence M
equally spaced bandpass filters are obtained. Analysis and synthesis impulse
responses only differ in the sign of the phase offset π

4
(−1)m of the cosine.

This is equivalent to a time reversal of the impulse response

gm(n) = hm(N − 1− n), (3.4)

corresponding to
Gm(z) = z−(N−1)Hm

(
z−1
)

(3.5)

in the z-Domain. The overall transfer function of band m then reads

Hm(z)Gm(z) = z−(N−1)Hm(z)Hm

(
z−1
)
. (3.6)

It can be seen that the analysis and synthesis filters feature linear phase when
combined. In other words, the overall filter bank group delay is constantly
N − 1 samples although Hm(z) and Gm(z) are not necessarily linear phase
filters.

The cosine modulation is illustrated in Fig. 3.6, where a lowpass prototype
and all derived bandpass filters can be seen in form of their impulse responses
and transfer functions.

3.2.2 Prototype Design

As mentioned before, a prototype lowpass filter must be designed to real-
ize a cosine-modulated filter bank. Several parameters of the lowpass will
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Figure 3.6: Impulse responses and transfer functions of prototype filter hp(n)
and the derived analysis filters hm(n) for M = 8 and N = 51.
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Figure 3.7: Exemplary prototype filter and relevant design parameters.

have a strong impact on the resulting filter bank performance. The ampli-
tude response HP (ejΩ) is plotted in Fig. 3.7. It consists of 3 major sections:
the passband with minor or without attenuation, the transition part, and
the stopband where strong attenuation is achieved. The relative transition
bandwidth b = Ωs−Ωp

2π
is restricted by the passband edge Ωp and the stopband

edge Ωs. The amplitude deviation from the ideal values is called passband
ripple δp and stopband ripple δs, respectively. Several possibilities for the
design shall be compared in the following.

Window Design

The optimal lowpass with an infinitely sharp transition (Ωp = Ωs) and neither
passband nor stopband ripple (δp = δs = 0) can be described with a rectangle
in the frequency domain

HP (ejΩ) = rect

(
Ω

2 Ωc

) d t h(n) =
sin(Ωcn)

πn
(3.7)

corresponding to the normalized sinc function in the time domain. The
impulse response of infinite length prohibits the utilization of the optimal
lowpass. Therefore, the impulse response is limited in its length using a
window w(n). Typical windows in audio processing are the Sine-, Hamming,
and Blackman-window. All mentioned windows are illustrated in Fig. 3.8a)
for a length of N = 64 samples. The corresponding frequency responses in
Fig. 3.8b) share the same cutoff frequency Ωc = π

4
but differ significantly in

their main lobe width and their stopband attenuation.
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ParksMcClellan Design

Another standard method for FIR filter design is the Parks-McClellan al-
gorithm [PM72]. It obtains the optimum chebyshev approximation, corre-
sponding to an equiripple design, by minimizing the error in passband and
stopband iteratively using the Remez exchange algorithm. The algorithm
requires the filter order N , passband edge Ωp, and the stopband edge Ωs.
The frequency response deviations δp and δs can not be directly respected
but weighting factors wp and ws are used to priorize smaller deviations in
either passband or stopband [CM95].

3.2.3 Power-complementary Filter Bank

A filter bank should be designed in a way to allow perfect reconstruction if
no processing occurs in the subbands. Certain design methods are known
to achieve reconstruction without amplitude or aliasing distortion but are
bound to certain filter lengths [NV90, Vai87]. It is also possible to design near
perfect reconstruction filter banks with arbitrary length using optimization
techniques.

Creusere and Mitra [CM95] iteratively minimized the cost function

φ = max
Ω
{
∣∣H(ejΩ)

∣∣2 +
∣∣H(ejΩ− π

M )
∣∣2 − 1}, 0 ≤ Ω ≤ π

M
(3.8)

by varying the passband edge of the remez exchange design with a control
loop. This approach was modified by Keiler [Kei06a] by extending the control
loop with an inner loop to additionally optimize the weighting factor wp

ws
to

further minimize the cost function. The optimization scheme from [CM95]
is also applicable to the FIR window design method.

3.2.4 Evaluation of Filter Banks

To describe the performance of a filter bank an evaluation metric is required.
Therefore, the distortion and aliasing function from [Fli93] shall be intro-
duced. Applying one of the analysis filters Hm(z) to the input signal X(z)
leads to the subband signal

Xm(z) = Hm(z) ·X(z) (3.9)

which is still sampled at the original rate but restricted to a bandwidth of
π/M as shown in Fig. 3.9 a+b). The critically sampled subband signal

Xm(zM) =
1

M

M−1∑

l=0

Hm(zW l
M) ·Xm(zW l

M), WM = e−j
2π
M (3.10)
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(a)

(b)

(c)

Figure 3.9: Computation of critically sampled subband signals: a) Filter
input X(z) with subband filter Hm(z) to get b) high-rate subband signal
Xm(z), c) followed by subsampling.

features repetitions of the original spectrum with a periodicity of 2π
M

instead
of the previous periodicity of 2π as apparent in Fig. 3.9c). Applying the syn-
thesis filter bank and adding the corresponding outputs leads to the overall
filter bank output Y (z), denoted as

Y (z) =
1

M

M∑

m=1

Gm(z) ·Xm(zM)

=
1

M

M∑

m=1

Gm(z) ·
M−1∑

l=0

Hm(zW l
M) ·X(zW l

M)

=
1

M

M∑

m=1

[
M−1∑

l=0

Gm(z) ·Hm(zW l
M)

]
·X(zW l

M). (3.11)

When the aliasing components are ignored (l = 0) the overall filter bank
distortion function can be found

Fdist(z) =
1

M

M∑

m=1

Gm(z) ·Hm(z). (3.12)
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The remaining aliasing distortion is then defined as

Falias(z) =

√√√√
M−1∑

l=1

∣∣∣∣∣
1

M

M∑

m=1

Gm(z) ·Hm(zW l
M)

∣∣∣∣∣

2

. (3.13)

In addition to analysis of the reconstruction properties of the filter bank
from [Fli93] it is essential to evaluate the filter bank in terms of selectivity
of the pass band. This can be achieved by evaluating the stopband attenu-
ation of the prototype filter HP (ejΩ). Unfortunately, the stopband features
an irregular character with ripples as can be seen in Fig. 3.8b). Therefore,
the maximum stopband surpression Fstop,max is measured by evaluating the
amplitude of HP (ejΩ) at the maximum of the first ripple. Another way of
evaluating the band selectivity is comparing the magnitude ratio

Fratio =

1
π−Ωc

π∫
Ω= π

2M

|HP (ejΩ)|dΩ

1
Ωc

Ωc∫
Ω=0

|HP (ejΩ)|dΩ

, Ωc =
π

2M
(3.14)

of the prototype’s stop- and pass-band. A value of −∞dB indicates perfect
band separation whereas 0 dB denotes an equal split of energy between pass-
and stop-band.

Every introduced evaluation metric shall be applied to the filter bank
design according to 3.2.3 using window-designed prototypes. The overall
filter bank distortion for a filter bank designed using a Hamming window
prototype with M = 8 bands and a length of N = 51 is plotted in Fig. 3.10.
Apparently, the filter bank is close to optimal due to the maximum value of
Fdist,max = 1.0084. The alias distortion of the filter bank yields a maximum
value Falias,max as low as −50 dB.

To identify advantageous windows and filter lengths for the purpose of
designing the analysis and synthesis filter bank, Fdist,max and Falias,max are
plotted against different filter lengths and windows in Fig. 3.11 a+b). The
maximum distortion roughly falls smoothly over the order for the Hamming
and Blackman window. In contrast the distortion value soars for the sine
window for filter lengths N ≥ 50, where the Hamming windows already con-
verges to the first minimum. The smallest aliasing distortion is obtained
for higher-order Blackman windows. However, the Falias,max values for the
Hamming window falls below the Blackman values for 46 ≥ N ≥ 56. The
maximum stopband attenuation Fstop,max, plotted in Fig. 3.11c), is almost
constant and therefore can’t be used to rate the selectivity of the prototype
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Figure 3.10: Distortion Fdist and aliasing distortion Falias of a filter bank with
M = 8 and N = 51.

since the amplitude of the first ripple starts decreasing for higher orders.
Therefore, the stop-to-pass-band ratio Fratio is additionally computed and
illustrated in Fig. 3.11d). The starting value of ≈ −30 dB already indicates
a strong concentration of energy in the pass band which is increased for in-
creasing filter order. This trend holds true for all utilized windows. In the
following, a Hamming-based prototype of length N = 51 is used. The Ham-
ming window is chosen due to its low overall and aliasing distortion within the
range N ∈ [46, . . . , 56] corresponding to a desirable small algorithmic delay
of ≈ 1 ms. The stopband attenuation and stopband-to-passband ratio results
are in between the results of the Blackman and Sine window and therefore,
are the best tradeoff between filter selectivity and stopband attenuation.

3.3 Backward-Adaptive Lattice Prediction

The basic principle of ADPCM is to solely transmit quantized irredundant
signal components. The corresponding redundant signal components are
extracted using a prediction filter P (z) of order p by first computing the
prediction signal

x̂(n) =

p∑

i=1

aix(n− i) (3.15)
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Figure 3.11: Distortion Fdist, aliasing distortion Falias, stopband attenuation
Fstop, and stop-to-pass-band ratio Fratio of window-designed filter bank with
M = 8 plotted over filter length N .
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(a) (b)

Figure 3.12: ADPCM encoder (a) and decoder (b).

based on prior values of x(n) and then computing the residual

e(n) = x(n)− x̂(n) = x(n)−
p∑

i=1

aix(n− i), (3.16)

which then is further quantized to reduce the data rate of the signal. The
signal reconstruction in the decoder is achieved using the inverse prediction
filter G(z) = 1

P (z)
= 1

1−
∑p
i=1 aiz

−1 . To guarantee a stable reconstruction filter

the prediction filter is required to have minimum phase characteristic. This
property is always fulfilled by the class of lattice filters (Fig. 2.4, Eq. (2.15))
when the reflection coefficients are bound to |kp| ≤ 1 [Mak78].

In contrast to the concealment method based on lattice filters and the
GAL algorithm of Sec. 2.1.1, which is solely applied at the decoder side in the
case of transmission problems, the prediction filter is applied in the subband
encoder (SBE) and in the subband decoder (SBD) as shown in Fig. 3.12. The
block scheme of the SBE also shows that the prediction is performed using
the reconstructed subband value

x̃m(b) = x̂m(b) + ẽm(b), (3.17)

which is the sum of subband prediction signal x̂m(b) and quantized residual
ẽm(b) instead of the original subband signal xm(b). Thus, the SBE and
SBD operate synchronously when the prediction and GAL prediction filter
adaption is performed in this backward manner. The SBD solely receives the
quantized subband residual ẽm(b) which is added to the prediction signal ŷm
to compute the reconstructed subband signal ỹm = x̃m, which is identical to
the reconstructed subband value in the encoder.

3.4 Vector Quantization

The reduction of data rate achieved by audio codecs is mainly caused by
further quantizing the digital audio signal. Quantization can be described
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as the process of mapping an (infinite) set of amplitude values to a smaller
restricted set. This set is captured in a codebook C of size L × 2w where
w denotes the word length. A signal vector x = [xi, . . . , xL] can therefore
be represented using the codebook entry Ci at index i. Solely the index i is
necessary to reconstruct the quantized vector at the receiver side since the
codebook is known in encoder and decoder.

The selection of a codebook entry Ci is typically done by minimizing the
error power

min
i

[
(x− x̃i)

T (x− x̃i)
]
, i ∈ [1, . . . , 2w] (3.18)

between x and every codebook vector x̃i. Quantizers are called scalar quan-
tizers for L = 1 and vector quantizer for L > 1. An increasing value of L
is advantageous in several ways. First, vector quantizers allow a finer res-
olution of the effective word length w

L
, whereas scalar quantizers are bound

to an integer resolution. In addition, a vector quantizer exploits correlation
within a data vector and hence converges to the rate-distortion limit [GC83].

The characteristic curve of a uniform scalar 4 bit quantizer is shown in
Fig. 3.13a). Apparently, the amplitudes in the interval x(n) ∈ [−1, . . . , 1] are
mapped to a set of values x̃(n) with a uniform step size

∆ = 2−w+1. (3.19)

A uniform step size is only optimal in the MMSE sense for signals featuring a
uniform probability density function (PDF). Unfortunately, audio signals are
typically modeled and described using the Laplacian and the Gaussian dis-
tribution [GZ03]. These distributions are very condensed around their center
and hence large amplitudes are less likely to appear. Historically, signals were
compressed, uniformly quantized, and expanded to match the signal charac-
teristic to the quantization process. Another solution is to directly adapt the
step sizes to the PDF of the signal [Max60]. Figure 3.13b+c) show the char-
acteristic curve of a 4 bit quantizer optimized for a Laplacian distribution
with a variance of σ2 = 0.125 and for Gaussian distribution with a variance
of σ2 = 0.25, respectively. The smaller step sizes and therefore higher resolu-
tion for small amplitudes can clearly be noticed. An example of a VQ with a
dimensionality of L = 2 and word length w = 4 is shown in Fig. 3.14 in form
a Voronoi diagram. The 2D space is partitioned into 2w cells, also known
as Voronoi polygons, enclosing the centroids Ci. It can be seen that every
point within a cell is closer to the cell-defining point Ci than to any other.
The already mentioned advantage of a VQ is illustrated in Fig. 3.15a+b).
The gray dots are samples of a two-dimensional Laplacian distribution. The
orientation along the diagonal axis indicates a certain correlation between
the samples of the different dimensions. The quantization levels of the scalar
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Figure 3.13: Characteristic curves of different scalar w = 4 bit quantizers:
Uniform quantizer a), Lloyd-Max quantizer optimized for Laplacian distri-
bution with a variance of σ2 = 0.125 b), and for Gaussian distribution with
a variance of σ2 = 0.25 c).
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Figure 3.14: Voronoi diagram of two-dimensional vector quantizer with w =
4 bit.

quantizers which are matched to the PDF of a particular dimension form a
regular grid on the x-y plane in Fig. 3.15 a). In contrast, the quantization
levels of the VQ in Fig. 3.15 b) represent the shape of the samples superiorly.
Therefore, the resulting quantization noise is significantly smaller.

Considering the block scheme of the proposed encoder in Fig. 3.1 it be-
comes apparent that the proposed encoder feeds the vector of subband resid-
uals e(b) = [e1(b), . . . , eM(b)] for a certain block b to the vector quantizer to
obtain the quantized residual vector ẽ(b). Hence, the dimensionality of the
vector quantizer is assumed to be equal to the amount of subbands L = M .

3.4.1 Adaptive Vector Quantization

The fixed optimization of a quantizer to a certain PDF is not optimal due
to varying signal characteristics of typical input signals. Instead of directly
quantizing the residual vectors, the author decided to quantize the normal-
ized residual

ēm(b) =
em(b)

vm(b)
, (3.20)

which is computed using an recursive envelope estimate [HHZ08]

vm(b) =
√

(1− λ+ λ · ẽ2
m(b− 1)) · v2

m(b− 1) (3.21)

λ =

{
λAT, if ẽ2

m(b− 1) > 1

λRT, else
(3.22)

to realize an almost constant signal variance [CM75]. The envelope estima-
tion is signal-adaptive since it involves two smoothing coefficients λAT and
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Figure 3.15: Quantization levels of two-dimensional scalar and vector quan-
tizer with w = 4 bit on top of two-dimensional correlated Laplacian distribu-
tion.

λRT for the attack and release case, respectively. Envelope amplitudes smaller
than vm < vmin are clipped to vmin.

The codec implementation benefits from the computed envelope twice. In
addition to the adaptive quantization, the codebook search can be optimized
by weighting the cost function according to the subband envelopes

min
i

[
(e− ẽi)

T diag(v)(e− ẽi)
]
. (3.23)

The weighting emphasizes subbands with large amplitudes and hence psycho-
acoustically relevant parts which are typically the lower frequency bands.
The effect of the coarse quantization in high-frequency bands is a rise of
quantization noise resulting in a degraded subband SNR. However, the im-
proved subband SNR in lower frequency bands is expected to be perceptually
more relevant. The band-wise SNR after vector quantization of the SQAM
viola example using a white noise codebook with and without weighting the
cost function is shown in Fig. 3.16. The SNR in band m = 1 rises almost
30 dB whereas the gain in band m = 2 still yields 14 dB. The SNR in the
higher bands decreases by up to −15 dB.

3.4.2 Nearest Neighbor Search

The major drawback of vector quantization is the large complexity of search-
ing the codebook for the best-fitting codebook entry for the current data to
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Figure 3.16: Bandwise average SNR for the SQAM viola example w/o weight-
ing the cost function.

be quantized. Hence, the choice of the codebook size suffers from the trade-
off between the SNR gain for higher dimensionality and the corresponding
increased searching complexity. A linear search in the codebook requires the
computation of 2w vector differences of length L. This corresponds to L · 2w
subtractions, multiplications, and additions in the case of the plain euclidean
distance. In the case of M = 8 subbands and w = 16, corresponding to 2
bits per sample, more than 1.5 million arithmetic instructions are necessary.

The searching complexity can be massively reduced using the Nearest
Neighbor Search (NNS) algorithm. The pseudo code of the general proce-
dure can be seen in Alg. 2. Instead of linearly searching the codebook entry
yielding the smallest distortion, the NNS approach intends to compare K
neighbors with index i of the current entry Cimin as can be seen in l. 4 − 7.
The neighbors have to be available in form of a reference book Nn(k, imin).
The neighbor Nn(k, inn) showing the smallest distortion dnn is then used as
the current codebook index imin (l. 13). The globally smallest distortion dmin
is also replaced (l. 12). The routine terminates after lmax repetitions or in the
case of no further smallest neighbors (l. 9). The NNS is initialized with the
first codebook entry and the corresponding distortion is set as the globally
smallest distortion (l. 1− 2).

The algorithm is visualized in Fig. 3.17. The codebook C of size 2× 2048
is shown in form of dots on an euclidean plane. The vector to be quantized
at [−1.3,−1.9] is shown as a black diamond. The initial codebook entry
Cimin (white diamond) is apparently surrounded by the K = 100 neighbors
(grey squares). Initially at l = 0, the nearest neighbors are focused around
the center of the sphere. The cloud of nearest neighbors is further traveling
in direction of the given vector for increasing iterations until the best-fitting
codebook entry is found after l = 7 iterations. The distortion is iteratively
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reduced from 2.3022 to 0.3365. Only 801 vector comparisons instead of 2048
had to be computed in this example. The saving of computations is increasing
for a rising dimensionality of the codebook. Encoding the entire SQAM data
set using the proposed encoder and a vector quantizer with a codebook size
of 8 × 22·8 and K = 100 averages to 3.27 iterations. The actual discrete
probability distribution is shown in Fig. 3.18. Almost all NNS operations
require less than l = 5 iterations and hence less than 500 comparisons instead
of 65536. This massive reduction of complexity allows the coding approach
to be performed in real time.

Algorithm 2 Nearest neighbor search algorithm.
1: imin = 1
2: dmin =

[
(e−Cimin)Tdiag(v)(e−Cimin)

]

3: for l = [1, . . . , lmax] do
4: for k = [1, . . . , K] do
5: i = Nn(k, imin)
6: d(k) =

[
(e−Ci)

Tdiag(v)(e−Ci)
]

7: end for
8: [dnn, inn] = min(d)
9: if dnn > dmin then

10: break
11: else
12: dmin = dnn
13: imin = inn
14: end if
15: end for

3.4.3 Entropy Coding

The bitrate of the proposed encoder amounts to 88.2 kbit/s for fs = 44.1 kHz
and w = 2 bits per sample. But it can be further reduced by applying entropy
coding. Whenever the input signal shows a certain amount of stationarity
and the subband predictors are properly adjusted to remove the majority
of the subband signals redundancy, the resulting subband residuals are ex-
pected to be very small. These small residuals are typically represented with
codebook entries with a small index since the codebook is sorted according
to its euclidean norm. In other words, codebook entries, located in the center
of the codebook sphere, are more likely to be utilized. This entropy can be
exploited as shown in the following.
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Figure 3.17: Illustration of the NNS search procedure requiring 8 iterations
for a codebook size of 2× 2048.
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Figure 3.18: Empirical probability of required NNS iterations l when encod-
ing the entire SQAM data set.

The SQAM data set is encoded using a white noise codebook. The result-
ing empirical codeword probability distribution pi in Fig. 3.19 clearly shows
the aforementioned characteristic. The corresponding source entropy

H = −
∑

i

pi log2 pi (3.24)

yields 11.54 bits whereas direct indexing of the codebook requires 16 bits.
Based on the probabilities of Fig. 3.19, a Huffman encoder [Huf52] can be
designed. The average word length of the resulting variable length code
yields

∑
i pi · wi = 11.5727 bits, where wi is the word length for the code

word representing codebook entry i. Figure 3.20 illustrates the exact word
length distribution. As expected, it shows the inverse trend of the code
word probabilities of Fig. 3.19. Apparently, this source encoding scheme is
almost optimal for the probability distribution of the utilized codebook en-
tries. Without modifying the core encoder or degrading the audio quality of
the proposed encoder, the Huffman encoder reduces the average word length
from 2 to 1.45 bits per sample. This corresponds to an average bitrate of
about 64 kbit/s.

The actual resulting average bitrate for all SQAM items is plotted in
Fig. 3.21. The bitrate is varying between 30.24 and 78.74 kbit/s and aver-
ages to 58.46 kbit/s. The lowest bitrates are obtained for simple sinusoid
signals where as the highest bitrate is caused by noise. Hence, the bitrate is
apparently dependent on the redundancy of the source signal.
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Figure 3.21: Average bitrate of SQAM items.
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Table 3.1: Non-optimized codec parameters for the simple single parameter
optimization of order p and base step size λ.

vmin = σmin λAT λRT

1.46494 · 10−5 0.835779 0.0987227

3.5 Parameter Optimization

Before assembling the individual components of the proposed codec to eval-
uate the audio quality one has to find a set of parameters for the individual
components. The major focus hereby is on adjusting the subband predictors
which need to be parameterized in terms of prediction order p, base step size
λ, stability constants σmin, vmin, and smoothening coefficients λAT/RT. Since
the signal characteristics and hence prediction requirements differ drastically
throughout the bands, as demonstrated in Sec. 3.2, different parameter set-
tings are required in every subband.

3.5.1 Simple Iterative optimization

The optimization of parameters was performed in two steps. At first, the
author wanted to gain insight in the range of the individual parameters in a
simple way. Therefore, the cost function

Jmso(pm) =
1

F

F∑

f=1

Em
f , with Em

f =

Nf−1∑

n=0

e2
m(n) (3.25)

describing the sum of squared prediction errors e2
m(n) for every test track f of

the SQAM data set and a given prediction order pm, is minimized to identify
the optimal base step size λm for every subband m. The author utilized an
adapted implementation of the optimization routine from [CM95] where the
base step size λm is varied instead of the passband edge. The remaining codec
parameters are set to the values for the ADPCM optimization using 3 bits
from [HZ09] listed in Tab. 3.1. The cost function for the first band m = 1
and a set of predictor orders p = [20, . . . , 200] is illustrated in Fig. 3.22.
The individual cost functions tend to be parabolically shaped and hence
the simple optimization is always converging to the optimal solution. The
optimal base step sizes λ1(p1) are shown in form of the black curve whereas
the globally best-performing combination of order 156 and base step size
1.45 · 10−3 is indicated with the white marker. Apparently, higher order
predictors tend to require smaller base step sizes to perform optimally and
the prediction gain for predictors of large order are decreasing for p > 156.

55



3 Vector-Quantized ADPCM

0
50

100
150

200 0 · 100 2 · 10−3 4 · 10−3 6 · 10−3 8 · 10−3

50

100

p1

λ1

J
1 s
o
|p

1

Figure 3.22: Simple optimization cost function J1
so(p1) for band m = 1 and

order p1 = [20, . . . , 200]. Optimal base step sizes are shown in form of the
black curve whereas the overall minimum is indicated with the white marker.
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Figure 3.23: Best-performing order p and base step size λ from the simple
optimization over subbands m.
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Figure 3.24: Perceptually motivated cost function JODG plotted over predic-
tion order of first and second band p1, p2.

Figure 3.23 shows the overall best-performing order and base step size values
for every band m. As expected, the prediction order is decreasing over the
bands due to the increasing noisy character of the subband signals. In other
words, the lower subbands contain more predictable signal components.

3.5.2 Simulated Annealing

Although the obtained predictor settings are optimal in terms of the resulting
prediction error, further optimizations offer the potential of enhancing the
audio quality of the proposed codec drastically. The major drawback of the
undertaken optimization is that the utilized cost function is based on the
prediction error energy which is not reflecting characteristics of the human
hearing. Therefore, the cost function for the final optimization

JODG =
1

F

F∑

f=1

ODG4
f (3.26)

utilizes the ODG score from the PEAQ algorithm (see Sec. 2.3.1) to assess the
codec in terms of perceptual quality instead of empirical error energy mea-
sures as proposed in [HZ09]. The cost function emphasizes strongly degraded
items due to the fourth power. This intends to force the optimization to an
overall pleasant quality instead of very good quality with strong outliers for
certain input signals. In addition, the cost function is not order-dependent
and hence the optimization routine shall jointly adapt the order p, base step
size λ, stability constants σmin, vmin, and smoothing coefficients λAT/RT for all
subbands. The optimization is again performed on the SQAM dataset. The
very complex-shaped cost function, illustrated in Fig. 3.24, and the param-
eter dimensionality provoke to utilize another optimization algorithm than
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the simple optimzation routine from the previous chapter. As proposed in
[HZ09], the simulated annealing optimization routine [KGV83, Čer85] is cho-
sen. It is advantageous for this task due to its heuristic capabilities, simplic-
ity, and the hill-climbing capability. Hill-climbing in this context describes
escaping from local minima to allow global optimization.

Simulated annealing is loosely based on the thermodynamic process of
annealing solid matter. Slow and controlled annealing leads to an optimized,
low-energy state of the particles within the solid. In contrast, the particles
of the melted solid feature high energy and circulate in a random manner.
This idea is projected on the problem of minimizing a cost function J(Xi)
parametrized by the parameter vector Xi. Similar to the randomly moving
particles, the parameter vector is modified for every time step i

Xi+1 = Xi + ri. (3.27)

by adding a random sequence ri. The resulting new state of the parameter
vector is accepted if

J(Xi+1) < J(Xi) (3.28)

and hence the resulting cost function decreased. To incorporate the possi-
bility of a high-energy particle breaking through the current lowest-energy
grid, a parameter vector can also be accepted with a certain probability

P = e
−J(Xi+1)−J(Xi)

Ti (3.29)

which decreases for the decreasing Temperature Ti which is continuously
lowered for every new time step

Ti+1 = γ · Ti. (3.30)

In the following, the simulated annealing routine of MATLAB R© using the
standard parameters γ = 0.95 and T0 = 100 is utilized and led to the results
listed in Tab. 3.2.

The prediction order pm and base step size λm differ quite clearly from
the initial optimization of the previous chapter when optimizing them jointly
using a perceptually motivated cost function. The overall trend of the pre-
dictor order remains similar though. The stability constant vmin,m features
a strong deviation which can be expected due to varying statistical distribu-
tions for every subband m. Surprisingly, the envelope smoothing coefficients
λAT/RT,m are almost constant. One possible explanation could be that the
temporal signal characteristic do not differ drastically between the subbands.
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Table 3.2: Optimized codec parameters after Simulated Annealing optimiza-
tion for M = 8 bands.

Band m Order pm Base step size λm Constant vmin,m λAT,m λRT,m

1 119 8.1380 · 10−3 3.6502 · 10−7 8.0005 · 10−1 1.0005 · 10−1

2 112 5.9780 · 10−3 3.8094 · 10−5 8.0048 · 10−1 9.9988 · 10−2

3 88 6.1173 · 10−3 5.5866 · 10−5 8.0046 · 10−1 1.0017 · 10−1

4 75 3.5272 · 10−3 7.8944 · 10−5 7.9988 · 10−1 9.9973 · 10−2

5 41 3.2309 · 10−3 5.4090 · 10−5 7.9973 · 10−1 1.0078 · 10−1

6 26 1.1997 · 10−3 1.2565 · 10−5 8.0054 · 10−1 9.9990 · 10−2

7 26 2.7557 · 10−3 1.9712 · 10−6 8.0000 · 10−1 9.9976 · 10−2

8 19 8.9343 · 10−3 1.5693 · 10−6 8.0042 · 10−1 9.9947 · 10−2

Note, that the author decided to neglect the codebook design in the opti-
mization process to limit the parameter space and to use a codebook consist-
ing of noise featuring a gaussian distribution. Jointly optimizing the code-
book using more sophisticated methods, like k-means clustering [LBG80],
and the remaining codec parameters is believed to perform even better.

3.5.3 Instrument-Class Specific Parameter Optimiza-
tion

The global optimization of codec parameters for a non-homogeneous mix of
input signals could be clearly achieved. Nevertheless, it is likely that an
NMP participant is playing a single instrument and hence the codec could
be further optimized for specific instruments. To evaluate this concept of in-
strument class-dependent codec presets the SQAM data set was partitioned
into the instrument classes listed in Tab. A.1. For every listed instrument
class, the optimization routine from Sec. 3.5 is repeated but on the restricted
data set. The average ODG scores for the denoted instrument classes for
the generic and the specific optimization are illustrated in Fig. 3.25. The
average ODG score can be improved for every class of instruments except
the string instruments. Especially the speech and percussion classes bene-
fit from individual optimization. Although, it is somehow obvious that the
two instrument classes featuring the strongest deviation to typical harmonic
instrument sound benefit most. Hence, codec presets for certain instrument
classes are beneficial in the context of NMP to increase audio quality with-
out increasing the complexity or bitrate of the corresponding audio stream.
Solely, the predictor settings have to be saved in encoder and decoder and an
instrument class index has to be transmitted in form of meta data to realize
this concept.
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Figure 3.25: Average ODG score for individually optimized instrument
classes.

3.6 Evaluation

The proposed codec structure is evaluated using the PEAQ algorithm from
Sec. 2.3.1 and the SQAM data set as priorly used. At first it shall be shown,
how the VQ-ADPCM codec performs in contrast to a broadband reference
codec from [HHZ08] using parameters from [HZ09] for the scalar 3 bit quan-
tizer and without the noise shaping functionality. Unfortunately, the bitrates
of 64 and 132.3 kbit/s can’t be aligned without further changes. The pro-
posed codec is operated with the optimized parameters from Sec. 3.5 and a
M = 8 band window-based filter bank design using N = 51 coefficients.

The resulting ODG scores for all SQAM items are plotted in Fig. 3.26.
The broadband variant achieves a constantly good quality in the range of
[−1.4, . . . ,−0.075] averaging to −0.46. Only a few items (castanets (27), tri-
angle (32), accordion (42), and organ (56)) are rated below −1 corresponding
to a perceptible, but not annoying audio quality degradation. The proposed
codec structure running at half the bit rate performs similar for the major-
ity of SQAM items. Nevertheless, the synthetic (1,3-7), horn (23), tuba (24),
castanets (27), vibraphone (37), and bass (47) items are massively degraded.
The average ODG score constitutes −0.76. In other words, the proposed
codec structure allow to save about half of the bit rate for the cost of 0.3
ODG.

The cause for the quality loss shall be analyzed with the help of selected
examples. Figure 3.28 shows an excerpt of SQAMs castanet (27) example.
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3 Vector-Quantized ADPCM

The en- and -decoded, delay-compensated codec output signal is plotted on
top. It can be clearly seen how the first part of the transient is not gathered in
the output signal. This is caused by tardy reacting predictors which are tuned
to perform well in general. However, these extremely fast transients consti-
tutes a rather rare signal characteristic and therefore only slightly influences
the optimization process. Another quality-degrading artifact is visualized in
Fig. 3.29. The spectrogram of the tuba (24) example shows a certain amount
of aliasing at fs

8
= 5512.5 Hz. The amplitude of the aliasing components is

about 60 dB smaller than the ones of the fundamental frequencies. Never-
theless, the artifacts are audible since the tuba example mainly consists of
low-frequency content. Therefore, the artifacts are not masked by the ac-
tual signal. This explanations also holds true for the synthetic (1,3-7) SQAM
tracks.

Figure 3.26 shows the ODG score of the proposed codec when the NNS
codebook search is applied. It is apparent, that a minor quality degradation
to an average value of 0.85 occurs since the NNS does not guarantee to always
find the optimal codebook entry. On the other hand, it massively reduces
the complexity to allow real-time applicability.

The effect of the codec parameter optimization on the perceptual qual-
ity is shown in Fig. 3.27. The basic trend of ODG scores is similar for the
non-optimized and optimized codec parameters. This leads to the assump-
tion that the codec parameters of the ADPCM broadband variant perform
already well within the subband ADPCM approach. Another explanation is
that the aliasing distortion of the FIR filter bank is the major contributor
to the quality degradation. Applying the simple parameter optimization im-
proved the average ODG sore from −1.04 to −1.03. The following simulated
annealing optimization increased the average ODG score further to −0.85.
The improvement of the second optimization is apparently clearly superior.
Hence, the optimization of the stability constant vmin, which was omitted for
the simple optimization to restrict the parameter room, is crucial to achieve
a strong quality improvement.

In the following, the proposed codec shall be ranked in terms of quality
respecting the algorithmic delay. Therefore, the SQAM data set was encoded
using several different codecs operating at 64 kbit/s. Besides VQ-ADPCM,
an implementation of mp3, two different AAC and HE-AAC variants, and
the Opus codec in all possible frame size variants were tested. The software
versions of the utilized codecs are listed in Tab. A.2. Figure 3.30 illustrates
the average ODG score of the mentioned codecs over its algorithmic delay.
The delay values for the MPEG codec variants from [GLS+04] are utilized.
All MPEG variants (mp3, AAC, and HE-AAC) clearly outperform the VQ-
ADPCM. But the lowest encoding delay is 58 ms at fs = 48 kHz and hence
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Figure 3.30: Average ODG score of different audio codecs using a bitrate of
64 kbit/s in relation to their algorithmic delay using the SQAM data set.

these codecs are not suited for the NMP application. The Opus codec was
especially designed for low latency applications and hence the delay scales
from 62.5 to 5 ms. The quality for delay settings above 12.5 ms is clearly
superior. But for lowest delays the VQ-ADPCM outperforms the Opus codec.
The comparison to other low-delay codecs like apt-X and ULD could not be
performed due to restricted availability of these codecs.

3.7 Summary

A novel audio codec structure for the application of NMP was presented
in this section. The initial intention of designing an ADPCM variant with
lowest delays but competitive bit rates featuring good perceptual quality
was achieved. The proposed design utilizes a broadband ADPCM design
based on adaptive lattice prediction filters and a scalar quantizer that is
made signal-adaptive with the help of a normalization operation beforehand.
This ADPCM codec is applied in subbands obtained by a window-designed,
critically-sampled FIR filter bank. The scalar quantizer is replaced with a
vector quantizer that jointly quantizes the prediction residuals of all subbands
to a single codebook index. The normalization procedure of the broadband
variant is used in subbands to obtain a signal-adaptive vector quantizer. Ev-
ery quantization operation requires the search of the codebook entry that
represents the subband prediction residuals with the lowest distortion. The
distortion is computed using the euclidean norm weighted with an estimate
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of the subband residuals envelope. The weighting allows to prioritize relevant
subbands in the quantization process. In other words, the band-wise SNR
is rearranged to achieve less noise in the relevant bands to obtain a higher
perceptual quality. To circumvent the heavy computational load, caused by
a linear codebook search, the nearest neighbor search algorithm is applied.
Since the codebook is sorted in terms of vector radius and the subband pre-
dictors tend to produce small residuals during stationary signal conditions, it
was observed that the codebook index probability is unequally distributed.
This allowed the application of a Huffman encoder to reduce the average
word length of the codebook index from 2 to 1.475 bits per sample. Hence,
the VQ-ADPCM operates at about 64 kbit/s for a sampling frequency of
44.1 kHz. Although, well-known codecs like mp3, AAC, and HE-AAC out-
perform the VQ-ADPCM in terms of perceptual quality at the same bit
rate, the proposed codec only features an algorithmic delay of 1.15 ms which
is solely caused by the FIR filter bank. The proposed codec also outperforms
the Opus codec regarding perceptual quality and algorithmic delay although
Opus was designed for the very same application.

Although the result is already pleasing, it must be stated that the VQ-
ADPCM should be considered as an initial design with manifold optimiza-
tion possibilities. For instance, analyzing low-latency filter banks leading to
smaller aliasing distortion could massively enhance the perceptual quality.
Other codebook designs and enhanced perceptually motivated cost functions
for the codebook search are expected to achieve further perceptual enhance-
ments.
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4
Enhancing Listening Experience

The previous chapters describe very technical concepts to enhance the audio
quality of an NMP session by concealing lost packets and encoding audio data
with less delay than typically applied systems but ensuring good quality at
low bit rates. These proposed enhancements are purely focused on the data
transmission aspects. However, also the audio replay through headphones
can be massively enhanced with algorithms illustrated in this section. The
headphone replay scenario is assumed since it is the simplest and most direct
way of monitoring the signals in an NMP session. Furthermore, replaying
the incoming sound with speakers would clearly increase the overall perceived
delay. Assuming the speakers are located 2 meters apart from the listener,
the corresponding replay delay is tdelay = 2 m

343.2 m
s
≈ 5.8 ms.

Musicians in a rehearsal room or on a stage experience a completely
different acoustic environment than musicians participating in an NMP ses-
sion. Common NMP systems only allow to adjust the replayed stereo signal
in terms of volume and panning for S incoming sources x1, . . . , xS using a

Figure 4.1: Simple stereo mixer.
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Figure 4.2: Source placement options for stereo panning on headphones.

software mixer. Figure 4.1 shows a corresponding stereo mixer that allows
to adapt the volume of source i using the gain factor gi and the panning
by changing the complementary pan coefficient set pL, pR to mix the overall
output channels

xL(n) =
S∑

s=1

gs pL xs(n) (4.1)

xR(n) =
S∑

s=1

gs pR xs(n). (4.2)

Note, that the actual values of the panning coefficients depend on the ap-
plied panning law. Typical panning laws are the amplitude-complementary
linear, power-complementary square-root, and the power-complementary si-
nusoidal [BSI+12].

The disadvantage of the simple amplitude panning of Eq. (4.1) and Eq. (4.2)
is that incoming sound sources can solely be rendered in form of point sources
in a narrow stereo panorama as shown in Fig. 4.2. The colored points repre-
sent differently panned sources and the radius illustrates the volume of the
sources. To counteract this limited replay scenario, the following sections
present alternative replay approaches for incoming mono sources in an NMP
session.

First, a blind mono to stereo conversion is presented that allows to create
stereo sound sources of arbitrary stereo width. Using this technique enhances
the listening experience by providing a certain amount of spaciousness and
width. In the following, a way to render audio in a virtual surround space is
shown which can also be enhanced by the proposed mono to stereo conversion.
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4.1 Frequency-Dependent Amplitude Panning

Figure 4.3: Basic blockscheme of the pseudo-stereo system.

4.1 Frequency-Dependent Amplitude Panning

A significant part of recordings is still done in mono for several reasons. Sim-
ple broadcast commentaries produced outside the usual studio environment
are often done using a single channel for example. In the case of NMP, simple
hardware setups using a single microphone or an instrument’s direct output
are desirable to facilitate the NMP setup for users. However, having a stereo
recording is likely to produce enhanced listening experiences due to its spa-
tial character. Estimating a stereo signal from mono sources is a surprisingly
old problem and therefore, it is well-known in literature.

Early attempts to realize a pseudo-stereo conversion used a delayed ver-
sion of the input signal to provide a second channel [Lau54]. The same
author came up with the idea of applying complementary comb filters which
were later extended to be phase-aligned in [Sch58]. Alternatively, in [Bau69,
Orb70] different allpass network designs were proposed to obtain a strong
decorrelation and to achieve a wide and also scalable stereo image. Another
extension allowing more control is shown in [Ger92]. For even stronger decor-
relation, a frequency-domain filter design method is suggested in [Ken95].
The above methods either impose a strong timbral coloration or they are not
downmix compatible and reversible. Both are important features, though.

A completely different approach granting possibilities to design a specific
auditory image is explained in [Fal05]. However, it is not a pseudo stereo
algorithm in the narrower sense as it requires complex user input to explicitly
define pan positions for certain frequency bands and does not allow a fully
automatic conversion. The same holds true for upmixing based on Directional
Audio Coding (DirAC) [PPP12]. However, the decorrelation mechanism in
the DirAC synthesis is similar to the proposed approach to a certain extent.

The basic idea of the proposed pseudo-stereo system is to apply two
filters HL(ejΩ) and HR(ejΩ) on the input signal x(n) to produce two output
channels xL(n) and xR(n) as illustrated in Fig. 4.3. Strong decorrelation and
hence spatiality is achieved when the filters differ clearly.
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4 Enhancing Listening Experience

Figure 4.4: Source placement and scalability options for stereo panning on
headphones using the proposed pseudo-stereo technique.

4.1.1 Constraints

The proposed pseudo-stereo method is supposed to allow the spatial enhance-
ment without degrading the actual source signal. Therefore, certain design
constraints have to be fulfilled in the filter design. First, it shall be guar-
anteed that the overall sound quality of a sound source remains unmodified.
This can be realized by forcing the mono sum

xM(n) = xL(n) + xR(n) =

= x(n) ∗ hL(n) + x(n) ∗ hR(n)
!

= x(n−D), (4.3)

of the pseudo-stereo signal to be the original signal which is only altered in
form of a delay D caused by the filters. Examining Eq. (4.3) in the frequency
domain

XM(ejΩ) = X(ejΩ) ·HL(ejΩ) +X(ejΩ) ·HR(ejΩ) =

= X(ejΩ) ·
(
HL(ejΩ) +HR(ejΩ)

)
=

!
= X(ejΩ) · e−jΩD (4.4)

leads to the constraint of linear phase for the sum of the pseudo-stereo filters

HL(ejΩ) +HR(ejΩ)
!

= e−jΩD. (4.5)

Even more important is that the algorithm doesn’t alter the original timbre
of the sound source which is ensured by forcing the sum of the filters to be
neutral

|HL(ejΩ)|+ |HR(ejΩ)| !
= 1. (4.6)
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4.1 Frequency-Dependent Amplitude Panning

To allow the implementation of the proposed pseudo-stereo method in the
time-domain it is crucial to have conjugate symmetric frequency responses

HL/R(ejΩ) = H∗
L/R(e−jΩ) (4.7)

to achieve real-valued impulse responses hL/R(n). The claim for constant
magnitude in Eq. (4.6) and for linear phase in Eq. (4.5) implies that pure
amplitude panning is performed. Otherwise, no downmix compatibility could
be realized. Since the amplitude panning varies over the spectrum, this
method is denoted Frequency-Dependent Amplitude Panning (FDAP) in the
following.

4.1.2 Filter Design

It is well-known that a regular frequency magnitude pattern, as achieved
by higher-order complementary comb filters, provides a significant amount
of decorrelation but still sounds synthetic and unnatural. Therefore, the
digital filter design should lead to a diffuse frequency response. The proposed
filter design is in fact based on a random sequence R(k) where k denotes
the frequency bin index. The noise sequence, characterized by its gaussian
distribution with a variance σ = 25 and mean µ = 0, is scaled with the
squared width parameter w and then nonlinearly clamped with the arctan
function. At last, the resulting sequence is scaled to the range [0, . . . , 1] and
supplied with the linear phase term to yield the pseudo-stereo filter for the
left channel

HL(k) =

(
1

2
+

1

π
arctan(w2 ·R(k))

)
e−j

2πkD
N . (4.8)

The corresponding right channel can be computed as the complement

HR(k) = 1−HL(k). (4.9)

An example frequency response is shown in Fig. 4.5. When the width pa-
rameter is set to w = 0, the filter features a constant magnitude of 0.5 and
hence, no panning is performed. For increasing values of w, the frequency
response converges to its limits. Some instruments have a typical placement
in a stereo mix. For example, most listeners are conditioned to hear singer
and bass instruments from the center, whereas cymbals and horn sections are
expected to appear clearly panned. To approximate this hearing experience,
certain frequency regions can be kept in the center by setting

|HL/R(k)| = 0.5, for k ∈ [klo, . . . , khi], (4.10)

where khi/lo denotes the corresponding cut-off frequencies defining the band
that is actually processed.
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Figure 4.5: Example frequency response detail of the pseudo-stereo filters for
stereo width parameter w = [0, 0.3, 1].

4.1.3 Realizations

The proposed pseudo-stereo method can be applied in time- and frequency-
domain. The application in the time domain requires the impulse response
of the left pseudo-stereo filter of Eq. (4.8) which can be obtained with the
inverse discrete Fourier transform

hL(n) = F−1{HL(k)}. (4.11)

The left channel
xL(n) = x(n) ∗ hL(n) (4.12)

is obtained by FIR filtering the mono input signal with the impulse response
whereas the right channel can be computed by subtracting the left output
channel from the time delayed input signal

xR(n) = x(n−D)− xL(n), (4.13)

where D = N−1
2

is the group delay of the FIR filter of length N . The obvious
advantage of the time-domain realization is the utilization of a single filter.
The drawback of this approach is the complexity of the FIR filtering oper-
ation for longer impulse responses. This effort can be significantly reduced
when the fast convolution in the frequency domain as shown in Fig. 4.7 is
applied. After transferring the input signal to the time-frequency domain
using the Short-time Fourier Transform (STFT) the left and right pseudo-
stereo channel

XL/R(b, k) = X(b, k) ·HL/R(k) (4.14)

can be computed as the element-wise product. The corresponding time-
domain signals are synthesized with the following inverse STFT. Similar to
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Figure 4.6: Blockscheme of the time-domain realization.

Figure 4.7: Blockscheme of the frequency-domain realization.

the time-domain realization the right channel can also be computed by sub-
tracting the left channel from the original signal. The additional filter HCF

in Fig. 4.7 will be introduced in Sec. 4.3.

Besides reducing complexity of the filtering operation, the frequency-
domain processing also allows the dynamic adaption of the pseudo-stereo
filters without the need to continuously compute the impulse response for
time-domain processing.

4.2 Evaluation

As mentioned in Sec. 2.3.2 measuring audio quality is a very non-trivial task.
In the context of concealment and coding it is at least possible to measure and
interpret the acoustic impairments of processed data relative to a reference.
In contrast, evaluating the audio quality of a novel audio effect in a similar
manner is not possible due to missing references. Although the rating of
quality of the proposed method remains purely subjective, the spaciousness
can be objectively measured. A typical measurement in the field of room
acoustics is the Interaural Crosscorrelation Coefficient (IACC). It allows to
rank a room in terms of envelopment and spaciousness. This measure can
be adapted to evaluate signals resulting in the Interchannel Crosscorrelation
Coefficient (ICC)

ICC = max |rLR(τ)|, (4.15)
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Figure 4.8: ICC for FDAP filtered white noise using different values for the
stereo width w and passband width wp.

which is defined as the maximum value of the normalized crosscorrelation
function

rLR(τ) =

∑
xL(n)xR(n− τ)√∑
x2
L(n)

∑
x2
R(n)

. (4.16)

The spaciousness and hence correlation of FDAP-processed signals is vali-
dated by feeding the same white noise signal to the left and right decorrela-
tion filter hL/R(n) correspondingly and computing the ICC in the following.
The filters are designed with Eq. (4.8) and Eq. (4.9) using varying values for
the stereo width w and passband width wp = khi−klo

N
. The result is illustrated

in Fig. 4.8. It can be clearly seen, how the ICC value falls from 1 to almost
0 for increasing values of w and wp. Hence, FDAP is capable to achieve al-
most full decorrelation for extreme settings. In other words, FDAPs resulting
spaciousness can be adjusted using different design parameters.

4.3 Center-Focusing Enhancement

As previously mentioned most listeners are used to typical scenarios and
pannings. The appearance of the dominant sound source in the center of
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the stereo panorama is common. For example, the voice of a reporter in a
documentary or the singing voice in most musical pieces is expected to be
unpanned and the corresponding pseudo-stereo signal would deliver an un-
usual, discomforting listening experience. Therefore, the proposed pseudo-
stereo method is extended with a so-called center-focusing filter HCF (b, k) as
shown in Fig. 4.7. The filter HCF (b, k) forces the dominant spectral compo-
nents back to the center.

One way of describing dominant spectral components is to estimate the
normalized spectral energy. It can be computed using the amplitude-normalized
magnitude spectrum

Xn(b, k) =
|X(b, k)|

max
k
|X(b, k)| . (4.17)

In a next step, the squared magnitude spectrum is recursively averaged to
compute the center-focusing filter

HCF (b, k) = (1− α)HCF (b− 1, k) + αX2
n(b, k). (4.18)

The filter tends to feature values close to 1 for stationary components with
high amplitudes whereas the remaining components are close to 0. Other
features like tonalness [KLZ13] are expected to work as well to compute the
center-focusing filter.

In a next step, a weighted pseudo-stereo filter

ĤL/R(b, k) = HL/R(k)HCF (b, k)− 1

2
(1−HCF (b, k)) (4.19)

is computed which forces the magnitude of strong components to be close to
0.5 and hence those components are panned to the center.

4.4 Application in Virtual Surround

The proposed pseudo-stereo technique demonstrates a convenient way of in-
creasing the spaciousness of a mono signal in a simple and controllable way.
Nevertheless, the perceived virtual acoustic space is bounded by the head-
phones since no externalization of sound sources can be achieved. The exter-
nalization of sound sources can be achieved when sound sources are placed in
a virtual acoustic space using Head-Related Transfer Functions (HRTFs) and
their time-domain correspondents Head-Related Impulse Responses (HRIRs)
[MHJS95]. HRTFs describe the transfer function of the outer ear, pinna,
and torso of a subject in dependence of the incoming sound source azimuth
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and elevation angle. They are obtained using measurements with inear mi-
crophones or using generic modeling [BD98]. Since the size and shape of dif-
ferent persons pinna differ significantly also the corresponding HRTFs vary
drastically [WAKW93]. Hence, measured HRTFs achieve best localization
effect for individual persons but are impracticable for the general applica-
tion in contrast to modeled or dummy-head measured HRTFs. Figure 4.9
shows HRIRs and the corresponding HRTFs from the FABIAN dummy head
database [LW07] for different azimuth angles. Besides the expected level
difference for left and right channels at angles φ 6= 0◦ it can be seen that
strong spectral notches at high frequencies are essential for the perception of
direction.

Figure 4.10: Source placement and scalability options for stereo panning on
headphones using HRIRs.

An example of 5 sound sources which are located in a virtual acoustic
space is shown in Fig. 4.10. In contrast to the simple panning in Fig. 4.2
and the pseudo-stereo panning in Fig. 4.4 the sound sources are perceived
outside of the head at arbitrary azimuth angles. Due to its manifold design
possibilities and the potential of designing convincing listening experiences,
the rendering with HRIRs is used in several platforms. Amongst others,
it is applied in generic spatial audio engines [AGS08], virtual acoustic space
rendering [OCD+13], virtual room-acoustic enhanced teleconference systems1

and spatial in-ear monitoring2.
The basic processing that is required to realize a virtual space similar to

the previous examples is illustrated in Fig. 4.11. In contrast to the simple
stereo mixer of Fig. 4.1 every sound source xs(n) is filtered with the HRIR
gφsL/R(n) for an azimuth angle φs for left and right headphone channel instead

1https://www.symonics.com/
2http://www.klang.com/
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Figure 4.9: Measured HRIRs and HRTFs for azimuth angles φ =
[−90◦,−60◦,−30◦, 0◦, 30◦, 60◦, 90◦] for left (black) and right channel (grey)
correspondingly.
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Figure 4.11: Virtual surround mixer using HRIRs.

of simple weighting. The corresponding output channels are defined as

xL(n) =
S∑

s=1

gs · (gφsL (n) ∗ xs(n)) (4.20)

xR(n) =
S∑

s=1

gs · (gφsR (n) ∗ xs(n)). (4.21)

Although the virtual surround panning already allows a flexible and im-
mersive replay of sound sources it can be further enhanced with the proposed
pseudo-stereo method. The application of HRIRs to single mono sources
solely define a point source perceived from a certain azimuth and elevation
angle. However, when the source is preprocessed with the pseudo-stereo
method to obtain a stereo signal, both signals can be individually filtered
with HRIRs for similar but unequal angles φs,a and φs,b. The point source is
therefore expanded to a sound source with a radial size of ∆φs = φs,a − φs,b.

Different approaches can be used to select the HRIRs g
φs,a/s,b
L/R (n):

1. Using single HRIRs at angle φs,a and φs,b

2. Averaging the M available HRIRs within a certain radial area

1
M

φs,a/s,b+∆φs∑
Φ=φs,a/s,b−∆φs

gΦ
L/R(n)

3. Spatial windowing of HRIRs within a certain area
φs,a/s,b+∆φs∑

Φ=φs,a/s,b−∆φs

w(Φ) gΦ
L/R(n)
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4.5 Summary

Figure 4.12: Source placement and scalability options for stereo panning on
headphones using the HRIRs in combination with the proposed pseudo-stereo
technique.

The advantage of the combined FDAP-HRTF panning is visualized in Fig. 4.12.
This panning approach allows to position a sound source at an arbitrary an-
gular position and additionally allows to define the size of the sound source
instead of rendering every sound source as a point source. Especially larger
instruments like pianos and drums benefit from this processing and can be
experienced more naturally.

The major drawback of the FDAP-HRTF panning is the increased com-
plexity. The computation of the output channels

xL(n) =
S∑

s=1

gs · xs(n) ∗ (hs,L ∗ gφs,aL (n) + hs,R ∗ gφs,bL (n)) (4.22)

xR(n) =
S∑

s=1

gs · xs(n) ∗ (hs,L ∗ gφs,aR (n) + hs,R ∗ gφs,bR (n)). (4.23)

requires the application of the FDAP filter pair and the convolution with 4
HRIRs per sound source as visualized in Fig. 4.13. In contrast, the simple
HRTF panning of Eq. (4.21) solely requires two convolutions.

4.5 Summary

Many NMP systems offer only limited tools to create acoustically pleasing
stereo mixes of an NMP session. The attempts to recreate acoustical envi-
ronments, which musicians are used to, are also very limited. One way of
enhancing the audio replay is to mix stereo sources instead of mono sources.
A method to create convincing stereo signals from mono signals is derived
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4 Enhancing Listening Experience

Figure 4.13: Virtual surround mixer featuring size-scalable sources.
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4.5 Summary

in this chapter. The proposed method is based on a pair of complementary
filters which realize frequency-dependent amplitude panning with a high fre-
quency resolution. Since the phase relations are preserved the resulting stereo
signal is downmix-compatible and does not add any timbral coloration. The
filter design, including various design parameters like the stereo width or
band width of the signal to be processed, is done in the frequency domain
using random noise sequences to achieve very diffuse frequency responses
which tend to give a pleasing, natural listening experience. Furthermore, the
filter approach is extended to keep dominant spectral components and hence
sources in the center of the stereo panorama. The integration of the proposed
approach in a virtual surround render engine based on HRTFs is shown. The
extension allows to define the size of sound sources in the azimuth domain
and hence convincing representations of larger sound sources which appear
unrealistic when rendered as point sources.
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5
Conclusion

Artistic processes have been evolving ever since. In the domain of music,
this evolution has mainly been pushed by the development of new instru-
ments, artistic collaborations, and cultural exchange. Nowadays, technology
complements the set of musical evolution catalysts. The availability and
structural quality of the internet allows online collaborations of musicians
in real-time which are called Networked Music Performances (NMP). Sev-
eral commercial and academic NMP platforms have been established to help
musicians in global artistic collaborations. The wide availability of NMP
providers indicates the technology to be well-engineered. However, several
technical key questions are still to be resolved. Three critical aspects, which
potentially impair NMP sessions significantly, were discussed in this work.

A major drawback of NMP is the unreliability of the transport medium.
The packet-segmented audio stream can be interrupted by lost or belated
network packets anytime and hence the application of an error concealment
strategy is indispensable. Several restrictions should be respected in the con-
text of NMP. First, the concealment strategy must not contribute further
delay to the overall NMP delay and therefore any interpolation of frames in
time or frequency-domain can’t be applied. Second, the concealment strategy
should be applied to the time-domain signal to be applicable with any audio
data compression technique. Two concealment methods with different fo-
cuses were analyzed in this work to provide application-matched algorithms.

The first proposed concealment strategy is based on auto-regressive mod-
eling of the transmitted signal. Whenever the concealment strategy is trig-
gered the auto-regressive model is created by computing prediction coeffi-
cients based on previous audio frames. A recursive filter is initialized with
these prediction filter coefficients to realize a smooth transition from pre-
vious audio data to the concealment data. The recursive filter is then fed
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with silence to synthesize the concealment signal. The length of the conceal-
ment signal exceeds the system’s block size to allow cross-fading with the
next received audio frame. Multiple methods to compute the auto-regressive
model were investigated. In this study the author used the Least Mean
Square (LMS), Gradient-Adaptive Lattice (GAL), Autocorrelation, and the
Burg method. Additionally the influence of block lengths, prediction order,
and cross-fading window curve was investigated. An objective measurement
based on the Perceptual Evaluation of Audio Quality (PEAQ) algorithm and
a subjective listening test showed that an auto-regressive model computed
with the Burg method clearly outperforms the other methods. Nevertheless,
all methods were rated better than simple muting concealment.

The major drawback of the proposed auto-regressive modeling approach
for error concealment is its algorithmic complexity. A second concealment
method was developed to counteract the problem of high computational cost.
This approach is based on the extraction and looping of previous periodic
audio data segments. The first step to implement the concealment method
is to perform a zero-crossing analysis of previous data to detect periodic seg-
ments. The analysis is optionally enhanced by restricting the bandwidth of
the signal to be analyzed and by intensifying the first harmonic with help
of a non-linearity. Depending on the amount of zero-crossings detected, a
segment of one or multiple periods is cut out at the borders defined by the
zero-crossings. Next the extracted segment is phase-aligned to previous data
to allow a smooth transition. Additionally, previous data is extrapolated
and cross-faded with the phase-aligned extracted segment. The extracted
segment is then repeated to create a sequence of sufficient length. Similar to
the first method the last step is to cross-fade the concealment signal with the
next intact audio data segment. A clear improvement of the audio quality in
contrast to muting could be experimentally affirmed. However, the percep-
tual quality of the auto-regressive modeling approach could not be reached.
The actual intention of reducing the complexity was clearly fulfilled since
the amount of multiplications is significantly smaller, especially for higher
orders of the auto-regressive model which led to the best results. Omitting
the optional preprocessing reduces the complexity even further.

In addition to pointing out the necessity of error concealment in an NMP
session and the proposal of two methods to perform concealment in the time-
domain, the major contribution of this work is an audio data compression
technique especially fitted to NMP requirements. A crucial key requirement
of a successful, satisfactory NMP session is a very low latency between the
musicians to provide a near real-time experience. Hence, the applied audio
compression technique should feature as little delay as possible. Well-known
block-based encoding techniques likes MP3 or AAC are based upon time-
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frequency transforms of long blocks which result in delays above 50 ms and
hence can’t be applied. Low delay codecs like ULD and OPUS still feature
significant algorithmic delay. Utilizing delay-less prediction-based codecs
like Adaptive Differential Pulse Code Modulation (ADPCM) is not feasible
in most scenarios due to their high data rate. Apparently, there is a strong
demand for an audio encoding technique that is capable of delivering high
audio quality with small data rates and smallest delays. The proposed codec
strategy combines the delay-less encoding possibilities of ADPCM encoders
with the advantage of a vector quantizer. Multiple ADPCM encoders are ap-
plied in critically sampled subbands to compute subband prediction residuals
which are jointly quantized with a vector quantizer. The subband signals are
obtained using a critically-sampled cosine-modulated FIR filterbank. The
filterbank prototype filter is designed using the window method and a han-
ning window. The most-promising design with eight bands and an impulse
response length of 51 samples, corresponding to small delay of 1.1 ms at a
sampling rate of 44.1 kHz, is utilized in the audio codec. Although the filter
bank is not perfectly reconstructing, it outperforms perfectly reconstructible
designs due its superior transition steepness and stopband attenuation.

The subband ADPCM encoders are implemented using Gradient Adap-
tive Lattice (GAL) prediction filters which were already successfully applied
in several ADPCM broadband codecs. GAL filters are advantageous due to
the guaranteed minimal phase characteristic and hence a stable inverse pre-
diction filter when the filter coefficients are limited to a certain amplitude
range. The prediction is performed in a backward manner using the quan-
tized prediction residuals to allow synchronous adaption of prediction filter
coefficients in encoder and decoder. All subband residuals, computed by sub-
tracting the predicted signal from the subband signals, are normalized using
recursively estimated envelope estimates per subband. The normalization
results in an almost unit variance and hence an optimized utilization of the
quantizers amplitude range. The vector quantizer codebook is constructed
using noise featuring a gaussian distribution and a size corresponding to 2 bits
per sample. The cost function to search the best fitting code book entry for to
the subband residual vector is based on the euclidean distance but weighted
with the subband envelope estimates. This weighting of the cost function
corresponds to a rearrangement of subband Signal-to-Noise Ratios’s (SNR’s)
from higher to lower bands. Hence the perceptually relevant lower bands
feature less quantization noise which results in a significantly increased per-
ceptual quality of the codec.

The Vector-Quantized Adaptive Differential Pulse Code Modulation (VQ-
ADPCM) is capable of delivering perceptually pleasant results at a bitrate
of 88.2 kbit/s. Unfortunately, the linear search in the codebook prohibits the
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real-time usage. Therefore, the linear search is replaced with the Nearest
Neighbor Search (NNS), which iteratively searches the code book entry with
the smallest cost function deviation within a set of neighboring codebook en-
tries surrounding the current codebook entry. The routine terminates after
a certain amount of iterations or whenever code book entries with smaller
distortion can’t be found. The implementation of NNS with 100 neighbors
reduces the code book search complexity from 65536 cost function compu-
tations to 327 in average. This significant reduction allows real-time usage
although the perceptual quality is slightly reduced since NNS doesn’t guar-
antee to find a global minimum.

Analyzing the distribution of actually transmitted code book indexes re-
vealed the preference of code book entries featuring small euclidean norms.
This trend is caused by the predominant harmonic and partly stationary
components of music material which tend to produce small subband predic-
tion residuals. On the basis of the measured code book entry distribution,
an almost optimal Huffman encoder was designed which reduces the average
word length to 1.447 bit per sample corresponding to a bit rate of 64 kbit/s
at a sampling rate of 44.1 kHz.

The proposed codec structure and especially the subband predictors need
to be carefully adjusted to the characteristics of the subband signals to
achieve the best possible quality. The predictors have to be optimized in
terms of prediction order, base step size, and a stability constant. Addition-
ally, the envelope estimation is parametrized with a smoothing coefficient for
the attack and release case, respectively. A two step optimization approach
was used to identify these parameters. First, an estimate of the prediction
order and base step size was determined by applying the gradient descent
algorithm for every subband on a given set of prediction orders using a cost
function based on the prediction error energy. The optimization was per-
formed using the Sound Quality Assessment Material (SQAM) dataset. The
results were used as initial parameters for the second optimization step which
jointly optimizes all previously mentioned parameters. In contrast to the first
optimization approach, the cost function is based on PEAQ measurements to
optimize the perceptual quality of the codec. Simulated annealing is applied
as an optimization routine due to its heuristic character and its capability
of hill climbing to escape local minima. Applying the identified parameter
set leads to acoustically pleasant results for most SQAM items. The results
indicate that the VQ-ADPCM approach is capable of providing good audio
quality of −0.85 ODG at a low bitrate of about 64 kbit/s at a very small
delay of 1.1 ms. These characteristic values imply that the VQ-ADPCM is
an attractive alternative coding approach for NMP systems. Although the
audio stream can be concealed using the methods from the first chapter, a
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real-world NMP implementation using the proposed codec must be extended
to synchronize the predictor coefficients in encoder and decoder in the case
of lost packets.

The last contribution of this work is a method for the spatial enhancement
of NMP platforms which are based on single channel audio streams. Typical
NMP platforms allow to define the volume and panning of the NMP par-
ticipants sound signals. Thus, solely the definition of point sources within
a stereo panorama is possible. Neglecting the spatial character of sound
sources, especially of large instruments, is likely to limit the realism and
therefore the user experience of the audio replay. This restriction can be
resolved by applying a pseudo-stereo algorithm which blindly estimates a
pair of stereo signals from a mono signal. A novel pseudo-stereo method
is proposed which is capable of delivering a listening experience close to a
real stereo signal by applying a set of complementary linear-phase filters
which can be applied in time- or frequency-domain. The filter pair imple-
ments diffuse amplitude panning with a high frequency resolution to create
decorrelated signals providing spatial width and depth. In contrast to other
well-known pseudo-stereo techniques, the novel approach doesn’t add any
timbral coloration or reverberation. Furthermore, the complementary design
guarantees downmix compatibility to allow replay with mono loudspeakers
in a stereo setup or subsequent mixing of pseudo-stereo processed material.

The proposed pseudo stereo can also be integrated in a virtual surround
render engine. The well-known method of rendering mono sources to a ar-
bitrary positions in space using Head-Related Impulse Responses (HRIRs)
results in point sources. First computing a pseudo-stereo signal and panning
it to slightly different positions in space allows to define the size of the sound
source and hence potentially yields a listening environment with enhanced
naturalness.

The three proposed NMP enhancements are not bound to any specific
NMP platform and therefore can be integrated in any existing NMP frame-
work to improve the error robustness, algorithmic latency caused by audio
coding, and spaciousness of the audio replay.
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A
Appendix

A.1 Partitioning SQAM into instrument classes

Table A.1: Partition of SQAM dataset into instrument subclasses.
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01 Sine 1KHz -20,-10,0dB X
02 Band-ltd. pink noise X
03 Electr. gong 100 Hz X
04 Electr. gong 400 Hz X
05 Electr. gong 5 kHz X
06 Electr. gong 500 Hz vib. X
07 Electr. tune X
08 Violin X
09 Viola X
10 Violoncello X
11 Double-bass X
12 Piccolo X
13 Flute X
14 Oboe X
15 Cor anglais X
16 Clarinet X
17 Bass-clarinet X
18 Bassoon X
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19 Contra-bassoon X
20 Saxophone X
21 Trumpet X
22 Trombone X
23 Horn X
24 Tuba X
25 Harp X
26 Claves st,rhythm X
27 Castanets X
28 Side drum X
29 Bass drum X
30 Kettle-drums X
31 Cymbal soft,hard stick X
32 Triangles X
33 Gong forte,piano X
34 Tubular bells X
35 Glockenspiel X
36 Xylophone X
37 Vibraphone X
38 Marimba X
39 Grand piano X
40 Harpsichord X
41 Celesta X
42 Accordion X
43 Organ X
44 Soprano X
45 Alto X
46 Tenor X
47 Bass X
48 Quartet X
49 Fem. speech English X
50 Male speech English X
51 Fem. speech French X
52 Male speech French X
53 Fem. speech German X
54 Male speech German X
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55 Trumpet Haydn
56 Organ Handel X
57 Organ Bach X
58 Guitar Sarasate
59 Violin Ravel
60 Piano Schubert X
61 Soprano Mozart
62 Soprano Spiritual X
63 Soloists Verdi
64 Choir Orff
65 Orchestra R Strauss
66 Wind ens. Stravinsky
67 Wind ens. Mozart
68 Orchestra Baird
69 Abba
70 Eddie Rabbitt

A.2 Utilized codec libraries

Table A.2: Utilized codec libraries.

Library Supplier Version

libmp3lame The LAME project 3.99.5
Fraunhofer FDK AAC Fraunhofer IIS 0.6.1
Nero AAC Encoder Nero AG 1.5.4.0
Opus tools Xiph.Org Foundation 0.18 (libopus 1.1)
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A.3 Relation of correlation and cross-fading

curves

The cross-fading of two signals x1(n) and x2(n) can be described as

xmix(n) = w(n)x1(n) + wi(n)x2(n), n ∈ [0, . . . , N − 1], (A.1)

where w(n) and wi(n) are the fading and the inverse fading curve. Assuming
signals with the same power and hence same signal variance

σ2
x = E

[
x2

1

]
= E

[
x2

2

]

and identical mean value

µx = E [x1] = E [x2] = 0

allows to estimate the variance of the faded signal

E
[
x2

mix

]
= E

[
(w x1 + wi x2)2

]

= E
[
w2x2

1 + 2wwi x1 x2 + w2
i x

2
2

]

= w2E
[
x2

1

]
+ 2wwi E [x1x2] + w2

iE
[
x2

2

]

= w2σ2
x + 2wwi Cov(x1, x2) + w2

i σ
2
x. (A.2)

Expressing the covariance as the product of the signal variances and the
correlation coefficient Cov(x1, x2) = rx1,x2 σ

2
x yields

E
[
x2

mix

]
= w2σ2

x + 2wwi rx1,x2σ
2
x + w2

i σ
2
x

= σ2
x(w

2 + 2wwi rx1,x2 + w2
i ). (A.3)

It is typically desirable that the cross-faded signal features the same power
and hence variance as the input signals

E
[
x2

mix

]
= σ2

x(w
2 + 2wwi rx1,x2 + w2

i ) = σ2
x.

Canceling the variance holds

w2 + 2wwi rx1,x2 + w2
i = 1. (A.4)

Therefore, the fading curve depends on the correlation coefficient

rx1,x2 =
1− (w2 + w2

i )

2wwi
(A.5)

and can be implicitly described as

wi(n) = −w(n) rx1,x2 +
√
w2(n) r2

x1,x2
− w2(n) + 1.
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A.3.1 Amplitude-complementary fading curve

Substituting the inverse fading curve with the amplitude-complementary
curve

wi = 1− w
in Eq. (A.5) holds

rx1,x2 =
1− (w2 + w2

i )

2wwi
=

=
1− w2 − 1 + 2w − w2

i

2w − 2w2
=

=
−2w2 + 2w

−2w2 + 2w
= 1.

Hence, correlated signals featuring a correlation coefficient rx1,x2 ≈ 1 should
be cross-faded using amplitude-complementary curves like the linear fading
curve w(n) = n

N−1
, n ∈ [0, . . . , N − 1].

A.3.2 Power-complementary fading curve

Applying the power-complementary curve

wi(n) =
√

1− w2(n)

into Eq. (A.5) holds

rx1,x2 =
1− (w2 + w2

i )

2wwi
=

=
1− (w2 + 1− w2)

2wwi
= 0.

Consequently, cross-fading uncorrelated signals, which are characterized by
rx1,x2 ≈ 0, must be realized with power-complementary curves to achieve
power preservation. Typical power complementary curves are the square-

root curve wi(n) =
√

n
N−1

and the cosine curve wi(n) = cos
(

nπ
2(N−1)

)
.

A.3.3 Correlation-based fading curve design

Exact power-complementary cross-fading of partially correlated is also possi-
ble with analytically designed fading curves. In the following, the amplitude
ratio of w and wi shall be described with the function

f(α) =
w(α)

wi(α)
, (A.6)

93



A Appendix

where α = n
N−1

denotes the normalized time index. Rewriting Eq. (A.6) to
wi(α) = f(α)w(α) and inserting it into Eq. (A.4) holds

w2
i (α) =

1

1 + 2 f(α) rx1,x2 + f 2(α)
. (A.7)

Multiple assumptions concerning f(α) can be made:

1. f(0) = 0 since the fading curve w starts with an amplitude of 0

2. f(1) =∞ since the inverse fading curve wi end with an amplitude of 0

3. f(0.5) = 1 since the fading curves w and wi are symmetric and hence
feature the same amplitude in the center of the curves.

Several functions fulfill these requirements. In the following, the tangent
function ftan(α) = tan(π α

2
) and the function fscl = α

1−α are utilized and
applied in Eq. (A.7) to hold the inverse fading curves

wi,tan(α) =
1√

1 + 2 tan(π α
2

) rx1,x2 + tan2(π α
2

)

=
cos(π α

2
)√

1 + 2 rx1,x2 sin(π α
2

) cos(π α
2

)
(A.8)

and

wi,scl(α) =
1√

1 + 2 α
1−α rx1,x2 + α2

(1−α)2

=
1− α√

1− 2 (1− rx1,x2)α (1− α)
. (A.9)

Correspondingly, the fading curves are derived as

wtan(α) =
sin(π α

2
)√

1 + 2 rx1,x2 sin(π α
2

) cos(π α
2

)
(A.10)

and
wscl(α) =

α√
1− 2 (1− rx1,x2)α (1− α)

. (A.11)

The resulting curves functions are illustrated in Fig. A.1. Apparently, the
wtan curve evolves from a sine curve to a slightly S-shaped curve for de-
creasing correlation values. The second fading curve wscl changes from a
non-symmetric S-shaped curve to the linear curve. It should also be noted,
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Figure A.1: Power-complementary cross-fading curves plotted over correla-
tion coefficient r.

that the proposed cross-fading curve design also works flawlessly for nega-
tively correlated signals. Certainly the amplitude of the cross-fading curves
increases to compensate the power loss caused by destructive interference.
However, cross-fading completely negatively correlated (rx1,x2 = −1) remains
an undesirable scenario since infinite amplification is required.
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List of Selected Symbols

Chapter 2:

N Block length
M Amount of blocks
n Discrete time index
m Block index
x(n) Discrete time-domain input signal
y(n) Discrete time-domain output signal
a Auto-regressive filter coefficients
x̂(n) Estimation of x(n)
p Prediction order
e(n) Prediction residual
fi(n) Forward prediction error in lattice stage i
bi(n) Backward prediction error in lattice stage i
ki Reflection coefficient of lattice stage i
µ/µi Gradient step size / Gradient step size in lattice stage i
σ2/σ2

i Error power / Error power in lattice stage i
λ Base gradient step size
J(X) Cost function for parameter set X
ym(n) mth block
xp(n) Previous data
xc(n) Concealment signal
z Filter states
O Overlap
w(n) Cross-fading curve
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Chapter 3:

fs Sampling frequency
wb Word length
Rb Data rate
M Amount of subbands
m Subband index
b Discrete time index in subbands
xm(b) Subband signals
em(b) Subband residuals
vm(b) Subband envelope estimate
ēm(b) Normalized subband residuals
i(b) Code word index of frame b
C Codebook
ẽm(b) Quantized subband residuals
Hm(z)/Gm(z) Analysis / Synthesis Subbandfilter

Chapter 4:

S Number of Sources
s Source index
gs Gain factor of source s
xs Time-domain signal of source s
xL/R(n) Left / Right time-domain signal
HL/R(z) Left / Right decorrelation filter
φs Azimuth angle of source s

Gφs
L/R(z) HRTF at azimuth angle φs
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