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Neural Network Models of Cognitive Conflict Paradigms 
 
Abstract 
 
In recent years, some areas of cognitive psychology have proposed formal models in 
the form of computer simulations, using Back-Propagation Artificial Neural Networks 
(BP-ANNs). Such models represent an improvement in plausibility, and they allow 
quantitative results to be compared with empirical data.  
 
After learning, BP-ANN's cells exhibit a fixed input/output behavior. Using the black 
box method, this is shown to be a fundamental problem. Cells without an internal state 
to represent short-time memory cannot account for the sequence of stimuli, nor for the 
time elapsed between stimuli. As a consequence, BP-ANNs -as well as other neural 
networks without state-dependant input/output- are inadequate as models of some 
important cognitive processes. These include classical conditioning, operant 
conditioning, and sequence effects in cognitive control. 
 
Another major methodological problem is the use of free parameters. BP-ANNs 
cognitive models frequently use arbitrary amounts of cells, amounts of layers, 
connection structure, learning parameter value and other characteristics, without giving 
a theoretical justification. 
 
Three methods are proposed here to solve these problems: first, the black box method is 
used to produce a cell's input/output behavior more similar to that of neurons. Second, 
the reverse engineering method is used to simulate as many neural features as possible. 
And, third, a genetic algorithm is used to eliminate arbitrary free parameters. 
 
The use of these methods is illustrated through a series of spiking neural network 
models, implementing state-dependant input/output, spikes, refractory period, temporal 
summation, axon delay and synchronization of neuron groups. A genetic algorithm is 
used to choose the parameter values in another series of models.  
 
Finally, the feasibility of following this research strategy using parallel computer 
hardware is discussed. 
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Preface -an informal history of how this work actually began 
 
Many scientific works use the order of theory, method, results and discussion. This 
gives the impression of first having a theoretical question, then choosing a method to 
answer it, then collecting empirical data, and finally reaching a conclusion about the 
theory. Of course, in real life this rarely happens. Most experiments are never 
published, and the ones which are -specially the surprising ones- were sometimes 
performed before finding a theory which could explain the results. Since the preface is 
not formally a part of a scientific work, and I shall take here the opportunity to write in 
first person about how this work came to be. 
 
During the season's vacation in 1983/84, I was working as assistant in the behavior 
laboratory in the Universidad de Costa Rica, training rats in standard classical and 
operant conditioning. It was clear that while the theory is straightforward, real rats 
behave in sometimes unpredictable ways, and expert conditioning is almost an art. I 
was worried that my students would have trouble (they did) and decided to write 
software to let the students practice with a computer-simulated rat first. Programming a 
rat in a Skinner box, using Burroughs-mainframe BASIC, rapidly proved unfeasible. 
But it was too late: my interest in behavior modeling was awaken, and persists to this 
day. 
 
Early in 1984, I read an article in the mathematical games column in Scientific 
American (Hayes, 1984). It presented a promising theoretical framework that can be 
used to simulate neural systems. Nothing could be further away from the intentions of 
the author, for the column's subject were Cellular Automata. These are little-known 
systems, used mainly for entertainment by mathematicians and programmers, though 
they would eventually play a pivotal role in chaos research. 
 
The normal use of the word "chaos" implies a disorderly, random behavior. 
Mathematicians mean rather a fully deterministic process without random components, 
where the behavior is complex but not necessarily disorderly. Many non-
mathematicians have heard from the "butterfly effect", and tend to believe that chaotic 
behavior is always due to the exponential grow of very small differences in the initial 
state. This is not the case in cellular automata, where the initial state is absolutely 
precise, and all calculations are performed with integer numbers, avoiding the inherent 
inaccuracy of floating-point arithmetic. 
 
The canonical Cellular Automaton is John Horton Conway's Game of Life. It consists 
of a two-dimensional array of identical cells, much like a chess board. The cells may 
have one of two possible states, alive or dead. To begin the game, a pattern (random or 
not) of living cells is placed in the array. Each cell has 8 neighbors around, like the 
squares a chess' king may reach in one move. The rules ("formula") are: if a cell is dead 
and exactly three neighbors are alive, the cell will be alive the next time step 
("generation"). If a cell is alive, and two or three of its neighbors are alive, the cell stays 
alive on the next generation. In all other cases, a cell is dead on the next generation. 
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Despite being an extremely simple, discrete and fully deterministic system, the game of 
life develops an extremely complex behavior, and there is a mathematical proof 
(technically: Turing's halting problem) that it is ultimately  unpredictable. In this 
paradoxical combination of determinism and unpredictability lies the interest for chaos 
research. For the rest of us, it is just fun to watch. It looks like a myriad of microbes 
moving under a microscope, that is  why it is called game of life. 
 
More seriously, Cellular Automata offer a close analogy of the brain: the cells are 
neurons, the neighbors are other neurons connected through synapses, and living cells 
are neurons firing. The behavior of Cellular Automata is defined by their formula, a 
simple table which combines the activity of the neighbors and the cell's own state. This 
is similar to a neuron combining pre-synaptic excitatory and inhibitory input with its 
own state (e.g., refractory period and calcium concentration) to determine whether to 
produce a spike or not. There are other similarities: Cellular Automata are not serial 
systems like a normal (Von Neumann architecture) computer,  but parallel systems like 
the brain. Alas, the fact that neurons come in a confusing variety of forms and 
neurotransmitters, seems to contradict the complete uniformity of Cellular Automata.  
 
Then, Scientific American came to the rescue again (Goodman & Bastiani, 1984). Their 
article explained how grasshopper embryonic neurons differentiate, depending on the 
neighbors around and their own state of development. After all, a human brain is only 
the ultimate product of a single cell with a single -digital- genetic code. An inhibitory 
neuron is like an automaton's cell that becomes trapped in a subset of its formula, with 
no combination of input and state producing a new state located outside this subset. 
This is fortunate, otherwise inhibitory neurons could begin to produce insulin or 
hydrochloric acid, which are also coded in their nucleus. 
 
The ever-more-complex automata I developed following this insight, would be called 
by other researchers Artificial Neural Networks, but at the time I was unaware that such 
systems existed. One major difference persists when following the cellular-automaton-
as-brain approach. Most conventional neural networks use cells with a single state. In 
other words, their output depends exclusively on the input, and lack a memory of what 
they were doing a time-step before. This single state is a major computational 
disadvantage. The mathematical model of computers, the Turing Machine, can be 
redefined in this context as a 1-cell, 0-dimensional cellular automaton, with the tape 
substituting the neighbors. To put it in drastic words: if Turing machines had only one 
state, they would not be the mathematical model of computers; and if neurons had no 
states,  then there would not be short term memory nor temporal summation. It is 
surprising that cognitive modeling is still usually performed with single-state neural 
networks. 
 
Over the years, these automata were coming always closer to the complexity of 
neurons, loosing in the process one of the most appealing features of automata: their 
simplicity. Stephen Wolfram, a pioneer in this field, published in 2002 an ambitious 
book on cellular automata (Wolfram, 2002),  proposing them as a tool to understand the 
complexity of the universe, as developing from very simple systems. His approach had 
a somewhat controversial reception in the scientific community, but nevertheless it 
generated a short-lived renaissance in the field. Taking advantage of a fashionable 
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trend, a paper describing some results was subjected to a cognitive simulation congress 
(Luna et al, 2003). It was a bit out of place at the congress,  where most of the other 
authors presented models developed  with traditional Artificial Intelligence tools, like 
ACT-R. Besides, the paper described jellyfish's locomotion, hardly a relevant subject 
for cognitive modeling at first sight. Maybe it was accepted simply because of curiosity 
about an exotic method. Hopefully, readers of the present work will share that curiosity.  
 
When I started my doctoral work, the original goal was to develop more elegant models 
than the ones dominating the cognitive control field, trying to simulate various effects 
simultaneously within a single model. The more I studied these models, the more 
unsatisfied I became with them. For a long time I could not put in words the reason for 
this,  and when I did, the unavoidable conclusion was that conventional BP-ANNs are a 
dead-end street for cognitive modeling. I have opted to argue for a paradigm change, 
and try to give a glimpse of how future models should look like, and which methods 
can be used to develop them. Looking back at the history of  neural models, a paradigm 
change is a very ambitious goal, and I have been advised more than once how difficult 
this approach is. I have chosen to make the effort, because I could not bring myself to 
develop easy-but-scientifically-doomed models with a quiet conscience. 
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1.1 Goals and hypotheses of this work 
 
The general goal of this work is to analyse which neural features should be considered 
relevant for models of cognitive conflict, and propose methods to improve the 
plausibility and usefulness of such models. The main concern is methodological, 
focusing on the research strategies, techniques and assumptions involved in the 
development and validation of cognitive models.   
 
The first hypothesis claims that to account for sequence and latency effects, the cells in 
neural network (ANN) models of cognition should store information not only in the 
form of long-term synaptic weights, but also have a separate, internal, short-term state 
that influences their input/output behavior.  
 
The second hypothesis claims that such an internal state can be implemented by 
simulating only simple and well understood input/output properties of neurons, 
avoiding abstract programming devices. 
 
The third hypothesis claims that a biologically detailed simulation is practical using 
modest computer resources, by applying programming techniques from cellular 
automata, like look-up tables indexed by state and input.  
 
The fourth hypothesis, concerning not single neurons but rather groups of them, claims 
that cognitive contents (perception of input, active task, motor output, etc.) can be 
represented in a model by groups of cells spiking in temporal close proximity, i.e., 
synchronized. 
 
1.2 Structure of this work 
 
The models presented in this work belong to the field of cognitive neuroscience. This is 
an interdisciplinary field, where research in cognitive psychology, neurobiology, 
computer science and other sciences are combined. One of the forms that such research 
takes, is the development of formal models, mainly in the form of  computer 
simulations.  
 
Due to the interdisciplinary character of this work, no optimal order of the different 
parts of the theory (see part 2) exists, as it would depend on the particular area of 
expertise of the reader. The chosen order is a compromise, it has some abrupt changes 
of subject and sometimes it does not follow the conventional order. For example, the 
description of the black box method is found at the start of the theory and not in the 
method part, otherwise the nature of the problems that this work tries to solve cannot be 
easily understood. 
 
The main focus of this work is the methodology used to develop models of cognitive 
processes. The goal is to analyse the methods and techniques commonly used, find 
flaws in them, and propose new methods for future models. Within this context, the 
models presented here should be understood simply as examples of the use of methods, 
and not as models of definite cognitive processes. Thought if may seem contradictory, 
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it can be argued that the proposed methods themselves are the most important results of 
this work. 
 
In the following, various versions of computer programs are provided. Most of the 
parameters that define a specific model are not part of the program itself, instead they 
are defined by the user in the form of two human-readable data files, loaded at the start 
of each simulation. Within this context, the term "program" refers to the simulation 
software, i.e., an executable program with the extension .EXE. A "model" consists of 
the two data files (STRUC.TXT and PARAM.TXT) defining respectively the 
connection structure of the network, and the input/output behavior of the cells. To use 
in this way the word “model” for a set of parameters, does not necessarily implies that 
it is a model of a real-world object, unless explicitly stated. Finally,  the term 
"simulation" is used here to describe the results of the software running, after it has 
loaded the data files. A simulation may consist of results of the program running 
several times, when it is run only once it may be called simply a "run". 
 
The programs used to perform the simulations are the result of continuous 
development, in principle they are successive versions of a single program that has 
been changed mostly in small, incremental steps. Between changes, many models were 
built and tested, of which only a small fraction will be presented. The process has been 
continuous, alternating phases of program and model development.  
 
The simulations are presented in two series. The first one consists of simulations of the 
most simple neural processes. The reasons to choose those processes and the specific 
implementation of neural features are explained, followed by the results and a 
discussion.  
 
In the second series, the theoretical grounds to simplify the simulation from 
neurotransmission to ions-only is explained. Using this model as basis, a genetic 
algorithm framework is proposed, its theory and methodological advantages explained. 
This is followed by the methods used to produce a prototype program, the selection 
procedures used, the statistical problems of measuring synchronization, and the 
development of a fitness function. Many of these issues are illustrated by simulations. 
 
Finally, there is a general discussion, bibliography, appendices and a CD-ROM that 
includes all versions of the program and all models, which the reader may run 
him/herself.  
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2 THEORY 
 
2.1 The black box method in psychology 
 
The black box is a method used to perform input/output analysis of systems, and it is 
most frequently employed in engineering. It is known to psychologists mainly as the 
theoretical background used in experimental analysis of behavior (radical behaviorism). 
The Turing test is also an example of this method, and a behaviorist may be tempted to 
describe it as behavior analysis. 
 
The box is “black” because its inner components are either not available for inspection, 
or simply ignored. To build a model -or a copy- of the system being analysed, how the 
box actually functions is of no interest, as long as the model can reproduce exactly the 
input/output behavior of the original. 
 
This method underlies most of present work, it used to analyse neural network models 
of cognitive conflict, and to propose solutions to flaws found in these models. A simple 
example of the method, adapted from an argument of philosopher of science John 
Searle (1983) follows.  
 
The system to be analysed is a soft-drink vending machine, selling bottles for a price of 
one dollar. For an input of one dollar coin, the output is one bottle (ignoring the case of 
a sold-out machine), and for this, the machine needs no internal states, it could be a 
single-state machine. However, the machine also accepts half-dollar coins, and after an 
input of a single one, there is no output. After the second half-dollar, the output is one 
bottle. The unavoidable conclusion is that the machine has at least two different states, 
one that produces an output after an input of 50 cent, and one that does not. This is 
described as state-dependant input/output. 
 
Suppose now that the machine also accepts quarters (25 cent coins). The next input for 
the same machine has the sequence half-dollar, quarter, quarter, and the output is a 
bottle. The next input/output sequence is quarter, half-dollar, bottle. In this case, there 
should be at least four internal states: "empty", "25 cent", "50 cent" and "75 cent", but 
the state "25 cent" seems to be missing, and the first coin probably sets the machine to 
state "50 cent" even if the coin was a quarter. One may try other sequences to test this 
hypothesis, yet the black box method already indicates an error in the design or 
functioning of the machine, because the order of the inputs should play no role for the 
output of a vending machine. Notice that for this analysis it is completely irrelevant if 
the machine is purely mechanical or microprocessor-controlled. 
 
In psychology,  the sequence of input stimulus, and the time lapsed between them, often 
has a critical influence over the output. The description of classical and operant 
learning below, is based on  chapter 8 of the textbook from Zimbardo and Gerrig 
(2008). In the learning paradigm of classical conditioning (popularly known as Pavlov's 
dog) an organism learns a relationship between two inputs, the conditioned stimulus 
and the unconditioned stimulus. The canonical example is that of a dog that repeatedly 
hears a bell a minute before receiving food. After this is done a number of times, the 
dog begins to salivate after hearing the bell, but before receiving the food. Before 
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conditioning, salivating is the unconditioned response to the food, after learning 
salivation is produced by the sound of the bell and is called a conditioned response.  
 
The sequence in which the two stimuli -bell and food- are presented, determines the 
magnitude of the conditioned response, and its resistance to extinction (extinction 
consists in repeatedly presenting the bell alone without food, and eventually leads 
disappearance of the conditioned response). If the bell and food are presented 
simultaneously, the conditioning is weak at best and is rapidly extinguished. If the bell 
is presented one minute after the food, no conditioning occurs. If the bell sounds one 
hour before food is presented, no conditioning occurs. Obviously, classical conditioning 
is highly dependant both on the sequence of inputs and the latency (time elapsed 
between the two stimuli). It follows that a neural network model of classical 
conditioning needs to account for input sequence and time. In other words, besides the 
long-term memory represented as the changes in the connection weights, it also needs 
some form of short-term memory. This point will be discussed in detail later, within the 
description of BP-ANNs. 
 
The other learning paradigm in experimental analysis of behavior, is operant 
conditioning. The main difference is that in classical conditioning one stimulus is 
followed by a response (bell -> salivation),  while in operant conditioning a behavior is 
followed by a consequence. The canonical example here, is a rat that learns to press a 
lever to operate a mechanism which provides the rat with a small portion of food. The 
food is in this case a "positive reinforcer", because it increases the probability of the rat 
to show a given behavior (pressing the lever). Critical for this conditioning is the 
latency, defined in this case as the time lapse between a behavior and its consequence. 
Short latencies need few trials to condition a behavior, medium latencies need more 
trials, and too long latencies produce no conditioning. 
 
The behavior required for a reinforcement can be manipulated with different 
reinforcement schedules. Pressing the lever once, followed by food, is a reinforcement 
schedule named "fixed ratio one". If the rat must press the lever ten times, it is called 
"fixed ratio ten". If the rat receives a reinforcement after pressing the lever ten times on 
average, it is on a "variable rate ten" schedule. Another class are "period" schedules, 
where a single behavior is reinforced only after a given period of time following the last 
reinforcement, and no behavior is reinforced before. If this period is one minute, the 
schedule's name is fixed period one minute. If the period is varies from trial to trial, 
with an average of one minute, the schedule's name is variable period one minute. The 
four basic reinforcement schedules, fixed ratio, variable ratio, fixed period and variable 
period, produce different rates of behaviors by unit of time. They also show 
characteristic patterns of behavior, which are virtually undistinguishable over a wide 
variety of organisms that includes humans, rats an pigeons. 
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Fig. 1 Above: schema of a cumulative recorder, used to record behavior units (usually 
lever presses) in behavioral laboratories. 
Below: Schedules of reinforcement. VR: variable ratio. FR: fixed ratio. FI: fixed 
interval. VI: variable interval. The short diagonal lines mark reinforcements.  The step-
like horizontal lines in FR are periods without activity. Taken from: 
http://www.schouppe.net/wpl/psychologie/persoonlijkheid/theorie/gedragstheorie/operante.htm 
 
From the viewpoint of the organism, the world is a black box where the sequence of 
inputs (lever presses) and outputs (food portions) are dependant on both sequence and 
timing. Analysing the organism itself as a black box, the input sequence and timing 
(reinforcement schedule), and reinforcement latency, play a critical role to determine 
the output (the organism's behavior). A very interesting example of this is superstitious 
behavior (Skinner, 1947), where the organism is given food at fixed time intervals, 
regardless of the organism's behavior. If the timing is right (around 15 seconds for 
pigeons) one particular behavior will increase in probability of appearance despite 
having no connection whatsoever with a consequence, and this behavior differs widely 
for different individuals (pecking in one corner, twisting the head, wing flapping ,etc.). 
 
It is obvious that a reasonable model of operant behavior, should account for sequence 
and timing of both input and output. However, despite the existence of a class of neural 
networks using an unsupervised learn algorithm named "reinforcement learning", no 
neural network known to the author is able to reproduce the characteristic patterns of 
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behavior for the various reinforcement schedules or superstitious behavior. 
Reinforcement schedules can be mixed, and virtually unlimited combinations of 
sequences and timings could be used to test the validity of a model. Yet, to put it 
bluntly, from the viewpoint of black box analysis there is simply no model of operant 
conditioning.  
 
Learning is a subject of great interest both for psychology and neural networks, but is 
not the subject of this work, which is constrained to cognitive conflict. Within this field 
there is usually no new learning involved beyond the initial phase of practice, which is 
almost never analysed in the results. To use an hypothetical example, in an experiment 
the subject is instructed to press a given key on the computer keyboard when he/she 
sees a green letter, and a different key when a red letter is shown. A practice phase is 
started, until the experimental subject has reached a given average reaction time and/or 
a given maximum error rate. Only after this phase of practice, the proper experiment 
starts.  
 
One task frequently used in the study of cognitive conflict, is the Stroop task, named 
after a classical experiment (Stroop, 1935). In this task, the experimental subject must 
name the color in which a word is printed, but the word itself is the name of a different 
color. Because reading is a highly trained task, the word interferes with the task of 
naming the color in which the word is printed, and produces slower reaction times 
compared with naming the color of geometrical figures. One of the possible causes of 
this and other types of cognitive conflict, is the simultaneous activation of incompatible 
responses. Additional variations can be used, like compatible, incompatible and neutral 
conditions, respectively “RED” in red color, “RED” in blue color, and “DOG” in red 
color. In the normal configuration of this task, the word used as irrelevant stimulus in 
one item is never used as the color to be named in following item.  
 
Another way to study cognitive conflict is to use the negative priming effect. In this 
experimental configuration, two stimuli are combined, one relevant and one irrelevant 
to the task, as it is done in the Stroop task. The irrelevant stimulus in item n-1 is used as 
target for stimulus n. This is a sequential effect that slows down the reaction time to the 
target, and can be used likewise in compatible, incompatible and neutral conditions. 
Combining the Stroop and the negative priming effects,  a series of items could be: 
“BLUE” in red color,  “GREEN” in blue color, “YELLOW” in green color, “GREEN” 
in yellow color, and so on. 
 
Most cognitive psychologists treat these two effects as separate ones, and try to develop 
theories or models for each one separately, following a general strategy informally 
known as “divide and conquer”. Human cognition is deemed to be so complex, that to 
eventually understand it we should try to understand first all the different processes 
individually. It may be the case that the Stroop effect and the negative priming effect 
are due to unrelated cognitive subsystems, but sooner or later cognitive psychology will 
be forced to merge all the subsystems if we expect to produce a comprehensive theory 
or model of cognition. In any case, for a black box analysis it is evident that the 
negative priming effect alone is evidence of state-dependant input/output, and requires 
multiple internal states of the box. Again, when the Stroop and the negative priming 
effects are combined, it makes no sense to treat them as separate boxes, since both 
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stimuli and task are the same. A proper model of cognitive conflict should account for 
the actual input/output of the system, regardless of which input sequence is used. 
 
2.2 What is a model? 
 
It is very difficult to give a general definition of the concept "model" because it is used 
with very different meanings in different fields or even within a given field. It may 
designate a physical object, a set of mathematical formulas, a common language 
description of a process, or a computer program. The characterization and taxonomy of 
models is a task not for a particular scientific discipline, but rather for epistemology or 
the philosophy of science in general.  
 
According to Stachowiak (1973), a model is always an image, example or 
representation of something (the "original"), that has the following attributes: 
 
1) The representation attribute. Models are images, representations of a natural or 
artificial original, that itself may be a model (another way to refer to this attribute is 
isomorphism - "equal form", or homophormism -"same form"). 
 
2) The reduction attribute. Models do not have all properties of the original, but only 
those considered to be relevant for a restricted purpose. 
 
3)The pragmatical attribute. Models are not uniquely assigned to an original. They 
substitute an original for a specific subject, in a specific time, for specific mental or 
material operations. (pp. 131 - 133). In the case of scientific models, this attribute 
means that the usefulness of a given model depends on the purpose of the researcher, 
usually understanding or predicting some behavior of the original.  
 
Within theoretical psychology, Dörner (1994) proposed two additional distinctions. 
First, when a model is not static but represents a process, it is called "simulation" and is 
usually performed with a computer. Second, he points out that in the social sciences the 
word model is used with confusingly diverse meanings, and without a clear distinction 
between theory and model. Referring to Braithwaite (1963 pp. 224-341), Dörner 
suggests that the word "model" is used when: 
 
"1) A theory is so small and special, that the word "theory" sounds too ambitious. 
 
2) Half or completely formalized theories are very rare in the social sciences. One calls 
such theories "models", in order to distinguish them from not formalized theories. 
 
3) A theory is not complete but rather is only a precursor form with missing parts." 
(Dörner 1994 p. 368) 
 
Of particular interest for the computer models presented in this work, is the second 
point. Within this context, formalized means an unambiguous description, accurate 
enough to produce quantitative results. It requires an artificial language, like the ones 
used in mathematics, logic or computer programming.  
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A good example for the crucial formal/informal distinction is Hebb's rule, one of the 
most frequently used concepts in neural networks: "When an axon of cell A is near 
enough to excite a cell B and repeatedly or persistently takes part in firing it, some 
growth process or metabolic change takes place in one or both cells such that A's 
efficiency, as one of the cells firing B, is increased." (Hebb, 1949 p. 62). This rule is 
neither a theory nor a model, it is only a non-formal hypothesis -that  neurophysiology 
has proven to be true (Koch, 1997 p.207)- described using common language. Most 
psychologists may think  that Hebb is clear enough and his rule is easy to understand, 
but for the purpose of  making a formal model, this is not true.  
 
There are many computer simulations that claim to use Hebb's rule, but they are 
implemented in different ways and deliver different quantitative results. This happens 
because the computer enforces a complete formalization of the rule. A computer is 
unable to accept a description like "near enough", "some growth process" or "one or 
both cells". The programmer is forced to disambiguate all such descriptions, and must 
choose exact values for all variables (e.g., "increased": by how much?) and constants. 
Since Hebb did not explained in detail how to do this, programmers end up with formal 
models that disagree with each other. 
 
In the context of this work only formal models will be proposed, because the validation 
of a model is easier to perform when a model produces quantitative results, that can be 
fitted to data from experiments with humans. Before discussing which attributes should 
be represented in cognitive models,  the methodological question of how to validate 
models is addressed below. 
 
2.3 Evaluation of models in psychology  
 
According to Ueckert (1983 p.587), for computer-simulated models "The question of 
the validity of simulation models and their applicability is basically nothing else than 
the question about the relationship between theory and empirical reality, the same that 
applies generally for sciences as a methodological problem". Atkinson (1961 p. 46) 
puts it in a more blunt way: "At this point it would be nice if we could refer to a list of 
criteria and a decision rule which would evaluate the model and tell us whether this 
specific development or similar mathematical models are of genuine value in analysing 
the phenomena of interest to psychologists. Of course, such decision procedures do not 
exist." 
 
 While it is true that computer models carry no lower burden of proof than other forms 
of theory, the objects studied -models- are not part of the empirical reality but artificial 
ones. Herzog (1984, p. 94-96) argues on this ground that a model cannot be empirically 
proven or unproven, the relevant judgement is: useful or not. This is ultimately dictated 
by the pragmatic attribute of models, i.e., a model is useful (or not) only in relation with 
its purpose, which in Herzog's case ( p.84-85) is theoretical insight 
(Erkenntnistheoretische Funktion). 
 
Perhaps, instead of trying to find criteria to determine if a model is valid, it is more 
practical to look for criteria to declare a model invalid. Simon & Newell (1963), in 
analogy to inferential statistics' errors of type I and type II, propose two types of 
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modelling error. Error of omission designates a relevant feature of the original, that is 
missing in the model. Error of commission designates a model's feature that is not 
present in the original. These errors are failures of the isomorphism attribute, an make 
model and original different. At the same time, omission and commission errors  break 
the reduction attribute, by missing an original's relevant feature or including a non-
existent feature. 
 
There is no way to know in advance which features of the original are actually relevant. 
In the case of cognitive neuroscience models, this is an extremely difficult problem. 
Neurobiology has delivered an enormous amount of facts, to the point that a detailed 
model of a single neuron is a major challenge. Cognitive psychology has also produced 
scores of empirical data and effects, frequently without comprehensive theories to 
relate the many empirical facts. Finally, computer science faces the problems of the 
vast computer power required for the simulations, and also the non-trivial task of 
writing complex software without programming errors.  
 
The result of this almost unmanageable complexity, is that models have to be extremely 
simplified representations of very constrained originals, and there is a difficult trade-off 
between the isomorphism and reduction attributes. Which of the original's features are 
deemed relevant has remained a problem without a definitive answer, and this work 
concentrates in identifying -and correcting- errors of omission in BP-ANN models. The 
original being modelled in this work is described in 2.5, how this model is formalized is 
described in section 3.1. 
 
2.3.1 The problem of free parameters 
 
Computer programs are a way to formalize a model, but they tend to be much more 
complex than mathematical formulas. Programs have many variables, and if arbitrary 
values are used to define them, the resulting model has many free parameters.  
 
"Quantitative theories with free parameters often gain credence when they closely fit 
data. This is a mistake. A good fit reveals nothing about the flexibility of the theory 
(how much it cannot fit), the variability of the data (how firmly the data rule out what 
the theory cannot fit), or the likelihood of other outcomes (perhaps the theory could fit 
any plausible results),  and a reader needs all 3 pieces of information to decide how 
much the fit should increase belief in the theory. ... A better way to test a theory with 
free parameters is to determine how the theory constrains possible outcomes" (Roberts 
& Pashler, 2000, p. 358). 
 
While this criticism applies in general to psychological theories, it is particularly 
important for computer models, and indeed the authors use a BP-ANN model as an 
example. If a model has many free parameters, one may fine-tune their values until they 
fit the empirical data of a particular experiment. With another data set, the parameters 
may be fine-tuned again with different parameter values, and fit the data. However, the 
model has not predicted the results of two experiments. It has only produced two ex-
post-facto explanations, and the explanations are different for both cases. Programmers 
have a saying for this criticism: "you can simulate anything", which does not mean that 
you have found a way to solve a general problem.  
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Roberts and Pashler (2000) propose that the models should show not only that a given 
configuration fits the data, i.e., make a prediction that is empirically tested. They 
demand an explicit range of behavior predicted, as well as behavior ruled out by the 
model. This demand can be fulfilled only if a range of values for each parameter are 
simulated separately, and a reason to choose the range's bounds is given. Besides the 
fact that for most BP-ANNs this would mean thousands of simulations, it can be 
expected that most of the model's behavior does not fit data.  
 
The logical consequence of this argument is that there must be no free parameters, but 
rather each parameter value should have a explicit reason to be chosen, and this reason 
cannot be that it "fits the data". 
 
The simulations performed in this work are implemented using a construction-set 
program, that by necessity has many more free parameters than usual ANNs. Two 
methods will be  proposed later to respond to the many-free-parameters criticism. First,  
the laboratory approach of keeping all variables constant -however artificial they may 
be- except two or more values of a single independent variable. The second strategy is 
to use a genetic algorithm, that starts with random values for all free parameters, and 
changes this values according to an explicit fitness function. 
 
2.4 A case example: astronomical models 
 
One way to understand how models are developed, and which criteria are used to 
evaluate them, is to study a series of different models that represent the same original. It 
is also important that the purposes of these models, and the original's features 
represented, are the same or at least comparable.  
 
Such requisites are difficult to fulfil in psychology, so first some examples from 
astronomy, the oldest science, will be used here before examining an example from 
cognitive psychology. One big advantage in solar system models, is that the features to 
be represented are clear from the beginning, i.e., the position and movements of 
celestial bodies. The purpose of the models is to calculate the positions in the future 
(like calendars or eclipse prediction) or the past (e.g., horoscopes). Another goal in 
some cases, is a deeper understanding of the universe in general. 
 
The criteria used to judge models are not absolute, and each model is a compromise in 
this respect. Of the various criteria generally accepted in astronomy -and shared by 
psychology- four had been arbitrarily chosen, to illustrate the fact that each one of them 
has been ignored by an accepted astronomical model: 
 
1) Plausibility, another word for the representation attribute, i.e., how isomorph is the 
model with respect to the original.  This is unfortunately an inherently subjective 
judgement,  and tends to change with the scientific zeitgeist. 
 
2) Simplicity. This criterion corresponds to the reduction attribute, but is used here with 
an additional epistemological meaning. Following Occam's razor, it means that if two 
models describe a system with equal accuracy, the most simple one is to be preferred. 
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3)Explanatory power, i.e. how many of a system's observed behaviours are accounted 
by the model. This is equivalent to the pragmatical attribute, and in the case of 
astronomical models it has grown from celestial bodies' positions to include the fall of 
apples on the earth, and eventually the nature of space-time. 
 
4)Prediction accuracy. This is a test used for scientific theories in general, and applies 
to models in the sense that if a model's predictions do not fit the observation data from 
the original, the isomorphism requirement is broken. 

 
The first formal model of the solar system (actually of the whole universe, at the time), 
is due to Eudoxus of Cnidus, motivated by his teacher Plato. He described the universe 
as a series of transparent, concentric spheres, with the various objects attached to them. 
The spheres revolve within each other on axes pointing in various directions. Eudoxus' 
formal model is usually considered as the first one in astronomy, but its predictions 
were only approximations. Unfortunately, the details of this models were lost to history, 
and what survived was the improved version of Aristoteles. 
 
The next breakthrough is due to Claudius Ptolemaeus. He refined the spheres model 
letting some of them revolve not around the earth, but around points in other spheres. 
The plausibility suffers, since no explanation is given why the spheres go trough each 
other without breaking. Moreover, despite its name, his system is not geocentric at all: 
 

 
 
Fig. 2 The geocentric model. The big interrupted line is the main component of the 
orbit, called deferent. The small interrupted line is the epicycle, in this case a single 
one. The deferent revolves around the marked with an X, halfway between the earth 
and the equant (black dot). Taken from: http://en.wikipedia.org/wiki/Geocentric 
 
Notice that the deferent is not centred on the earth as in Eudoxus' model, it is an 
eccentric orbit. Ptolemaeus admitted that making planets revolve around an empty, 
arbitrary point in space was implausible. He defended his model only on the grounds 
that it allows accurate predictions. In this case, prediction is more important than 
plausibility.  
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One very important aspect of the geocentric model, is that its accuracy can be improved 
by adding more epicycles. As the model becomes more accurate, its complexity grows 
until it becomes impractical to calculate. "Adding epicycles" has become the pejorative 
way to describe repairing a faulty model, it corresponds exactly to the problem of 
having too many free parameters, as discussed above.  
 
Nicolaus Copernicus published his heliocentric model in 1543. However, Copernicus 
model was deemed by many of his contemporaries as implausible, since it required the 
assumption that the earth revolves around itself and around the sun. Moreover, though 
Copernicus created a new paradigm, his model was no better at fitting the data than 
Ptolomaeus. Its main effect was rather to unleash new research by other astronomers. 
 
Galileo Galilei,  in his book Dialogue Concerning the Two Chief World Systems, 
argued in favor of the Copernicus model (at least in public) because the calculations it 
requires for practical purposes are more simple, though geocentrism remains more 
accurate, if enough epicycles are used. In this case, simplicity is more important than 
plausibility or prediction accuracy. 
 
It was Johannes Kepler who improved the predictive accuracy of the heliocentric 
model. Kepler tried for years to improve on Copernicus, using eccentric orbits. His 
model fit Tycho Brahe's observation data very well, with the exception of three 
observations of the planet Mars.  
 
Kepler decided to trust Brahe's data, and disposed of simple assumptions about 
planetary orbits. Instead of circular orbits, he proposed elliptical ones. More "un-
simple" and implausible yet, he proposed changing speeds for the planets. Kepler's 
model fitted the data better than the geocentric model, uses formulas easy to compute 
and has fewer parameters. In this case, prediction and simplicity are more important 
than plausibility, but the purposes of the model have been expanded. Now, the issue is 
not simply how to calculate planet positions, but what the solar system actually looks 
like, i.e., improve scientific understanding. More important from the methodological 
point of view, Kepler's model drastically reduced the number of free parameters. 
 
Kepler's model rapidly became the accepted one, but it was Isaac Newton who reduced 
the number of assumptions to universal gravitation and the laws of motion. Newton's 
model was as accurate as Kepler's, and more simple. It has a single free parameter, the 
gravitational constant. Maybe more important however, was its extraordinary 
explanatory power, for it applied to apples as well as planets.  
 
Newton's laws predict with absolute accuracy the orbits of two bodies, but has 
fundamental problems with more than two. This is known in physics as the "three body 
problem". Despite a number of exact solutions (notably Lagrange's points) there is no 
way to predict the positions of more than two bodies for arbitrary times in the future. 
The amount of feedback loops grows very fast as the number of bodies modelled 
increases, and makes the system behavior chaotic and ultimately unpredictable. The 
same problem is found in neural simulation. 
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After Uranus was discovered, small anomalies in its orbit were detected that 
contradicted Newton's laws. Urbain Le Verrier assumed that there must be another 
planet beyond Uranus, and he predicted the position of Neptune, which was soon 
confirmed by observation. This is considered as a triumph in astronomy's history. Less 
well known, is that Le Verrier also tried to explain by the same method another 
observation that contradicted Newton: Mercury's perihelion precession. But planet 
"Vulcan" could not be found. This illustrates that models are not abandoned despite 
isomorphism failures, unless a better model is available. 
 
Mercury's anomaly remained the only challenge to Newton's model, and not until 
Einstein's general relativity theory could it be explained. However, relativity made such 
implausible assumptions, and was so complex to calculate, that most astronomers 
refused to adopt it. Einstein himself did not expected that his model would be validated 
in his lifetime. Only after a relativity's implausible prediction (that the apparent 
positions of stars would be affected by gravitation during a solar eclipse) was 
confirmed, the relativity model was accepted. This is a good example of the difference 
between explaining and predicting, when it comes to the subjective judgement of 
plausibility.  
 
Beyond scientific understanding, practical models must be easy to use. This is the 
reason why NASA still uses Newton's model to calculate the vast majority of spacecraft 
trajectories. 
 
The solar system is not easy to model, but at least it is clear what the original is, 
(positions of celestial objects) and what is irrelevant. For example, an astronomer does 
not need to know anything about the geology of the moon to calculate its orbit. In other 
systems, it is not clear in advance what features of the original are relevant, even when 
the dependant variable(s) are clear enough. Compare, for example, solar system models 
to the task of developing a computer simulation to predict climate change. There are 
more dependant variables, like temperature, precipitation, sea level, etc. But in this 
case, so many independent variables are known to influence weather, that the 
researcher is forced to choose which ones can be represented, and can only rely on a-
priory plausibility to choose those. Additionally, trade-offs are forced between spatial 
and temporal resolution on one hand, and computer resources on the other. Finally, 
there is not enough accurate data from the past to validate the model by running it 
backwards, and of course no data at all from the future. 
 
Neural simulations face a problem more similar to climate change than to the solar 
system. There are computer resources limits for how many neurons and synapses can 
be simulated. Thousands of facts about neural systems are known, and is not clear in 
advance which ones are the most relevant. And finally, only a very incomplete 
description of neural behavior is available for systems bigger than a sea-slug. 
 
2.5 Basic features of neural behavior  
 
Neural-based models of cognitive behavior must start by choosing which characteristics 
of the original should be represented. Given the many facts known about nervous 
systems, judging in advance which features are most relevant and should be 
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implemented, is a very difficult task. As it will be shown later, this is probably one of 
the main problems in the design of ANNs. In the following, some of the most basic 
neural features will be shortly described, and these will define the original that this 
work's simulations represent. There are two reasons why these particular features have 
been chosen. First, they all are important for the input/output of neurons. And, second, 
they are well understood since decades, and are discussed in introductory 
biopsychology textbooks. The short description bellow is based on parts II and III of 
Kandel et al (2000). 
 
2.5.1 Neural input/output 
 
The most important form of input/output in neurons is the action potential, a discrete 
electrochemical pulse that varies very little in duration or amplitude. Because of its 
appearance in a record of electrical activity, it is also called "spike". 
 
Human neurons have a resting potential of around -70 mV. When presynaptic 
excitatory synapses fire, neurotransmitter-gated ion channels open in the postsynaptic 
membrane. Once enough Na+ gets inside a neuron, the firing threshold (about -65 mV) 
is reached, and a series of voltage-gated ion channels open and close in a precise 
sequence in which is called an action potential  or spike. First, channels open that let 
Na+ ions in, making the neuron more positive until a peak of around +50 mV is 
reached. At this point, Na channels close, K channels open and the neuron becomes 
more negative, overshooting the resting potential at  around -75 mV. This process takes 
about a millisecond, and is followed by the refractory period (ref. per.). The first part 
of it, some 2-3 ms., is called the absolute ref. per.. No spike will be produced when the 
neuron is stimulated using an electrode during this period, even if the stimulation is 
considerably greater than the normal amount that would produce a spike otherwise. The 
following is called partial refractory period, during which electrode stimulation is 
greater than normal in order to produce a spike, until the neuron returns to its original 
resting potential around 10-20 ms afterwards (depending on neuron type and previous 
activity among other things). 
 
The precise values of the resting potential, threshold, negative overshoot, duration of 
absolute and partial refractory periods, as well as ion concentrations, vary across the 
different animal species and neuron types within an organism, but the mechanism is 
essentially the same and is found also in many other cells like, e.g., heart cells. The 
research that described these processes was performed in the early 1950s using mainly 
electrodes, and has lead computer simulations to make a number of assumptions about 
which are the relevant features that should be represented in a model, and which ones 
not. 
 
When probed with electrodes, one of the results is that the absolute ref. per. determines 
the maximum spike rate. Different values of the constant electrode stimulation below 
this level, result in frequency modulation (FM, like in radio). Strong values trigger 
spikes earlier in the partial ref. per. and lead to hi-frequency spiking. Weak stimulation 
produces spikes at later points in the ref. per., when the neuron is more sensitive, and 
produces a low-frequency spike rate. Individual neurons are "noisy", meaning that 
individual spikes are equally strong (no AM, amplitude modulation) but the stimulation 
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required to produce a single spike is not constant, it varies from one spike to the next, 
sometimes by a considerable amount. This has led most researchers outside biology to 
consider the average frequency, and not the timing of individual spikes, to be the 
relevant feature to be accounted for. 
 
Another basic input/output neural behavior is the so-called temporal summation. A 
neuron integrates its input by adding (maybe multiplying, see  Koch, 1997) all 
presynaptic excitatory spikes multiplied by their respective synaptic weights, 
subtracting all presynaptic inhibitory spikes (again, multiplied by their respective 
synaptic weights) and finally triggering a spike when the integration reaches the 
threshold at the axon's hillock. Crucially, the electrical effect of incoming spikes lasts 
for some milliseconds before returning to the resting membrane potential. A given 
neuron that would fire if ten of its neighbours spike simultaneously, will also fire if 
only five neighbours spike twice each within a couple of milliseconds. A neuron 
integrates how many spikes it receives, and also how temporally close those spikes are. 
This means that neural integration is affected by a short-term internal state, and the 
output of neurons is not a fixed function of its input, it depends also on its recent 
history. This fact is one of the oldest known about neural integration, and its 
mechanism is well understood, perhaps that is the reason why it is so easily overlooked. 
 
Another input/output behavior that changes depending on recent activity is the so-called 
long-term potentiation (LTP) in hippocampus' neurons, a process known to be crucial 
for memory. After a period of intense stimulation, some neurons remain much more 
active for minutes or even hours. A similar phenomenon is found on most cortical 
neurons. After above-average stimulation, neurons become more sensitive to input for a 
short period of some seconds. Again, the output of neurons depends on a combination 
of the input and the internal state. 
 
2.5.2 The binding problem and neural synchronization 
 
Gray et al. (1989) showed that synchronization of individual neurons plays a decisive 
role in an old cognitive problem. The binding problem poses the question of how 
perception is able to bind together different parts of an object, while keeping it separate 
from its background. The original paper is written in a language too technical to quote 
it here, instead an explanation of the discovery, written later by one of the authors will 
be used: 
 
"How does the brain bind all these individual characteristics together into a single 
impression of a green grasshopper? 
 
Twenty years ago Christoph von der Malsburg, a computer scientist and brain theorist, 
now at the Ruhr University in Bochum, Germany, suggested a solution. By 
synchronizing their activities, nerve cells could join into effectively cooperating units--
so-called assemblies. Subsequently, a number of research teams, among them the group 
at Wolf Singer's laboratory at the Max Planck Institute for Brain Research in 
Frankfurt, have demonstrated that this "ballet of neurons" in fact exists. Peter Koenig, 
Singer and one of us (Engel) carried out an especially decisive experiment at the end of 
the 1980s. We presented a cat with various targets to observe. When we showed it a 
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single object, neurons in its visual system responsible for analysing characteristics 
synchronized their activities in a pronounced way. When we gave the animal two 
separate objects to look at, however, the common rhythm broke down. The 
synchronization changed to a pattern of rapid oscillatory fluctuations at characteristic 
frequencies between 30 and 100 hertz, a region that brain researchers call the gamma 
band." (Engel et al.,  2006) 
 
Although the study of neural synchronization has meanwhile become a major field of 
research in neuroscience, it has had little effect in cognitive simulation. Neural 
networks using binary output, and non-supervised hebbian learning rules, date as far 
back as the Boltzmann Machine (Hinton and Sejnowski, 1983). Yet it was the 
discovery of the role of neural synchronization in perception, that inspired a new type 
of ANN called Spiking Neural Networks, the type used in the present work. Though 
these networks have attained a modest expansion, they are mostly restricted to 
engineering applications like pattern recognition. This is not surprising since the 
original studies concerned sensor visual systems, and tracking synchronization in 
association cortex is much more difficult.  
 
2.5.3 New research on spike timing 
 
ANNs rarely represent neuron's spikes, and opt for a so-called "firing rate", i.e., an 
average of the neuron's firing rate over many spikes. This is odd, given that the binary 
and discrete nature of spikes is one of the oldest know input-output features of neurons. 
We will examine later the reasons why traditional ANN models have chosen not to 
represent spikes, but first let us examine some of the facts that have been discovered 
recently. 
 
There is now plenty of literature in neuroscience indicating that information processing 
at the neuron level is quite sophisticated. A good overview article is Beardsly (1997). 
From one of its original sources,  itself  a widely quoted review article (Koch, 1997): 
 
“Over the past decades, neural networks have provided the dominant framework for 
understanding how the brain implements the computations necessary for its survival. At 
the heart of these networks, are simplified and static models of nerve cells. But 
neuroscience is undergoing a revolution, and one consequence is that the picture of 
how neurons go about their business has altered.” (p.207) 
 
"Experimentally, the best-studied aspect of increasing connection strength is long-term 
potentiation, which can be conceptualized as an increase in synaptic weight lasting for 
days or even weeks. It is induced by simultaneous activity at the pre- and postsynaptic 
terminals (Fig. 1), in agreement with Hebb's rule. [...] These neural-network models 
assumed that, to cope with the apparent lack of reliability of single cells, the brain 
makes use of 'firing-rate' code. Here, only the average number of spikes within some 
suitable time window, say a fraction of a second, matters. The detailed pattern of spikes 
was thought to be largely irrelevant " (p. 207) 
 
The author reviews other research, that has shown that the timing of individual spikes 
indeed carries about 10-40 per cent of the theoretical information maximum, only the 
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rest being actual noise (p. 209). If this is the case, the coding used for the output of 
neurons is not Frequency Modulation (FM) as most neural networks assume, but rather 
Ultra Wide Band (UWB), where the timing of discrete pulses is used to carry 
information. Interestingly, UWB is a descendant of a forgotten technique used in the 
oldest radio transmissions, which used electrical sparks -not unlike neural spikes (the 
German word for radio comes from Funke, "spark"). 
 
Not only the timing is important, but also the order in which presynaptic spikes are 
received with respect to the postsynaptic ones. These facts contradict the view that 
individual spikes are an unreliable way to carry information, the main reason why they 
are not represented in ANNs (Koch, 1997 p.209). The author concludes: 
 
“Only very little of this complexity is reflected in today's neural-network literature. 
Indeed, we sorely require theoretical tools that deal with signal and information 
processing in cascades of such hybrid, analog-digital computational elements. ” (p. 
210) 
 
Taking together basic neural input/output, the role of synchronization in neural binding, 
and the way information is carried by individual spikes, the black box method suggests 
that neural networks require an implementation of the actual input/output of neurons, at 
least for cognitive simulation purposes.  This implementation must be much more 
detailed than the ones currently used by BP-ANNs. 

 
2.6 Neural models in cognitive science 

 
Modern digital computers first became widely know to the general public at the early 
1950’s, most notably as a result of their use in the 1952 USA presidential election. The 
most widely used analogy to describe them at the time was “electronic brain”. Perhaps,  
this comparison was the result of a weak form of the Turing test: if computers can do 
arithmetic and play chess, and humans can too, they must be similar in some way. This 
analogy is far from perfect, as John Von Neumann -one of the most important computer 
pioneers- pointed out in his last book (Von Neumann, 1958). The conceptual 
framework eventually adopted in cognitive sciences, was a more abstract view of 
nervous systems as “information processing” systems. This concept is still widely used 
in symbolic Artificial Intelligence and cognitive psychology. 
 
The first attempt to formally analyse the similarity between brains and computers was 
performed by McCulloch and Pitts (1943), who used simplified neuron-like 
components to implement logic gates, the building blocks of computer hardware. They 
are almost always mentioned in texts about the development of cognition models. This 
is a misunderstanding, and many cognitive researchers fail to realize that while 
McCulloch and Pitts showed how to build computers out of neurons, they did not show 
how to build brains out of transistors.  
 
The first real attempt to model cognition -at its most primitive level- was Rosenblatt's 
"perceptron" (1957), a simplified retina model constructed with electronic hardware. 
The perceptron did not use the serial processing (Von Neumann architecture) of digital 
computers, it copied the parallel structure of retinas and the brain's cortex, using cells 
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and synapses. This first type of artificial neural network, became the subject of 
extensive research,  mainly in the field of pattern recognition.  
 
Eventually a book by Minsky and Papert (1969) proved that a perceptron cannot 
recognize some very simple patterns (e.g., the XOR problem). Their analysis took the 
form of a formal mathematical proof, this probably led most psychologists to view 
perceptrons as a dead-end paradigm, and research in this field came almost to a halt for 
many years. However, a mathematical proof does not necessarily has this ultimate 
meaning. It is true only within the constrains of the assumptions that underlay the 
proof. In Minsky and Papert’s case, one crucial assumption was that neural networks 
have only two layers, one for input and one for output. Instead of simply describing a 
fundamental problem, they could have also have proposed the solution (three or more 
layers; even mammalian retinas have three layers). To their credit, this seems obvious 
only in retrospective, and it took the cognitive modelling community a long time to 
understand this. 
 
In the 1980's three independent teams discovered the three-layer Back-Propagation 
Artificial Neural Networks, made popular by what may be the most influential book on 
cognitive modelling, Parallel Distributed Processing (1986) usually abbreviated as 
PDP. By the simple device of using three layers, BP-ANNs had abandoned Minsky and 
Papert's (1969) implicit assumption of only two layers, and could solve, among others,  
the XOR problem. This type of ANNs -and their variations- are still today the most 
commonly used, and are also widely used outside cognitive research. ANNs brought a 
paradigm shift in the original sense of Thomas Kuhn (1962), changing the basic 
assumptions about the way to develop cognitive models, reinterpreting the empirical 
facts, and promoting a wave of research in the subject. 
 
Though still embedded in the information processing concept, the main difference of 
the PDP approach is to abandon the serial nature of standard computers. It uses instead 
structures and processes similar to the ones studied in neurobiology, like cells 
(neurons), weighted connections (synapses), activation functions (neural integration) 
and parallel processing of information. 
 
PDP has delivered models that are biologically more plausible, but the analogy implicit 
in the name "neural network" is often not very close. The massive amount of facts 
known about neurons and nervous systems, and the vast body of research in cognition, 
have forced ANN models to make extreme simplifications. 
 
It is difficult to put a date to the point when neural networks became an accepted way to 
model cognitive processes, but without doubt one of the early successes was the paper 
From rote learning to system building (Plunkett & Marchman; 1993). Using a BP-ANN 
with 18 input units, 30 hidden units and 20 output units, they achieved a very good fit 
to the data produced by children when learning the past tense of English verbs. The 
model not only fitted the data, but made a prediction about the evolution of error rates 
that was inconsistent with the theory of the day, and the prediction proved correct. The 
model was a good one when it comes to represent the distributed storage of cognitive 
contents in a distributed way, following the Hebb's rule. Strikingly, with less than 
hundred cells a neural network can model some cognitive processes that take 100 
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billion neurons in humans. 
 
One would expect that such a success in modelling learning would be rapidly followed 
by models of much more basic behavior, like classical and operant conditioning, but 
this did not happend. A BP-ANN can represent the number of words recognized and 
error rates as a function of the number of loops of the learning algorithm, but it lacks a 
representation of timing and order of events. Both classical (i.e., like Pavlovs's dog) and 
operant learning (e.g., like a rat in a Skinner box), are very sensitive to the order of 
stimulus and behavior, and the time between them (latency). A BP-ANN can 
adequately represent the synaptic changes of long-term memory, but not the short-term 
effects of working memory. To put it in other words, when the dependent variable has a 
time component, BP-ANNs lack a mechanism to represent it due to the non-changing 
nature of the cell's input/output function. 
 
A rarely mentioned attempt to model simple cognition, are Braintenberg's vehicles 
(1993). These are gedankenexperiments, simple robots using only a few computing 
elements like Grey Walter's robotic turtles (Walter, 1950). While Walter used analogue 
electronic valves, Breitenberg proposed "neurodes", hypothetical devices that produced 
spikes. Neurodes produce more spikes per second when a sensor input (e.g., photocell) 
is strong than when it is weak. The stepping motors of the vehicles move when more 
than one spike is received at the same time from the neurodes.  The vehicles thus 
simulate neural integration based on semi-random spikes, and are capable of 
autonomous behavior and even simple forms of social behavior. While such 
simulations are relatively well known by robot researchers, stochastic-spiking systems 
are mostly ignored by the cognitive research community (see 2.7.1 and 
SIMULATIONS II-Measuring synchronization). 
 
2.7 A conventional ANN 
 
At this point, it is necessary to explain what an ANN is, and how it works, even before 
the reasons why they are designed this way are analysed. There are many different 
types of ANNs, and explaining even the most common ones would be beyond the scope 
of this work. The reader should be aware that for almost every feature in the following 
example, there is an ANN type that does not implement it. Fortunately, there is a family 
of networks that dominates research and makes up most of the models used in cognitive 
psychology.  
 
The canonical three-layer Back-Propagation Artificial Neural Network (BP-ANN) has 
the following structure: 
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Fig. 3 Three layer feed-forward network. Taken from: 
http://www.seattlerobotics.org/encoder/nov98/neural.html 

 
 
At the left is the input layer, that receives activation from the outside world, e.g., a 
pattern to be recognized. The middle layer is called "hidden" since it has neither input 
nor output connections outside. There may be more than one hidden layer. Finally, to 
the right, the output layer expresses the output of the network in the form of the 
activation of its cells. The cells may have connections (synapses) within their own 
layer, or output connections with the next one. Information flows only from left to 
right, this is called "feed-forward". It lacks feedback connections (recurrent) between 
the layers. 
 

 

 
 

Fig. 4  Processing in a single cell. Taken from 
http://www.seattlerobotics.org/encoder/nov98/neural.html 

 
Each cell's input has a "weight", a number representing the functional effect of the 
connection,  much like Hebb's rule (1949). The connections may have positive values 
(excitatory) or negative (inhibitory). They are added together,  which represents neural 
integration. This value is then transformed using a sigmoid function, to simulate the 
non-linear behavior of neurons. Finally, the output is fed to the next cell(s). 
 
The BP learn algorithm data consists of one set of stimulation patterns, and a 
corresponding set of expected output patterns. At start,  the weights of the cells' 
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connections are set to random values. The input and resulting cells' activation proceeds 
then from the input to the hidden to the output layer. The output layer's activity pattern 
is then compared with the expected pattern, and an error measure is computed out of 
their difference. This error signal is used to change a fraction of the weight of the 
hidden-to-output connections, in order to diminish the error the next time. The changed 
weights themselves,  are used to compute the error on the hidden layer, and change 
accordingly the weights between the input and the hidden layers. In this way,  the 
weights' changes propagate backwards through the network, giving its name to the 
learn algorithm, and the first loop (iteration) is complete.  
 
The network is "trained" using one pair of input-output patterns after another, changing 
the weights slowly and mixing them. After the whole set of input-outputs has been run, 
it starts again, usually with a different order of the training input/output pairs. The order 
of the pairs is changed to eliminate sequence effects. The effect of the previous pair on 
the present one, behaves as noise and averages to 0 -on the long term- when successive 
pairs do not share similarities. And if similarities exist, those should be learned. The 
whole set is run many times, until the mean error for the input-output pairs has reached 
a barely changing value. 
 
Once the network has been trained, typically for some thousands of iterations, the 
weights are fixed. To test it, new, previously unused input-output pairs are presented, 
and if successful, the network delivers the expected output in what is called 
"generalization" i.e., learning. 
 
It is important to note that the network does not simulate reaction times -the dependent 
variable of many cognitive experiments. Each test pattern is run only once -in three 
steps- from input to hidden to output layer. It is an instant result, that does not require 
iterations and takes exactly the same time -with no time variation whatsoever- for every 
input-output pair once the training phase is complete. The output shows likewise no 
quantitative variation at all for a given input, unless random noise is added. 
 
The back-propagation learn algorithm is one example the "supervised" type, which are 
known to be biologically implausible. Each connection needs additional information to 
change its weight, that is not available to either the presynaptic nor the postsynaptic 
cell. In biological terms, this would require that each synapse has an additional synapse 
under the control of an homunculus, who tells the synapse when and how much it 
should change. 
 
Another problem concerning learning, is the question if the neural network actually 
learns anything not already known to the program as a whole. It can be argued that 
what is to be learned is already stored in the training pairs, though not in a explicit 
form. The learning process can be viewed as simply storing this implicit knowledge in a 
distributed way, using the connection weights. The advantage of a BP-ANN when 
compared to e.g., an expert system (a type of symbolic Artificial Intelligence program) 
is that the developer does not need to make the knowledge available in the form of 
explicit if-then rules. Indeed, the developer does not even need to understand how the 
problem can be solved, as long as the training pairs can still be generated, and a small 
fraction of wrong training pairs can be tolerated by the algorithm. 
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2.7.1 Typical model's assumptions 
 
Some of the assumptions about nervous systems on which BP-ANNs are grounded, 
were reasonable at the time when they were first created, before the role of spikes in 
neural processing was better understood. The assumptions have not yet been updated 
according to the results of neurobiological research. Some of these will be examined in 
the following. 
 
McLeod et al. (1998), in their cognitive modelling textbook, explicitly name five 
assumptions on which connectionist (PDP) models are based: 
 
"1) Neurons integrate information. [...] 
 
2) Neurons pass information about the level of their input. [...] In the classical neuron,  
information about the level of stimulation of the sending neuron is coded by the rate at 
which it fires. [...] 
 
3) Brain structure is layered. [...] 
 
4) The influence of one neuron on another depends on the strengths of the connections 
between neurons. [...] 
 
5) Learning is achieved by changing the strengths of connections between neurons." 
(pp. 11-15).  
 
Assumption 1 is correct, but as shown in 2.5.1, temporal summation requires a short-
term internal state, representing the recent input. The standard "integrate and fire" cells 
used in ANNs do not implement neural integration. 
 
Assumption 2 is flawed, as research in neural synchronization and the information 
carrying ability of individual spikes has shown. Besides disregarding actual neuron's 
input/output, another reason may play a role in the decision to implement output in the 
form of frequency modulation. The fire rate expressed as a floating-point variable 
represents the average number of spikes of a number of neurons over a period of time. 
Given the assumption that neurons are noisy (more about this below), the period 
represented should be long enough for the noise to be averaged to a small proportion of 
the signal. How long the averaging period is, or how many neurons are being simulated 
by a cell, is not specified in the models. One is forced to speculate in this case, probably 
the period is between 100 to 200 milliseconds and 1 to 2 seconds, and the neurons 
simulated may be those of a cortical column (10000), or, to be conservative, at least 
100. It follows that implementing spikes instead of fire rate, not only would make the 
model much more complex, it would also slow down the simulation by several orders 
of magnitude.  
 
Assumption 3 is partly true, but misleading. There are some layered structures in the 
central nervous system that feed information forward only, like the retina. Mammalian 
cortex also shows a cytoarchitecture of six layers, and in general information flows 
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from the primary sensory areas, to the secondary sensory areas, then  the association 
areas, and finally to the motor areas. But information does not flows in the cortex only 
forward. There are an enormous amount of feedback connections, not only between 
cortex areas but also among the various cortex layers, basal nuclei, cerebellum, etc. 
Feed-forward connections are neither the only structure nor -probably- the most 
important connection feature of brains. The reason why feed-forward layered structures 
are standard in models, is because the back-propagation learning algorithm works only 
in feed-forward networks. This is an implementation issue in computer models, but 
lacks plausible anatomical grounds. 
 
Assumptions 4 and 5 are well supported by neurobiological research.  
 
The successor to the standard reference book in cognitive simulation, Parallel 
Distributed Processing (McClelland and Rumelhart, 1988), is arguably Computational 
explorations in cognitive neuroscience  (O'Reilly and Munakata, 2000).  The last one is 
the main reference book used for this work, and it provides an unusually detailed 
description of neural physiology. To illustrate the effects of assumptions made about 
the decision to represent individual spikes vs. mean spiking rate, and related issues, 
some quotes of the last source follow. 
 
"A neuron integrates information from many different sources (input) into a single real-
valued number that reflects how well this information matches what the neuron has 
become specialized to detect, and then sends an output that reflects the results of this 
evaluation. This is the well-known integrate-and-fire model of neural function." 
(O'Reilly and Munakata, 2000 pp. 23, 24) 
 
Notice that "integrate-and-fire" refers to a 1-bit discrete output, the spike. However, the 
output has been previously described as a "real-valued number" i.e., the mean spiking 
rate. The authors appear oblivious to this contradiction. 
 
"However, most of our models use a rate code approximation to discrete spiking. Here 
the output of the neuron is a continuous, real-valued number that reflects the 
instantaneous rate at which an otherwise equivalent spiking neuron would produce 
spikes. [...] The principal computational advantage of the rate code output is that it 
smoothes over the noise that is otherwise present in discrete spiking. [...] This kind of 
noise would tend to be averaged out with thousands of neurons, but not in the smaller-
scale models that we often use." (O'Reilly and Munakata, 2000 p.42) 
 
Here the authors interpret the varying timing of individual spikes simply as noise, not 
information. The use of a rate code is proposed to simulate the assumed noise-reduction 
effect of actual brains, which have many more neurons that the model can simulate in a 
reasonable time. As previously mentioned in 2.5.2 and 2.5.3, while neurons are indeed 
noisy, not all of the spike variation is noise. For a computer programmer is easier to 
add the noise with a random number generator if desired, because the randomness can 
be kept under control at the desired level. If the noise is due to intrinsic properties of 
the system, chaotic behavior may ensue, specially in systems with many feedback loops 
(this is the case on this work's simulations). 
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"Time averaging is also important when discrete spiking is used for having a window of 
temporal summation, where spiking inputs that arrive around the same time period will 
produce a larger excitatory effect than if those same inputs were distributed across 
time." (O'Reilly and Munakata, 2000 p.43) 
 
Interestingly, the authors are aware that individual spiking plays an important role in a 
neuron's temporal summation, but fail to implement it. Again, they appear to dismiss 
this property as irrelevant. 
 
O'Reilly and Munakata (2000 p. 47) claim that a rate code can simulate regularly 
spiking -simulated- neurons, and that rate code plus noise simulates noisy neurons. This 
is true only in the case that the irregular spiking of neurons is noise and not 
information. This may be impossible to prove, since one of the results of information 
theory (Shannon's information entropy) is that perfectly non-redundant information has 
exactly the same statistical properties as white noise.  Besides, thermal noise is known 
to play a role in spontaneous spiking of input-less neurons, so the authors are making a 
plausible assumption here, one that recent research shows to be probably false after all. 
 
The main problem with rate code, is that it accounts for the spiking frequency of 
neurons, but not for the phase. Consider the following example: two groups of cells are 
firing at the same frequency, say, 10 ms wavelength. The first group fires at times 10, 
20, 30, 40 ms. and so on. The second fires at times 5, 15, 25, 35 ms. and so on. Each 
group is synchronized by itself,  but out of synchrony with respect to the other group by 
half a wavelength. The two groups' activity is may be unrelated and represent different 
cognitive contents, but for a rate code there is no measurable distinction at all. 
 
One simulation showing the relevance of phase effects was performed by Raffone and 
Wolters (2001). They implemented an (artificial) spiking neural network that simulated 
the electrical effects of Potassium ions only. The network could maintain up to four 
different subgroups of cells synchronized within themselves, all having the same main 
frequency but four different phases. They published this result as a proposed 
mechanism to account for the fact that visual short-time memory can handle at most 
four chunks (a chunk is a unit of information in short time memory, itself composed of 
various details. For example, to keep a telephone number in short-time memory, one 
may "chunk" two digits into one unit). The simulated cells produced discrete output, i.e. 
spikes. Despite the stable frequency of all subgroups, individual cells had continuously 
changing wavelengths. If one of the cells spiked too late, it would be affected by the 
too-early spiking cells of the following subgroup of cells, and would "jump wave" 
backwards, i.e., synchronize with the following subgroup's phase. The same can also 
happen forwards. So the limiting factor for how many visual chunks can be maintained, 
probably depends on the frequency and the variation of cells' wavelengths around that 
frequency, which together determine how many different phases can coexist without 
interference. This result was a surprise for the researchers themselves (Wolters 2006, 
personal communication). 
 
Finally, another critical assumption, is the lack of relevance of the ref. per.: 
 
"This refractory period effectively results in a fixed maximum rate at which a neuron 
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can fire spikes (more on this later)." (O'Reilly and Munakata 2000, p. 29. the same 
point is also made on page 48, and on page 70). 
 
The ref. per. is not described in detail, and no clear distinction is made between the 
absolute and relative phases of it. In the whole book it is mentioned only these three 
times, of which only the first appears in the subject index. For the simulation, it is only 
relevant as an upper saturation limit that justifies the use of a sigmoid (S-shaped) 
activation function. This is surprising, since the relative ref. per. is the cause of 
nonlinearity of the input-output behavior of neurons, which shows also an S-shaped 
(unsymmetrical) form. Nonlinearity is frequently used in hidden layers of artificial 
neural networks because of mathematical considerations (a series of linear equations 
can be reduced to a single one, nonlinear ones cannot), but rarely is the ref. per. 
mentioned at all.  
 
One can only speculate about the reason why the ref. per. is not given as justification 
for sigmoid functions. Either it has been overlooked, or implementing the ref. per. 
would force simulating individual neurons, spikes, internal states, and a much higher 
time resolution of the simulation. This all requires of course more computer and 
programming resources, and make the models more complex. 
 
To resume the role of neural assumptions in the design of neural networks, many of 
them are based on oversimplifications of neural input/output, and some of them are 
simply false. For a technical application this is not necessarily a problem. A BP-ANN 
may not represent the effects of input sequence, but this makes it inmune to the slow-
down of response time in case of negative priming. A software engineer can hardly 
justify developing complex and slow neural networks, with the purpose of making the 
response time even slower after negative priming input. 
 
In cognitive modelling however, the goal is not to deliver an optimal and easy solution 
to a given problem, but rather to faithfully replicate the way cognitive systems function, 
including the case when they fail to function in an optimal way. It follows that 
cognitive simulations should abandon the extremely simplified BP-ANNs, and start to 
include more neural features to produce a more realistic input/output of the cells. 
 
2.8 BP-ANNs and models of cognitive conflict 
 
Formal models are rare in cognitive psychology, and even more rare are series of 
different models of the same original, like it was the case with solar system models in 
astronomy. Fortunately, one specific series of models has produced a good example, 
though the differences between models are relatively small (within the series). The 
origins of this chain of models can be directly traced back to the ANN paradigm shift, 
as can be seen by the authors' names. The authors of the PDP book were McClelland 
and Rumelhart. The first model of the Stroop effect was realized by Cohen, Dunbar and 
McClelland (1990). It was followed by another model proposed for the same subject, 
(Cohen and Huston, 1994). Finally, a series of more comprehensive models covering in 
addition other cognitive conflict effects, were presented by Botvinick, Braver, 
Barch,Carter, and Cohen.(2001). 
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These models were incrementally improved, using a conservative approach. The 
authors take a model, and change it as little as necessary to improve performance or 
adapt it to represent other cognitive phenomena. Here, only the last models (Botvinick 
et al., 2001) will be examined, since they are the most advanced. 
 
One of the cognitive effects modelled is the so-called Gratton Effect. This effect shows 
itself on the Eriksen task (Eriksen & Eriksen, 1974). In an often used version of this 
task, one central letter (H or S) is presented to the experimental subject, who presses 
one of two keys accordingly. The central target letter is shown surrounded by other 
letters, which may be the same (HHHHH or SSSSS in the compatible case, no conflict) 
or the other one (SSHSS or HHSHH, incompatible case, conflict).  
 
Cognitive conflict, or more specifically the compatibility effect, is measured as the 
difference in reaction time between the compatible and incompatible cases. Gratton et 
al (1992) found that the cognitive conflict varied depending on whether the previous 
item had been compatible or not. 
 
 

 
 
Fig. 5 from Gratton et al, 1992. 
 
The original experiment was interpreted by the authors as evidence that cognitive 
control processes had adjusted the attention after each trial. According to this 
interpretation, after an incompatible trial, attention would be more focused in the target 
and mask out the flankers, after compatible trials the flankers would be taken into 
account more strongly -despite irrelevance- and speed up the answer for compatible 
item (or slow down the answer of incompatible ones). This cognitive control instance 
would then constantly monitor conflict, and adjust processing selectivity constantly. 
Earlier, in part due to functional magnetic resonance studies, it had been suggested that 
this control instance is anatomically located in the Anterior Cingulate Cortex. 
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New research (Wendt et al 2006, Hommel et al 2004) strongly suggests that this  
"control hypothesis" -a short-hand name for lack of an accepted one- is premature, and 
more simple memory effects are at least partly responsible for a great part of the 
Gratton Effect. To put it in blunt words, the apparent adjustment of attention may not 
be an effect at all, but an artifact produced by sequence effects. When the number of 
targets is increased from two to four, the Gratton effect is usually much smaller or 
disappears completely. No literature is available that directly compares two vs. four 
stimulus while eliminating from the analysis item repetitions, this would be a good 
opportunity to test the predictions of the model. However, lacking a representation of 
input sequences, the model will fail to show differences between two and four stimulus 
runs. 
 
The theory that describes better the Gratton's effect is Bernhard Hommel's feature 
integration (2004). A short description of it,  is that all features of a trial -relevant or 
not- are bound together in memory as a chunk. When the next item is identical, 
response is speeded-up. If the next item shares no features with the previous one,  
response time is unaffected (note that this is seldom the case; even if both target and 
irrelevant features change, the expected response may be the same). If only some of the 
features repeat, this recalls a chunk in memory, and because the given response is part 
of the chunk, it may slow-down the present response. Hommel's own diagram: 
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Fig. 6 The effect of trial to trial features' change or repetition. Taken from Hommel et al 
(2004).  
 
Meanwhile, the control hypothesis has produced formal models not only of the Gratton 
effect,  but also of the Stroop effect and others (Botvinick et al, 2001). Though these 
effects come from different experimental paradigms, in most of them reaction time is 
slowed down due to the presence of incompatible stimuli-irrelevant to the task, (or 
speed up in compatible case). The models used previously developed BP-ANNs, so no 
new learning was needed and the connections' weights remained fixed. The only 
change in the connection structure was to add a "conflict monitoring unit".  
 
The first model to be consider, is the model for the Stroop task (1935). This is based in 
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the Stroop test, where words for various colors are printed in an ink of a different color 
(e.g., "RED" written in blue ink). When subjects are asked to name aloud the colors in 
which the words are printed, they do so slower than when asked to name the colors of 
bars. The long training in reading seems to produce an interference with color-naming, 
this is the source of cognitive conflict in this case. Let's examine the model of this 
effect: 
 

 
 
Fig 6. Structure of the Stroop task model R: red G: green N: neutral C: color naming 
W: word reading. The cells are circles, groups are ellipses, and the curves a the side of 
the ellipses -with a dot in the lower part- are lateral inhibition connections. Taken from: 
Botvinick et al., 2001, p. 631. 
 
The network proposed by  Botvinick et al. (2001) has a three-cell input for each task, a 
two-cell input to determine the task,  a two cell output layer, no hidden layer, and a 
conflict-monitoring unit. The conflict is measured through the Hopfield energy of the 
response layer. This means in this case (RxG)+(GxR). Its value is zero if one or both 
cells are inactive, and maximum if both show maximum activity. 
 
"The procedure used in simulating a trial is detailed in Cohen and Huston (1994). 
Briefly, one of the task units is activated during an initial priming interval, during 
which the output units are inhibited to prevent premature responses. The input pattern 
is then applied and the response-layer inhibition removed." (Botvinick et al, 2001 p. 
631). 
 
The procedure used to model human response times, is not described but simply 
quoted. In the Cohen and Huston (1994) model, the trials were not run in the usual way. 
Instead of computing only once the activation of the cells in a single pass trough the 
layers, the activation in the input layer was fed forward as a fraction, and the response 
units computed a running-average of their input. Gaussian-distributed noise was also 
added to the response units. After a number of iterations of this procedure, the 
difference in activation of the two response-layer units reaches a threshold, and a 
response is recorded. The number of iterations needed to reach the threshold is taken as 
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equivalent to response time. The variability in the number of iterations is produced not 
by the network itself, but by adding noise from a pseudo-random number generator. 
This explains the somewhat cryptic caption under the results figure: 
 

 

 
 
Fig. 7 "Energy as measured in the response layer of the Cohen and Huston (1994) 
model during simulation of congruent, neutral, and incongruent trial in the Stroop task. 
Arrows indicate average response times. Energy was recorded for each cycle of 
processing,  and the data shown are means based on 100 trials in each condition.".  
Congruent is used as synonym of compatible.  Taken from: Botvinick et al., 2001, p. 
631. 
 
The method used to simulate the "Gratton Effect" is very similar, with the important 
exception that the control monitoring unit is not a passive measurement device, but 
provides feedback to the network. Let us examine it: 
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Fig. 8  Taken from: Botvinick et al., 2001, p.640. 
 
"… control is implemented as a spatial attention layer. Unlike the earlier simulation,  
the input to this layer is now adjusted from trial to trial on the basis of the output of 
conflict monitoring, so that high levels of conflict lead to a concentration of input to the 
center attention unit, and low levels of conflict lead to a more even distribution of input 
to the attention layer" (Botvinick et al., 2001, p.639) 
 
The simulation produces results virtually identical to experiments with humans 
(Gratton et al 1992, experiment 1). The critical words here are "adjusted from trial to 
trial" and are easy to overlook. It means that since on a given trial units have no 
memory of the previous one, some device must transport this information. This is done 
by storing a fraction of the activation value of the conflict monitoring unit, and using it 
in the next trial as additional input for the attention units. Another crucial detail, is that 
the activity of the control monitoring unit is not simply given as input to the attention 
units, for this would produce no differentiated attention to the central as compared to 
the lateral letters. The simulation program computes each trial a different distribution of 
input for the attention units, depending on the measured conflict. The higher the 
conflict, the higher the input of the central attention unit, as compared to the left and 
right attention units. In other words, both the conflict and its effect on attention are 
managed by an homunculus in the program, not by any feature of the neural network 
itself. 
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It would have been interesting to run simulations without a conflict monitoring unit, 
and storing the activation value of the input and/or response units, but this was never 
tried (Botvinick, personal communication, 2007 ). No theoretical reason is given why 
only the conflict monitoring unit should have a short-term memory (an internal state) 
but not the others. If all cells had been treated equally, similar results might have been 
produced, and the conflict monitoring could be eliminated from the model. It seems that 
though the dependent variables to be fit are response times, the real interest of 
Botvinick et. al. is Anterior Cingulate Cortex activity.  
 
Similarly, for the Stroop model, another effect could have been tested. In so-called 
negative priming, the stimulus feature that should be ignored in item n-1 becomes the 
target in item n. This sequence effect increases response times in humans, but the 
model could only account for it if the cells had a short-term memory. 
 
2.8.1 Validity of BP-ANN models of cognitive conflict 
 
The cognitive models described above dominate the field of cognitive control 
modelling, and influence research in other fields. Jonathan D. Cohen, one of the authors 
of the models above, writes in his web page: 
 
"Theoretical work. Neural network models are developed as a way of articulating 
precise hypotheses [...]this work has led to novel hypotheses about system level 
function, such as the response of anterior cinglulate[sic] cortex to conflict in 
processing and its influence on adaptive changes in cognitive control. This work has 
also predicted, and led to the discovery of new anatomic relationships, such as 
projections from the anterior cingulate cortex to locus coeruleus." (Cohen, 2008) 
 
It is important that the models are proposed to explain the data from human behavior 
experiments, where reaction times are the dependent variables. The "predictions" 
mentioned in the previous quote do not refer to as-yet undiscovered behavior effects, 
but rather to neuroanatomical or neurophysiological issues. 
 
To make a preliminary criticism, a review of some points follows: 
 
1) BP-ANNs lack any mechanism equivalent to short-time memory, no trial-sequence 
effects may be modelled with them without modification, and in this case the 
modifications were performed on the simulation program, not in the neural network. 
This modifications applied to a single cell, or in a single set of connections, instead of 
becoming a standard feature of all cells. 
 
2) The models are ex-post-facto, they fit known data but do not actually predict. 
 
3) Reaction time is basically constant. Reaction times simulated through fractional 
output, running averages and iterations reflect only the weights of the connections; they 
are an unnecessary complication.  
 
4) Differences in reaction time do not reflect a chaotic or stochastic nature of the 
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networks, they are simply artificially added. 
 
4) We have a model of the "Gratton Effect" that drives research over the anterior 
cingulate cortex, yet the effect may be an artifact and the simulations did not try 
simpler methods, like developing a short-time memory (more about this in the 
following). 
 
More fundamentally, there is no model of cognitive conflict, but models, in plural. 
Different connection structures, weights and special devices, e.g., response time 
measurement, are used depending on the task being simulated. Ideally, since BP-ANNs 
are capable of learning, a single network should be able to learn and perform all the 
tasks. It can be argued that it is possible to do so, but the model would have to be overly 
complex and it would be difficult to clearly understand how it works. On the other 
hand, lack of a general model makes incremental improvement of theory difficult or 
impossible.  
 
To make a comparison with astronomical models, suppose that Kepler had written "my 
model predicts perfectly the position of Mars using an elliptic orbit, and the position of 
Venus using an eccentric circular orbit, but it is inaccurate for all other planets". 
 
It must be noted, that although the many-models situation is unsatisfactory, modellers 
take great pains to make the differences as small as possible, e.g. adding a single cell to 
a previous model. Indeed, one of the difficulties trying to understand a given model, is 
that it has frequently been used in a chain of simulations for different purposes, and 
details of its implementation are buried in a quote from a quote from a quote. 
 
A major problem is the presence of many free parameters. The first model on the chain 
of models examined here, is used by Roberts and Pashler (2000, p.358) as an example 
of this problem:  
 
"1. Cohen, Dunbar and McCLelland (1990) proposed a parallel distributed processing 
model to explain the Stroop effect and related data, The model was meant to embody a 
"continuous" view of automaticity, in contrast to an "all-or-none" view (Cohen et al., 
1990, p. 332). The model contained many adjustable parameters, including number of 
units per module, ratio of training frequency, learning rate, maximum response time, 
initial input weights, indirect pathway strengths, cascade rate, noise, magnitude of 
attentional influence (two parameters), and response-mechanism parameters (three). 
The model was fit to six data sets. Some parameters (e.g., number of units per module) 
were separately adjusted for each data set; other parameters were adjusted on the 
basis one data set and were held constant for the rest. The function relating cycle time 
(model) to average reaction time was always linear, but its slope and intercept varied 
from one data set to the next. [...] they did not try to fit a model based on the all-or-
none view" 
 
In the later models of Botvinick et al., (2001) the authors seem to be aware of this 
problem and claim: "Leaving the models' original parameters intact and using the same 
simple computation to determine conflict across all three studies reduces the number of 
free parameters associated with our simulation to zero" (Botvinick et al., 2001, p.630).  
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This is obviously not true. Not only has the original free parameters problem remained 
unsolved; the final models have even more free parameters, due to the addition of a 
procedure to measure conflict in the output units, the conflict monitoring unit plus its 
connections and weights, and the fraction of activation preserved for the next item (but 
not used for any other unit).  
 
Some of these problems have been noticed in the research generated by the previously 
discussed models (Botvinick et al., (2001). One of the proposed solutions (Verguts and 
Notebaert, 2008) is running the learning algorithm during the trials, using the conflict 
measurement instead of a normal (training-pair generated) error signal. This proposal is 
equivalent to giving the cells a short time memory, implemented as small variations 
from trial to trial in the connections' weights. However, this also would extend the 
known biological implausibility of the back-propagation algorithm to the cells' internal 
states.  
 
A more simple and plausible solution, would be to give every cell an additional 
variable, that stores a running average of the input. While Botvinick et al. (2001) used 
such a device to represent reaction time, instead of resetting the value to zero on every 
trial, the running average could be computed continuously, and represent instead the 
internal state of each cell. In any case, some modification of the neural network models 
is required to implement the changing input/output behavior implicit in the Gratton 
effect and negative priming. This implementation should be part of the network itself, 
not an external device under the control of the simulation program. Otherwise, it is 
questionable to claim that the model as a whole is a neural network.  
 
Despite what may seem to be a hard criticism of these models, BP-ANNs represent an 
improvement in modelling, for various reasons. First, they are formal and their results 
can be compared with empirical data. While the comparison may expose an inaccurate 
or little useful model,  the alternative are non-formal models, where it is difficult to 
make a comparison at all. Informal models tend to be difficult to disprove because of 
their very ambiguity,  some are even unfalsifiable in the sense of Karl Popper. Second, 
including neural features increases the isomorphism, and makes the models more 
plausible. Third, the PDP paradigm is relatively new, maybe the models should be 
judged as work of pioneers. It is unfair to criticize the use of BP-ANNs without 
mentioning that there are still no better alternatives.  
 
To resume, the problem is not that BP-ANNs are a step in the wrong direction, it is that 
they do not go far enough when trying to use neural features to model cognition. So to 
speak, the bridge between cognition and neurobiology has still to reach the river's 
banks.  
 
2.9 The reverse-engineering method 
 
Up to this point, we have discussed the concept of model, some attributes of formal 
models, the criteria used to evaluate a model's usefulness and how this all applies to 
examples of neural network models in the field of cognitive psychology. For the 
analysis of both the original and the models, the black box method has been used. In the 
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following, a method that expands this approach will be presented. 
 

 
 
Fig. 9 "What I cannot create, I do not understand" Richard Feynman's last blackboard 
(undated). Taken form URL: http://duartes.org/gustavo/blog/post/2008/02/20/Richard-
Feynman-Challenger-Disaster-Software-Engineering.aspx 
 
The reverse engineering method is used in computer science and engineering in 
different ways, usually not to create simplified models but rather identical copies of the 
functions of complex systems, like an operating system or an aircraft. 
 
The general idea, is that in order to understand a very complex system, one has to start 
by making a copy as accurate as possible of it. If the black-box method has produced 
boxes whose behavior is still too complex to reproduce in an efficient way, there is no 
choice but to apply the input-output analysis to smaller boxes, and to reproduce the 
internal workings of the subsystems. In the process of copying, insight might be gained. 
In the worst case, once the copy is complete -i.e., behavior of model and original are 
equal- one may try to understand the system by making changes in the components, and 
observing how its behavior is changed.  
 
Reverse-engineering has been adopted by some leading psychologists (Pinker, 2008). 
Another example, closer related to this work, is the research project Blue Brain 
(Markram, 2006). Its stated goal is: "The Blue Brain project is the first comprehensive 
attempt to reverse-engineer the mammalian brain, in order to understand brain 
function and dysfunction through detailed simulations." (Blue Brain web page, URL: 
http://bluebrain.epfl.ch/) To this date, the project is capable of simulating a complete 
cortical column of a mouse, i.e., 10000 neurons including each local synapse, and the 
detailed neurophysiology of neurons down to the molecular level, including ion 
channels. Of course, such an ambitious goal can only be realized with the help of a 
large team of scientists, and using a parallel supercomputer donated by IBM. 
 
In this work, the black-box method is combined with reverse engineering to reach a 
more detailed simulation than BP-ANNs do, in some cases even representing ions. Due 
to resource constrains, the size of the models is restricted to hypothetical systems of a 
maximum 100 cells. To give an idea of this constrain, the smallest multicellular model 
animal used in biology, the 1 mm. nematode worm Caenorhabditis elegans, has 302 
neurons. Reverse engineering is used based on the assumption that neurons are too 
complex to be understood without the possibility of manipulating their subsystems one 
by one, and observing the effect on the whole system's input/output. An additional 
constrain dictated by reverse engineering is to avoid -whenever possible- abstract 
devices (e.g., BP-error measurement) without known counterpart in neurons. 
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3 METHOD 
 
3.1 Description of the BCK neural simulation program 
 
The version of the simulation software used as basis for the first series of simulations, 
was slightly modified from a program originally written as neural simulation 
construction set. This version is provided in the CD-ROM and described here, 
exclusively to allow running models developed later, and should not -by itself- be 
considered part of this work  (after extensive modifications, the resulting program is 
called ION and was used for the next series of simulations).  The program was designed 
to provide as much flexibility as possible to develop cognitive models, without having 
to learn computer programming. By itself, the program alone does not represent a 
specific model, it is a tool used to build models. Similar examples of the construction 
set design, are SNNS (Stuttgart Neural Network Simulator) -in the field of ANNs- and 
Mirek's Cellebration in the field of Cellular Automata. 
 
Many of the basic input-output behavior of real neurons were implemented, as well as 
metabolic processes and synaptic weight modification. One of the main expected uses 
was to model learning at the cellular or synaptic level. Since learning is not a subject 
here, some parts of the software will not be described in the following text (see 
Appendix A).  
 
The program was a modified Cellular Automaton. It would be classified now as a 
Spiking Neural Network.  
 
"Networks of spiking neurons are more powerful than their non-spiking predecessors 
as they can encode temporal information in their signals, but therefore [they] do also 
need [a] different and biologically more plausible [learning] rule." (Vreeken, 2002) 
 
The program has been for years in continuous development, the version described here 
is named BCK08.EXE , and reached this state on Apr 20, 2001. The program has been 
modified and recompiled to produce the graphics of this work, so the dates of the 
various files do not reflect the original ones. 
 
3.1.1 Cells and connections 
 
The BCK08 program simulates the behavior of a maximum of 100 neurons, each with a 
maximum of 40 synapses (connections). The main difference with most ANNs, is that 
each cell has a variable called "State", with 13 possible values. The output is binary, 
state 0 represents a spike, states 1 through 12 produce no output. This is the most 
important variable used to manage a cell's internal state. Besides producing spikes, 
State is used as an index to choose user-defined parameters that modify the input/output 
behavior of the cell. 
 
The communication between cells is realized by a maximum of six simulated 
neurotransmitters (NT). More precisely, NTs represent the effect of neurotransmitters 
docking on neuroreceptors, and the resulting change in the postsynaptic concentration 
of ions. Each NT has a "power", a real number that represents how much it will 
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influence the neural integration. Excitatory NTs have a positive-valued power, 
inhibitory ones a negative value. Independent of the intrinsic NT power, the amounts 
crossing the synapse are controlled by a synaptic weight, as it does in conventional 
neural networks. On a pre-synaptic spike, the NTs are added to storage variables, both 
locally for each individual synapse and globally for the cell as a whole. The NT stores 
represent the cell's electric/osmotic internal state and can be used to implement 
temporal summation (see metabolism parameter HL_PRI, 3.1.3). The individual 
synaptic stores allow to differentiate them according to their recent activity (e.g., for 
learning). The global stores represent the electric state of the axon's hillock, where the 
neural integration is performed. 
 
Another important feature is the cell's energy management. One substance, called ATP 
(in analogy to adenosine triphosphate, the neuron's energy-transport molecule) is stored 
in the variable NT[0] and represents the energy available to the cell to produce spikes. 
The other substance is called LAC (in analogy to lactic acid, which causes fatigue in 
muscles) and stored in variable NT[1]. These variables do not represent 
neurotransmitters despite their name, while the others (NT[2] to NT[7]) do. Though 
probably confusing for the reader, this is done to simplify the internal data structures of 
the program, and improves the simulation speed. The parameters used to produce, 
destroy, and measure the effect on neural integration and other functions, are used in 
exactly the same way for all NT-variables. 
 
To avoid confusion, it is important to note that although the variable State is the most 
important variable to manage the internal state, it does not represents the internal 
state. The mechanism that transports information over previous events to the present, is 
the storage and decay of NTs, which perform a role similar to a running average of the 
input. The variable State is the cell's clock. Only when other variables have different 
values for a given time of the clock (like varying cell's sensitivity to input during the 
refractory period), is the input/output modified. 
 
Users of the program define their own model with the help of two text files. The file 
struc.txt defines the connection structure (topology) of the cells' network, i.e. the 
synapses. The file param.txt is used to set a series of parameters that represent the cells' 
metabolism and input/output behavior, these parameters may be changed also while the 
simulation runs, and stored whenever the changes seem promising.  
 
The program also implements many other features of no relevance for the purposes of 
this work, and are only shortly described here. The neural network represents the brain 
of a "frog", who lives in a chessboard-like "world". The program implements sensor 
systems, like a retina and a "compass" sense. Depending on the position and orientation 
of the frog in its world, input is delivered to the sensor areas. Likewise, through the 
activity of the "motor areas" of the network, the frog is capable of three behaviors, 
turning left, turning right, and jumping to the square in its front. Also implemented, is 
automatic reinforcement or punishment, which are delivered as input to the "pleasure 
center" and the "pain center" of the network. Other features are implemented to allow 
users to develop a NT-based learning algorithm. The general idea, is that if the 
algorithm is successful, the frog will avoid punishment and receive reinforcements; if 
unsuccessful, the frog will simply perform what mathematicians call a random walk. 
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A tutorial and the program itself can be found in the attached CD-ROM. In order not to 
overburden the reader, a brief description of the relevant features follows, it should be 
enough to understand the specific models afterwards. 
 
A single cell is defined by the following set of variables: 
 
//cell's components 
int      *Type,               //cell's default neurotransmitter 
         *State,              //cell's "clock" (0==depolarization) 
         *Axon,               //delay in transmission ?? 
         *LastTir,            //last wavelength 
         *SynNum;             //number of synapses declared 
float    *AuxInp,             //"electrode" for external stimulation 
         (*NtInpP) [MNT],     //total store of primary NTs 
         (*NtInpS) [MNT],     //idem secondary 
         (*SynEq)  [MNT];     //equalizes number of syn. by NT 
int      (*SynType)[MAX_SYN]; //types of declared synapses 
int     *(*Syn)    [MAX_SYN]; //points to neighbor's State or Axon  
float    (*SynWei) [MAX_SYN], //weights of synapses 
         (*SyNtP)  [MAX_SYN], //amount of primary NT 
         (*SyNtS)  [MAX_SYN]; //amount of secondary NT 
 
(int means integer number, float is a real number.  
Taken from the source-code file BCKMAIN.CPP) 
 
Type: the specific NT send to the postsynaptic neighbors. 
 
State: the most important variable of the cell. State 0 represents a spike, and is 
incremented by one afterwards on each following time step, until reaching a maximum 
value of 12. Whenever the integrated input reaches a threshold, the cell is reset to state 
0. This variable is used as index in 1-dimensional arrays (vectors) and 2-dimensional 
arrays (tables) of parameters.  This can be used to implement e.g., the refractory period 
by changing the effective threshold of the cell. 
 
Axon: a simple counter variable to implement axonal delay depending on the cell's 
Type. 
 
LastTir: whenever cells spike, the last state reached is stored in this variable. It so 
represents the wavelength between the last two spikes. It is used to color-code the 
graphic display, and plays an important role when evaluating synchronicity of cell 
groups. 
 
Synnum: how many synapses the cell has, maximum is 40. These are input synapses, 
the maximum of output synapses is 100-1. 
 
AuxInp: input patterns stimulate cells through this variable, it can be described as an 
electrode or input from sensor cells. 
 
NtInpP: a one-dimensional array of values, stores the cell-wide amount of each NT. It 
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is used to integrate all excitatory and inhibitory inputs, a biological analogy would be 
the axon's hillock. 
 
NtInpS: a similar array, stores the "secondary NTs" which are no real NTs, but rather 
postsynaptic ions or secondary messenger molecules. Each time step, a given 
proportion of the normal, "primary" NT is transformed in secondary NT. This is used to 
represent a complex and only partly understood chain of chemical processes in the 
postsynaptic membrane. The purpose is to provide a chemical, longer-time indicator of 
the cells' previous activity history like it has been proposed, e.g., for calcium ions and 
secondary transmitters. It is irrelevant for this work, and will be not further mentioned. 
 
SynEq: a normalization parameter. If specified in the structure file of a given model, 
the amount of each NT is divided by the number of synapses defined for that NT. This 
allows to change the number of synapses without having to adjust the threshold of the 
cell. 
 
Each synapse is defined by the following variable arrays: 
 
SynType: the presynaptic neurotransmitter type, usually. The user may define an 
arbitrary type if desired. This mechanism allows to declare all cells of the same type but 
still use more than one type of NT. It can be used, for example, to implement lateral 
inhibition. It can also represent the different effect of various neuroreceptor ion-
channels that are triggered by the same NT. 
 
Syn: this variable defines which cell is the presynaptic neighbor, and determines the 
connection structure of the network. It is implemented as a pointer to the neighbor's 
axon, and guarantees a constant addressing time (important if ported to parallel 
hardware). 
 
SynWei: the effect of a synapse varies not only depending on the NT/neuroreceptor 
type, but also on its size and the density of NT-gated ion channels. Following a 
convention in neural networks, it is called the "synaptic weight". 
 
SyNtP: the amount of received neurotransmitter/ions for an individual synapse. 
 
SyNtS: the same for the "secondary" NT. 
 
3.1.2 Connection structure 
 
The default human-readable file used to define the connection structure is named 
"STRUC.TXT" and is found in each model's directory. Some of the commands have no 
theoretical relevance, including, e.g., which colors are used to represent 
neurotransmitters or the world. This file is loaded only once at the start of the 
simulation, the structure cannot be changed while the simulation runs. Explained 
bellow, are the most important commands only. 
 
>Type---------   0  99  2 //excitatory 70 
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all cells are declared of having NT-type 2 
 
who-begin who-end how-many type whom-begin whom-end 
loc_nei------   0  99  2 -2 -1  1  2 
 
A regular neighborhood, as a normal cellular automaton would use. In this case, all 
cells have four neighbors of type 2, the pairs immediately adjacent to the cell at both 
sides. This command binds the line of cells in a circle, so cell number 1 would have as 
neighbors 99, 0, 2 and 3. 
 
>rnd_nei------   0  99  8  2    0 99 
>rnd_nei------   0  99  8  3    0 99 
>rnd_nei------   0  99  8  4    0 99 
>rnd_nei------   0  99  8  5    0 99 
>rnd_nei------   0  99  8  6    0 99 
 
This commands produce a series of random neighborhoods. All cells choose 8 
neighbors of the types 2, 3, 4, 5 and 6 each, among all cells. This is done to use 
different NTs with the same stochastic topology. By setting on run time the Power of  
one NT to a desired value and all others to 0, one may compare different NTs without 
having to load a new structure file. 
 
>rnd_nei------   10 19  4  2    0  9 
This command (only an example, not actually used) would produce a one-way 
connection, with cells 0 thru 9 each sending four outputs of type 2,  to cells numbered 
10 to 19. In this way layers may be defined if desired. 
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>World-------- 
.................... 
.................... 
..*-***-***-***-**.. 
..+++-+++-+++-+++-.. 
..-***-***-***-***.. 
..++-+++-+++-+++-+.. 
..*-***-***-***-**.. 
..+++-+++-+++-+++-.. 
..-***-***-***-***.. 
..++-+++-F++-+++-+.. 
..*-***-***-***-**.. 
..+++-+++-+++-+++-.. 
..-***-***-***-***.. 
..++-+++-+++-+++-+.. 
..*-***-***-***-**.. 
..+++-+++-+++-+++-.. 
..-***-***-***-***.. 
..++-+++-+++-+++-+.. 
.................... 
.................... 
 
The world, in which the "Frog" (marked as F) lives. The signs '.', '-', '+' and '*' represent 
sensor input: none, red, green and blue. Originally this was implemented to test 
learning in a maze, but it can be used to apply stimulation to the input zones of 
network. 
 
 
3.1.3 Metabolism parameters 
 
A parameters that define the "metabolism" are contained in a human-readable file 
whose default name is "PARAM.TXT", found like before in each simulation's 
directory. It is read at the simulation start, the parameters can be changed interactively, 
and stored in a new file if desired. Only the parameters relevant for the present work are 
explained bellow. 
 
The program simulates a maximum of eight NeuroTransmitter (NT) substances which 
may have different properties. They are named NT[0] to NT[7]. There are two 
exceptions to this, the first is NT[0] which is not delivered through an axon when the 
presynaptic neighbor spikes. It represents instead the amount of energy produced by the 
cell.  
 
>ATP---------- 
 0.0120 
Each time step, the cell increases its amount of NT[0] according to the value of ATP.   
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>LAC---------- 
 0.1000 
Every time a cell produces a spike, a part of the NT[0] is transformed in NT[1]. This is 
the second substance that is not delivered thru synapses, it can be used to represent 
"fatigue". The amount transformed is determined through the value of LAC. 
 
>STI---------- 
 0.0000 
The force of electrode-like stimulation applied to the input cells. If its value is 0, the 
networkis effectively isolated of the outside world. 
 
>HL_PRI------- 
  999    12    12    12    12    12    12    12  
This is a very important variable array. It defines the half-life time of the energy 
substance, fatigue substance, and NTs 2 to 7. Real NTs increase fast their effect on the 
postsynaptic cell due to diffusion, and decrease slowly afterward as e.g., enzymes break 
them and the rests are recycled. To simulate this, a fraction is subtracted on each time 
step. The HL_PRI variables define how many time steps are needed to left half of the 
original amount, in a way similar to the half-life of radioactive elements. 
 
>NT_TH-------- 
 0.0000  0.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000 
Threshold to fire a spike, depending on the cell's type. Since NT[0] and NT[1] are 
reserved for energy management, no cells can be declared of this type, and need no 
threshold. Setting a value of 0.0 would make cells of a given type spike continuously, 
and signal an error in the structure. 
 
>NT_PO-------- 
  1.0000  0.0000  0.4000  0.0000 -0.4000  0.0000  0.0000  0.5000 
The power, or effect of each NT. Inhibitory NTs are assigned negative values, the same 
may apply to the fatigue substance NT[1]. 
 
>HL_AUX------- 
    1 
Half-life of the stimulation applied to the sensor input cells 
 
>MASTER_DELAY- 
    1 
>DELAY-------- 
    1     1     1     1     1     1     1     1  
The delay between the spike production and its reception by the post-synaptic neighbor 
is a minimum of one time-step. It can be declared for all cell types (master) or 
separately for each type. 
 
>REF_PER_CELL- 
 0.00 0.10 0.20 0.40 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00 
This array contains values indexed by the cell's state. The amount of each NT cell-wide 
store is first multiplied with their corresponding power, added, and finally multiplied 
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with the value of this array. In this case shown, the values increase in a S-shaped curve 
similar to the logistic function used in BP_ANNs. The middle part (0.40, 0.50, 0.60, 
0.70) is linear, however. This illustrates one of the main advantages of using arrays of 
predefined values instead of a equation. Not only would it be very difficult to find a 
non-linear function with sigmoid ends and a flat middle part, computing it would be 
orders of magnitude slower that using a look-up array. This form of ref. per. was 
originally part of the simulation program itself, in newer versions is user-defined and is 
found in the PARAM.TXT file. 
 
>REF_PER------ 
 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.00 
 1.00 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.00 
 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 0.00 0.00 0.10 0.20 0.40 0.80 1.00 0.80 0.40 0.20 0.10 0.00 0.00 
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 
This table shows some of the most important variables to explore the ref. per.. In the X-
axis, it is indexed from 0 to 12 by the cell's own State variable. In the Y-axis, with 0 at 
the top and 7 at the bottom, the NT type is specified. The cross points define the 
fraction of a given NT, at a given State, that the cell will absorb from the input. In this 
example, the top line has a constant value of 1.0, so the energy production (NT[0]) is 
independent of the state. In the second line, fatigue substance (NT[1])is only produced 
during a spike. The third line, shows how the absorption of NT[2] increases during 
time. The fourth line shows decreasing absorption for NT[3]. The next line shows 
constant absorption. The sixth line, shows how NT[5] is only absorbed when both the 
cell and the presynaptic axon are spiking together. Notice the difference with the 
second line, fatigue substance. NT[0] is produced when the cell itself spikes, NT[5] is 
received when the presynaptic cell spikes. 
 
3.1.4 Computing one time step 
 
All calculations needed to compute the state of the cells for the next time step, are 
performed by the function "void compute(void)" in the source file COMPUTE.CPP. 
This is the hearth of the program, and uses most of the computer time while the 
program runs. It has been kept as compact as possible (112 lines) to improve 
performance.  
 
Another main reason for its small size, is debugging (finding and correcting 
programming errors) ease. When writing a program, it is recommended to run step-by-
step every line of code, checking that all variables have the expected values. Normally, 
the expected values are easy to find "by hand" or with a pocket calculator, but with 100 
cells and over 100 variables by cell, this is almost impossible. In theory, if a program is 
extremely short, it is possible to simply read the code and determine if there is a bug 
(error). Another alternative, is to include additional lines of code that check 
automatically for errors, e.g., a 0 value in a divisor. After debugging, the extra lines are 
eliminated, and the program runs faster. Both the "keep it simple" and the debugging 
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code have been used in this case, as well as step-by-step tracing. 
 
The computation (in pseudocode) is performed as follows: 
 
For each cell: 
   For each synapse in this cell: 
      check if the presynaptic axon is spiking, if so, 
      add to the synaptic store an amount of NT 
      determined by the synaptic weight multiplied by 
      the refractory-period-table parameter as indexed 
      by the synapse's NT-type and the cell's state 
 
      add the same amount to the corresponding NT 
      store of the cell 
       
      add to the synapse's secondary NT store the 
      fraction of the primary NT determined by 
      transformation parameter for that NT-type 
 
   add to the cell's NT[0] store the amount determined 
   by ATP multiplied by the refractory-period-table 
   indexed by 0 and the LastTir (wavelength) of the 
   cell 
 
   substract from the cell's NT[0] store the amount 
   determined by the refractory-period-table indexed 
   by 1 and the cell's state 
 
   add to the cell's secondary NT[0] the amount  
   determined by the NT[0] multiplied by the  
   transformation parameter[0] 
 
   add to the cell's NT[1] store the amount determined 
   by LAC multiplied by the refractory-period-table 
   indexed by 1 and the state of the cell 
 
   add to the cell's secondary NT[1] the amount  
   determined by the NT[1] multiplied by the  
   transformation parameter[1] 
 
   the total input for the cell is calculated by 
   adding all the cell's primary and secondary NTs 
   (including NT[0] and NT[1]), each multiplied by  
   its corresponding power parameter 
 
   the total input is multiplied by the cell's 
   refractory period parameter, indexed by the cell's 
   state.  
   If the result is bigger than the cell's 
   NT-type threshold, and the amount of NT[0] is  
   bigger than LAC, the cell's next state is 0, 
   the LastTir is updated, and the next axon value 
   is set to the cell's NT-type delay. 
   If not, the next state is one more than the 
   present state (maximum 12), and the axon is 
   decremented by one (minimum -1) 
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(the state and axon are not updated at once, to  
prevent the already computed cells to be one-step  
before in time than the not yet computed cells. 
The next part of the compute() function concerns  
the learning algorithm, and is skipped here) 
 
   the auxiliary input (electrode) is multiplied 
   by its half-life parameter. 
 
(all half-life parameters are smaller than 1.0, 
this represents decay or catabolic processes) 
 
   all the cell's primary and secondary NT stores 
   are multiplied by their corresponding half-life 
   parameters 
 
(the learning algorithm is skipped here) 
 
   for each synapse in this cell: 
      multiply the synapse's primary and secondary 
      NT stores by their corresponding half-life 
      parameters 
 
for all cells: 
   update the cell's state 
   update the axon's value 
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3.1.5 Sample screen 
 
 

 
Fig. 10 a sample full screen of the simulation program, in graphic-interactive mode 
 
This is how the simulation looks like when run interactively by the user, when changes 
in parameters are desired. The top line is the menu, in this case the NT-ref. per. table is 
active (in green). There are many other menus, some of them not documented (the last 
ones mainly for program debugging). The most important part is the spike display, the 
part in the middle full of colored points. The time runs from left to right, and each 
vertical column shows the spiking cells, cell 0 at the top and cell 99 at the bottom 
(many variables start with 0 instead of 1, this is a convention used in language C). The 
cells are only shown when spiking (State 0), and are color-coded depending on their 
last wavelength. At the right, the red, green and blue-checkered square shows the 
"world", where the "frog" (little white square with eyes close to the middle) lives. The 
color-coding of the spikes' wavelength is the bar directly under the frog's world, 0 is  at 
left (white) and 12 or more is at right (magenta). The red lines at the bottom, show an 
EEG-like track that simply displays how many cells are spiking at a given time-step. 
Finally, in the lower-right corner, an histogram of the actual wavelengths of all spikes 
is shown. The color coding is important when it comes to judge synchronization. In this 
case, the EEG line may suggest some synchronization, and the histogram is unclear, but 
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the spike display shows no discernible pattern at all. Human vision is subjective, but 
frequently better able to perceive patterns and computers are. 

 
3.2 Parallel computers 
 
A fundamental design philosophy of the simulation program, is that is was written 
almost from the beginning to be easy to port to parallel computer hardware. This is 
partly due to the parallel nature of the cellular automata in which the program is based, 
and partly due to the expected growth on computer resources if the simulation should 
use a genetic algorithm.  
 
Most PCs have a single processor using the serial Von Neumann architecture. This is 
the reason for the race to provide more megahertz or gigahertz clock speeds in typical 
computers. Only recently have multiple-processor ("cores") appeared in the market. 
However, since commercial software is written still only for serial computers, efforts to 
provide transparent parallelization at the hardware level result mostly in a waste of 
resources an little improvement in execution time (the same applies to 64-bit hardware, 
because the software is rarely re-compiled for such systems).  
 
The theoretical limit for acceleration of execution time by using multiple processors, is 
given by Amdahl's law. Suppose that one has a program where 80% of the code is 
parallelizable (able to run independently in various processors) and the other 20% can 
only be executed in a serial way. If two processors are used, the run-time is 60% of the 
single-processor time. With four processors is 40%, with eight is 30%, with 16 is 25%, 
with 32 is 22.5% and so on. No matter how many processors are used,  the serial part of 
the program will always take the same 20% of the original time, limits the maximum 
speed and makes adding processors wasteful.  
 
Another problem of parallel software, is how much communication is needed between 
the different processors. Each unit running in its own processor, eventually needs input 
from other units, and needs to send its own output to other units. The communication 
between processing units must be synchronized, so the program usually cannot run 
faster than the slowest unit on each cycle. To complicate matters, the amount of data 
that has to be transferred usually grows much faster than the number of processors, to 
the point where a program spends most of the time transporting data and synchronizing 
units, and not actually computing.  
 
These problems allow the use of parallel hardware only in problems that can be broken 
in many similar units,  that take a similar time to process, and whose units need to 
communicate at best only with a few neighbors close to them. Examples of such 
problems are meteorological forecasts, aerodynamics/hydrodynamics, and some atomic 
particles' simulations.  
 
From the viewpoint of cellular automata,  these problems are not a fundamental 
constrain. Each cell can be run in its own processor due to the inherent parallel nature 
of the system. All cells take a similar time to complete a time step, and this time is 
identical if they have the same number of neighbors. Finally, communication is reduced 
to a single integer number by cell, the state (or, to implement delay, the axon's state). If 
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the states are copied to a memory area that can be simultaneously accessed by many 
processes at the same time (some parallel computers have such special hardware), and 
there are as many processors as cells, the communication time does not grows at all 
with the number of cells. 
 
Admittedly, these advantages were originally not foreseen or intended. Using cellular 
automata as a basis for neural simulation was almost an accident, and at the time 
(1980s) parallel computers were little known outside computer science. However, the 
simulation has been written to optimize the runtime of the procedure that computes the 
cells' next states. This procedure ("void compute(void)") is less than 200 lines long, can 
be fully parallelized, and uses well over 90% of the runtime. It uses an even greater part 
when graphics or the genetic algorithm are not used. The communication needs are 
extremely low: one byte by cell by iteration. All variables that define the cells, an the 
parameters used to define a model, are "global", i.e., accessible program-wide. 
Programming textbooks advice to avoid global variables whenever possible, specially 
in big programs. The simulation has been kept very compact over the years, so breaking 
this rule allows it to run faster, and giving each processor a copy of the parameters 
would greatly diminish the communication needs. 
 
Hopefully, once a genetic algorithm is perfected and delivers promising results on a PC, 
the program can be ported to a parallel computer. Experience shows that using a new 
compiler and new hardware is not a trivial task, and it is difficult to gain access to 
parallel computers due to the heavy demand from other users. Whatever the problems 
may be found, they will probable not require changes of the essential data structures 
and algorithms. 
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4 SIMULATIONS I 
 
4.1 The laboratory method 
 
To explore the effects of various variables on the simulation's behavior, many 
combinations of parameters were run in the simulation program. Typical procedure was 
to change online the value of one of the parameters, reset the simulation and let it run 
again. When many different values of a parameter were to be systematically explored, 
sets of parameter files would be generated and tested in succession. The results were 
evaluated simply by looking at the spike display and the neurotransmitter patterns. This 
is an unsatisfactory, subjective way of searching for, and evaluating results. From the 
methodological point of view, it is subject to the free-parameters problem (2.3). In this 
preliminary phase there was no simple way of defining in advance the expected results, 
so the intention was simply to find "interesting" results. But, how should one try to 
develop an objective way of measuring "interesting" when one of its characteristics is 
that it is unexpected? 
 
Each combination of parameters represents a different model. Defining thousands of 
them in this more or less random way and running them, delivered a preliminary result. 
Unsurprisingly, the simulations are chaotic systems. Big changes in one particular 
parameter frequently produce undistinguishable results, in a different configuration a 
change of the same parameter of less than one percent, produced extreme differences. 
This is a characteristic of chaotic systems, like the three-body-problem in physics. 
There is no general way to know in advance what will happen. 
 
Eventually, some interesting and surprising behaviors were found, but due to the many 
free parameters used, the usefulness of so developed models is methodologically highly 
questionable.  
 
A standard experimental technique used in psychology laboratories may be useful in 
this case. A popular, skeptical view of experimental analysis of behavior, is that 
"people are not rats, and the world is no Skinner box". This is of course true, but 
epistemologically irrelevant. The conditions in a laboratory are artificial and not found 
in real life, their purpose is to keep all possible variables constant, except one. If only 
the independent variable is manipulated, and this changes the dependent variable 
(behavior), a causality relationship has been found. The actual methodological 
criticism, is if this causality is also found in the real world, i.e., the generalization 
problem. If various individuals and animal species are tested, and finally a similar 
experiment with children in a kindergarten is performed, one may conclude that, e.g., 
aversive conditioning is a poor pedagogic practice, even if this was first found out 
giving rats electroshocks in a Skinner box. 
 
In this context, the approach of systematically manipulating a single independent 
variable, and measuring the effects in the dependent variable(s), will be called here the 
"laboratory method". It is used widely in the natural sciences, and it is an integral part 
of the scientific method and the black box method.  
 
Laboratory experiments are usually done before field research, because it is much 
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easier to keep all variables constant than it is in the real world, but even then no perfect 
control can be achieved. Not two rats show identical behavior, since it is impossible to 
use genetically identical rats that have grown-up in identical environments an have the 
same history. This does not apply to computer simulations, in which the researcher has 
absolute control of every variable. With laboratory rats, experiments are performed 
only once with each animal, because they must be experimentally naïve. In a computer 
simulation, the variables can be easily reset to the same starting values (if these are 
random, the pseudo-random number generator is also reset). The simulation is then run 
again with another value of the independent variable, under guaranteed identical 
conditions for everything else. 
 
Precisely this possibility of resetting the system is what makes an apparently trivial, 
standard scientific practice more important than in other contexts. The black box 
method can be impractical when the box has many different states, but if the system 
analysed can be reset to the initial state, the laboratory method can be applied. If the 
sequence of inputs affects the internal state and modifies the input/output, testing all 
possible input sequences after a reset can still provide a useful description of how the 
system functions. This combination of the black box and the laboratory methods, is 
simply another way to describe what a computer programmer frequently does during 
reverse engineering or debugging. 
 
Another methodological aspect, is that the laboratory method is useful to address the 
problem of free parameters. Instead of changing many parameters from model to 
model, the results of changing a single parameter are examined within a single model. 
It may be the case that the other parameters, the ones kept constant, represent a 
completely unrealistic model. The point is that this does not prevent a better 
understanding of the parameter being studied. Combining the laboratory method with 
reverse engineering, has another advantage in this respect. Many of the model's features 
are not free parameters, but rather dictated by empirical evidence. An ANN that 
represents output as average firing rate, is freely choosing a parameter, an arbitrary 
non-linear function. If spikes are used in the model instead, there is a theoretical ground 
for it, namely that this is what neurons actually do. 
 
The laboratory, black-box and reverse engineering methods will be used in the 
following to show how they can be used to evaluate the relevance of features in a 
spiking neural network. Once the method has been chosen, the next step is to find a 
theoretical framework that suggests which behavior should be investigated. 
 
4.2 Animal model 
 
To attain the goal of identifying which are the relevant features that neural-inspired 
cognition models should represent (see 1.3), the features of the most simple forms of 
nervous systems will be examined. Even if such systems are incapable of any relevant 
form of cognition, the neural features sine qua non must be already present, and it is 
plausible to expect that they are also important for cognitive processes. It may be the 
case that the most primitive features play no direct role in cognition, but even in this 
case they will not break the isomorphism between model and original. 
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When considering the most simple form of neural systems, it can be asked how and 
why neural systems evolved in the first place. Examining the fossil record delivers 
some tentative answers to this question. The geologists' consensus over the age of the 
planet earth is around 4.5 billion years, and the earliest fossil record of microbial life 
appears 3.8 billion years ago, maybe even as early as 4 billion years ago. In other 
words, life developed quite fast, and has been a feature of this planet for most of its 
existence. However, the first multicellular life forms appear in the fossil record much 
later, around 700 million years ago in the Vendian period. Most of the oldest preserved 
fossils belong to the so-called Ediacara fauna, but paleontologists have not yet agreed 
whether such organisms are animals, plants or something else. Ediacara organisms are 
extinct since the Cambrium period, so the question whether they had a nervous system 
may never be decided.  
 
The only other group of multicellular organisms that predated the Cambrian period are 
the Cnidaria (Cartwright et al. 2007), a group that today includes coral polyps, 
jellyfishes and sweet-water hydras. This can be interpreted as meaning that the 
development of multicellular forms may be much more difficult than the development 
of life itself, and it is not known which are the critical factors that make such a 
development possible.  
 
One of the requisites for the survival of life as we know it, is the ability of cells to 
maintain a constant internal equilibrium in the concentration of seawater ions,  such as 
calcium, chloride, magnesium and others. Organisms across all branches of the 
phylogenetic tree, from archaea to humans, share a very similar equilibrium of seawater 
ions, at a concentration much lower than today's oceans. Indeed, this is one of the 
reasons proposed by biologists to argue that all life forms developed originally in 
seawater, at a time billions of years ago when the concentration of salts was different 
and lower than today. To maintain the intracellular ionic equilibrium despite a different 
and changing concentration in the environment, cells in all life kingdoms use so-called 
ion channels, specialized molecules in the membrane that control the exchange of ions 
with the exterior. Cells also use energy-driven metabolic mechanisms to overcome 
osmotic pressure, one of the best known is the sodium-potassium pump, which is 
known to have a decisive role in neurons' resting equilibrium.  
 
The first working hypothesis is that at some point in evolution, organisms began to use 
their ion-equilibrium devices to communicate with each other cells, allowing the 
development of multicellular organisms. This is true even in the case of today's 
sponges, which lack a nervous system.  
 
Communication through diffusion of atoms or molecules is very fast at short range, as 
shown by neurotransmitters in the synaptic cleft. However, beyond a given distance 
diffusion is too slow to coordinate widely separated parts of the organism. In humans 
this is illustrated by the relatively slow endocrine system when compared to the fast-
communicating nervous system, despite the acceleration of hormone distribution due to 
our circulatory system.  The second working hypothesis is, that in order to coordinate 
muscles far away from each other, making locomotion possible in big animals, the ion-
communication devices were further developed to produce neurons.  
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The animal model used as target for the simulation is the jellyfish. It was chosen for 
two main reasons. The preservation of soft-bodied organisms as fossils is rare, yet 
probable jellyfish impressions date from the pre-cambrian, making them probably the 
oldest multicellular, non-extinct organisms. Recently, jellyfish fossils have been 
confirmed as dating as early as the Cambrian at least (Cartwright et al, 2007), and 
comb-jellies are probably the oldest animal form, instead of sponges (Dunn et al 2008) . 
The second reason, is that jellyfishes have the most primitive nervous system known, 
the so-called neural-net. The neurons in such systems are undifferentiated, and have no 
distinction between axons and dendrites. They resemble physically the spiny stellate 
neurons in mammalian cortex, showing undifferentiated processes extending in all 
directions, and relaying impulses in all directions. The neurons are spread over the 
whole body, with no concentrations in the form of ganglia or brain. So jellyfishes are 
not only probably the oldest animals with a nervous system, they also have the most 
simple one. There are classes like cubozoa that show more advanced features, like eyes 
and brain-like organs, but it is not surprising that some of them are somewhat more 
complex having had more time to evolve than most animals. 
 
The coordination of far-away muscles is essential in order to let the whole animal 
contract its body at the same time -or in a wave-like fashion beginning at the center- 
otherwise it would not produce the water jet necessary for propulsion. The third 
working hypothesis for this simulation, is that coordination is the main task of the 
neural net, and a major candidate for the reason why a nervous system constitutes an 
evolutionary advantage. 
 
None of the working hypotheses mentioned can be tested directly, this would require 
being witness of the transformation of single-cell organisms into multicellular animals, 
a process that took place millions of years ago. On one hand, this makes computer 
simulation the ideal tool to explore the problem. On the other hand, the purpose of the 
following simulations is not to propose a plausible evolutionary hypothesis, which is 
better left for biologists. Neither is the purpose to produce a cognitive simulation. 
Simulating jellyfish locomotion is simply a case example to address the methodological 
goals and hypotheses as stated in 1.2. Specifically, the proposed methods should help to 
identify relevant neural features that should be implemented in models of cognition, 
and provide insight in the way they function.  
 
The chosen feature for this test, is the refractory period, and how does it influence an 
extremely simple nervous system. The production of spikes consumes energy, and sets 
a limit for the frequency of neurons. The question here, is what happens when the cell's 
own ref. per. influences not only the response to a given input, but also modulates the 
magnitude of the effective input itself. Biologically, this is equivalent to ask if the ref. 
per. could have had another form than today's. Alternatively,  it is conceivable that 
nature could have evolved non-correlated ref. per. and input sensibility. In both cases, 
today's configuration and effects of the ref. per. could be an evolutionary accident, and 
possibly irrelevant for cognitive processes. 
 
4.3 Method 
 
The simulation program -version BCK08- was used, the models were defined using the 
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STRUC.TXT and PARAM.TXT in the same directory. 
 
The connection structure for the cells used in simulations 4.5.1 to 4.5.4 was simply 
random, because this avoids making assumptions about the structure. Each cell has 
eight input synapses of NT[2] type, eight of NT[2], eight of NT[3], and eight of NT[4]. 
Only one type of synapse was active in each simulation, this is decided on run-time by 
setting the NT_PO of a single type to 0.1, and the rest to 0.0. This is done to compare 
the different types without starting the program each time with different model files. 
 
A reasonable assumption about the structure would be that cells should have the highest 
probability of receiving input from their closest neighbors. This assumption was tested 
and delivered the same results. Since the structure file is much more complex, it will be 
ignored in the following. 
 
The independent variable tested in the simulations, was the effect of various forms of 
the function that determines the absorption of NT-gated ions during the ref. per.,  the 
two-dimensional variable array REF_PER.  
 
Before this could be done, values had to be found for all other parameters that would be 
kept constant in the simulations. The half-life of all NTs was set to 12 time-steps, which 
is probably a little longer than in neurons, but increases the temporal summation. The 
only exception to this was the half-life of the energy, NT[0], which was set to infinite 
half-life.  
 
The NT power of NT[0], that represents the available energy,  was set to 0.5. Because 
NT[0] is produced constantly, its amount is reduced only during spikes, and is 
unaffected by the ref. per., it constantly accumulates. Giving it a positive power 
eventually triggers spikes. This is needed because otherwise no input-less cell would 
ever fire. NT[0] simply guarantees in this way an absolute minimum of activity, but the 
other NTs are the ones that determine the actual activity modulation and the interaction 
between cells. In each simulation, only one of the other NTs influences cells,  with an 
excitatory power of 0.1. If values for NT powers are bigger than the one of NT[0], the 
network's activity becomes very unstable, and a sensitive equilibrium using negative-
powered NT is needed. The simultaneous development of two different 
neurotransmitters in jellyfishes, specially if they need a critical equilibrium, seems 
implausible. 
 
The production of NT[0], determined by the ATP variable, was set to 0.012. The LAC 
variable,  that determines of much energy is consumed by a spike, was set to 0.1. LAC 
must be greater than ATP, otherwise the amount of NT[0] will grow without limit and 
result in continuous tetanic spiking (and variable overflow). 
 
The parameter values were chosen to produce a moderate amount of overall activity 
with the control value of the independent variable (4.5.1). All other parameters were set 
to default values and are irrelevant for the simulations. 
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4.5 Results  
 
4.5.1 Constant refractory period 

 

 
 
Fig. 11  Refractory period-independent NT influence (constant value) 
REF_PER[4]: 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
 
This model show the results of constant (state-independent) modulation of the input 
from presynaptic cells through the ref. per. This is a control value of the parameter 
being examined, equivalent to no ref. per. at all. In other words, altough the cell has a 
maximum spike frequency limited by the need to regenerate its energy (one of the 
assumptions of most neural networks, as shown in 2.7.1), this is not a feature that 
causes state-dependant input/output. 
 
It must be remembered that even though this is true for the NTs, the ref. per. still 
applies for the cell as a whole, for the activation function used has an S-shape. Looking 
at the EEG track alone, it appears to be a binding among the cells, though in the spike 
display the waves show a less clear pattern. In fact, some of the apparent 
synchronization is due to an artifact. Since the cells start with all NT values at 0, it 
takes them about the same time to start spiking. When the initial stores of NTs are 
started with random values, and this is repeated with different starting values of the 
random number generator, the synchronization is barely perceptible. 

 64



 
4.5.2 Decreasing refractory period 
 

 

 
Fig. 12 Effect of decreasing values of NT ref. per.  
REF_PER[3]: 1.00 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.00 

 
In this simulation, the ref. per. modulation of presynaptic input produces a maximum 
receptivity for input during a spike and inmediatly afterwards, (i.e., in the absolute 
refractory period). In the following time, the cells become decreasingly receptive, and 
at the end the cell receive effectively no input at all. Following the "laboratory method" 
principle of changing only the independent variable, no other changes have been made. 
The cell's ref. per. still has the normal form, it is only its effect input that has been 
reversed. 
 
When the influence of the NT is greatest just after a spike, and lowest at the end of the 
ref. per., a positive feedback ensues. Once the first cells fire, still inactive cells receive 
input, and they spike earlier than if no input were present. This is normal and can also 
be observed in heart cell in vitro. However, the decreasing effect of NT ref.per. results 
in a runaway  speeding of the spikes, and the cells fire as soon as the cell-wide rep. per. 
allows. Eventually, the cells spend much more energy than they can produce on a given 
time, and some of them stop spiking. The decreased input of their neighbors triggers a 
another positive feedback, this time in the opposite direction. This behavior can be seen 
as a loose analogy to out-of-control fast spiking in tetanus. In this particular case, the 
spiking is so extreme that the EEG track has reached the top of the scale and looks flat, 
but even if it did hat not, the track would show no waves but noise. 
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4.5.3 Coincidence detector 
 
 

 
 
Fig. 13 (a part of Fig. 10) Effect of spike-only influence of NT  
REF_PER[5]: 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
This models shows the case when cells are allowed to receive presynaptic input only 
while spiking themselves.  
 
Neuroscientists are very interested in finding the so-called "coincidence detector", a 
biochemical mechanism which realizes Hebb’s rule. Such a mechanism should detect 
an immediately preceding or simultaneous spike in the presynaptic and postsynaptic 
cells. This is implanted in a straightforward way, by making sensitivity to presynaptic 
spikes only during the receiving cell’s spike. The color-coded wavelength of the cells 
shows more variation then in 4.5.1, but no synchrony. A possible reason for this is 
discussed in 4.5.7. 
 
As usual, no other parameters have been changed. Plotting in two dimensions the 
ref.per. input modulation, can be compared to a function with discrete values on the X-
axis. This is an extreme case of the many that were tested,  a "L-formed" function with 
binary results and a threshold, i.e., full reception of input during spikes and none 
afterwards. The effect of the refractory period on input needs not to be linear functions. 
Also tested were hundreds of other forms, most of them non-linear and non-monotonic 
functions, discussing all of them would be beyond of the scope of this work.
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4.5.4  Increasing refractory period 
 
 

 
 
Fig. 14 Effect of increase of NT influence that parallels the cells ref. per. 
REF_PER[2]: 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.00 

 
In this model, the cell's ref. per. corresponds exactly to its influence on the reception of 
presynaptic input,  both are 0 during a spike and the next time step, and increase 
linearly reaching a maximum eleven time steps after a spike. 
 
This is the most interesting result of the four models. It uses a S-shaped increasing 
absorption of the NT. Here, the highest degree of synchronization can be observed, 
both in the EEG track and the spike display. The remarkable feature is not the 
synchronization of the network as a whole, but rather the fact that the individual cells 
are constantly changing their wavelength, as seen by their heterogeneous color coding. 
How comes that the network achieves this stable behavior as a whole with such "noisy" 
cells? The answer is that the increasing effect of the NT results in a negative feedback. 
Assume, for example, that the mean wavelength is 6. Cells that spike one time step 
before the wave's peak, would receive a less effective NT store, since they would be in 
the absolute refractory period when most other cells spike; in consequence, the will 
tend to spike later than the average next time. For cells spiking later than average, the 
effect is the opposite. They will have a more effective NT store because of NT -effect 
increases with time, and will tend to spike earlier next time. 
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4.5.5 Comb-Jellyfish connections 
 

 
Fig. 15 Increasing ref. per. with local neighborhood. The upper side of the screen (not 
shown in previous figures) shows the amounts of cell-wide NTs (the only active NT is 
the third column from the left). On the center, at left, the connection structure used is 
displayed. In the middle a short part of the spike display is visible. 
 
Instead of a random connection structure used to model bell-shaped jellyfish, the 
connection structure used in this simulation simulates a comb jellyfish, which use lines 
of cilia for propulsion. Comb jellies are known to be the oldest multicellular life forms, 
even older than sponges (Cartwright et al, 2007). 
 
For a cell numbered n, the presynaptic connections come from cells n-7, n-5, n-3, n-2, 
n+2, n+3, n+5 and n+7. The one-dimensional array of cells is bound to form a circle, so 
all cells have the same connection structure irrespective of position. The only active NT 
is colored red in the structure display at the center-left of the figure. 
 
The metabolism parameters are the same as in 4.5.4, only the connection structure has 
been changed. 
In this case, instead of a simultaneous contraction of the whole jellyfish, the simulation 
shows a spreading wave. Notice that although the structure is perfectly symmetrical, the 
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wave runs only in one -random- direction. 
 
4.5.6 Wavelength adjustment 
 
The overall activity of the models is determined by the ATP variable, which increases 
the store of NT[0], representing energy. There is a relationship between energy 
production (ATP), excitatory power of the energy substance (NT_PO[0]), and energy 
consumption (LAC), and the mean spike frequency. This can be examined by setting 
the power of all neurotransmitters to 0. In models 4.5.4 and 4.5.5  (assuming that the 
ATP production is not dependent on the refractory period, and NT[0] is not self-
destroyed, i.e., NT_HL[0] =  infinite), this provides a simple mechanism to regulate the 
speed of jellyfish locomotion. Slightly decreasing the value of ATP, the frequency of 
waves diminishes. If ATP is too small, only sporadic, unsynchronized spikes are 
produced. Conversely, if ATP is bigger the frequency of waves increases, if too big 
each wave is mixed with the last one, much like in Raffone & Wolters’ (2001) paper. 
Therefore, a jellyfish can move slow, fast or stop, by simply changing the overall 
metabolism of muscles and neurons. 
 
4.5.7 Axonal delay 
 
One of the interesting results is that when NT is allowed to influence the postsynaptic 
cell only when both are spiking (Fig. 13), one would expect that synchronization is 
facilitated, since this is a way to implement the Hebb's rule. Instead, the pattern is more 
random even than with constant input. This result was puzzling, so the simulation was 
run step-by-step, examining the individual cells' values to understand how this 
happened.  
 
The first probable explanation was that the input should be received shortly before, and 
not while both pre- and postsynaptic cells spike. But this would be very difficult to 
implement. How should a neuron know when the postsynaptic neuron is about to fire?  
even if it does know, the presynaptic neuron could be in absolute ref. per.  when the 
postsynaptic one spikes, and would receive not input. If it were in the partial ref. per., it 
would receive less input than the other, and it's improbable that neurons can effectively 
synchronize when some of them are receiving more input than others. It could be that 
some stochastic negative feedback mechanism is at play here, like in Fig 14. 
 
After pondering this problem, a second explanation suddenly becomes obvious. If two 
neurons fire at the same time, the spike has an inevitable delay due to the time it takes 
to spread along the axon. Short-axon neurons are not myelinated, long-axon ones are 
(in mammals), so the difference between local and far connections does not depend on 
axon length, or at least not completely. Still, delay is unavoidable, and it's longer than 
the duration of a spike.  
 
Suppose, for example, that two neurons spike at the same time. A minimum delay of 
one ms would make them receive no input at all, since both would find themselves in 
the absolute ref. per. Suppose now that their wavelength is six ms, and their axonal 
delay is five ms. Both would receive the same amount of input, and synchrony would 
be maintained. A simple diagram illustrates this mechanism: 
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Fig. 16  Synchronization due to axon delay. The black lines mark time in ms, cells are 
the colored blocks, and the dots represent the spike traveling along the axon. In the 
upper side, cells have wavelength of 6ms and an axon delay of 5ms. In the lower part, 
wavelength is 10 and delay is 9. 
 
If this analysis is correct, axonal delay is not simply an upper limit for synchronization, 
it may also play a more active role. Simulations were run with the model 4.5.3, using 
all values of delay, but no synchronization resulted. This may be due to the short NT 
sensitivity period of a single time-step. 
 
It is difficult to say which feedback mechanisms could be at work if this were the case. 
 
4.6 Discussion of simulations I 
 
The model fulfills/confirms many of the goals and hypothesis as stated in 1.3.  
 
The third hypothesis claims that it is possible to develop a biologically detailed model 
of a neural process, that needs modest computer resources, by using techniques typical 
of cellular automata. This has been implemented. 
 
The second hypothesis claims that -one of the most basic characteristics of both 
automata and neurons- state-dependant input/output can be implemented using only 
simple neural features, i.e., spikes, ref. per., temporal summation, and others. This has 
been realized, following the reverse engineering method. 
 
With respect to the goal of identifying relevant neural features for models, the 
simulations show how the influence of the refractory period modulates the dependant 
variable, synchronization in the jellyfish. They also show how the various factors 
interact with each other (ATP production determines the rate of locomotion), and helps 
to understand the system as a whole. It is of course questionable if input-modulation 
through the refractory period should be included in models of cognitive conflict, simply 
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because it is a plausible mechanism for jellyfishes. However, the simulations could 
have shown that it is not relevant for jellyfishes, and that would make much less 
probable that it is relevant for cognitive models.  
 
Synchronized cells as representations of cognitive contents was not a confirmed 
hypothesis, if only because it was the dependant and not the independent variable. I. e., 
synchronization shown to be the consequence of the a given form of the ref. per., and 
not the cause of a cognitive effect. Obviously, muscle coordination in a jellyfish cannot 
be seriously considered a cognitive process. Its importance lies in the fact that 
understanding synchronization mechanisms is necessary if they are to be used 
eventually to represent reaction times and their variability in human subjects. Strictly 
speaking, this is not a hypothesis of this work, but one  originally proposed by von der 
Malsburg (1983) and confirmed in neurobiology (2.5.2). Unexpectedly, a stochastic 
synchronization (4.5.4) and its mechanism were found, apparently not previously 
described in neurobiological literature, and certainly unknown to the author. As it will 
be discussed later, this may be due to the statistics normally used to measure 
synchronization. 
 
Evaluating if the free parameters make the models questionable, is not simple. Building 
a model,  a researcher has the choice of using various nonlinear output functions, this 
would be a free parameter. Using actual neural features like refractory-period-
dependant output is not “free”. However, the specific values used in the REF_PER 
table are free parameters. What the simulations show, is that nature had little choice 
when it comes to the type of function used (ref. per. Sensitivity increasing, 4.5.4). Many 
more forms of this function were tested without results, and the reader is invited to use 
the program with his/her own parameters. However, the sheer amount of possibilities 
makes an exhaustive test almost impossible. A conservative judgment would be that the 
methods used in these simulations have reduced the amount of free parameters as 
compared with a conventional BP-ANN. What is needed,  is a method that would 
severely constrain or eliminate arbitrary choices by the researcher (like the specific 
values in REF_PER). This is what will be attempted in the following. 
 
Last, and most important question given the emphasis of this work on methodology, is 
if the black-box, reverse engineering and laboratory method have proven to be useful. 
This is better left for the general discussion.  
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5 SIMULATIONS II 
 
5.1 Genetic algorithms and free parameters 
 
As shown in the previous simulations, using features that are actually present in 
neurons, instead of abstract programming devices, helps to diminish the danger of  
theory-less parameters that make a simulation questionable. One problem when using 
neurobiological facts as basis, is that the literature about them tends to focus on 
qualitative issues. There are exceptions to this, like the Goldman-Hodgkin-Katz 
equation or the Nerst equation, which give a precise numerical description of the 
electric and concentration behavior of ions in neurons. When it comes to a question 
like, e.g., duration and precise voltages of the ref. per., answers are mostly found only 
for specific neuron types, instead of a general description. Neurobiologists tend to 
concentrate on problems like the molecular structure of a neuroreceptor (qualitative), 
not on the average number of them (quantitative) in synapses. This is of course 
legitimate, if the goal is to develop a drug that influences such neuroreceptors, but is 
not very helpful in model making. 
 
This lack of numerical data makes the selection of parameters for models a difficult, 
sometimes trial-and-error procedure. What is needed, is a way to avoid having the need 
to arbitrarily choose the specific values of those parameters. 
 
The solution proposed here, is to use a genetic algorithm that chooses the parameter 
values by itself, without human intervention. This method simulates biological 
evolution, which is the way neural systems were developed. Using recombination (or 
sexual selection) and mutation, it evolves "genomes" (a set of parameter values that 
represent a model) and subjects them to selection. This process will be explained in 
detail later. At this point, it is important to know that the algorithm starts with many 
genomes, their parameter values are chosen at random, recombination and mutation are 
random, and the whole process may be run several times with different random values 
at start. 
 
In their critic of free parameters in cognitive models, Roberts and Pashler (2000) write: 
"A prediction is a statement of what a theory does and does not allow. When a theory 
has adjustable parameters,  a particular fit is only one example of what it allows. To 
know what a theory predicts for a particular measurement, one needs to know all of 
what it allows (what else can be fit) and all of what it does not allow (what it cannot 
fit)." (2000, p. 359). In the case of cognitive models (2.8), the free parameters are the 
different numbers of cells used in the models, their connections, the number of layers, 
etc. Basically, the argument is that if such parameters can be chosen in different ways 
for different models, all possibilities should be tested and most of them would probably 
not fit any empirical data. This means that there is no one model of cognitive conflict,  
but many models whose parameters are arbitrarily chosen ex-post-facto to fit a set of 
data. Such models make no predictions. 
 
Genetic algorithms are ideally suited to solve this problem, because they use all -
plausible- values for each parameter, and the selection procedure eliminates those that 
do not conform to the expected results. It both shows the parameter range that fits the 

 72



theory, and those values that do not. This can be established by running the algorithm a 
number of times with different random values at the beginning. Each set of values 
selected for a given parameter, has a range, average and variability. The "theory" of a 
genetic algorithm is found in the selection procedure, specifically in the "fitness" 
computed for each particular set of parameters values, more about it in 5.11. 
 
Genetic algorithms can deal with large numbers of parameters, yet tend to be very 
computationally intensive. This may seem to be contrary to this work's hypothesis that 
detailed models do not need to place a heavy burden on computer resources. The 
models themselves should demand modest resources, but this does not apply to the 
search for a good model.  
 
The specific goal of the second series of simulations is to develop a prototype program, 
that using a genetic algorithm produces a model of neural synchronization. The 
prototype should help to evaluate the feasibility of following the genetic algorithm 
approach, using much more powerful parallel hardware. The feasibility can be tested in 
a normal desktop computer by reducing the number of parameters to be found to a 
subset of the total. 
 
In order to attain this goal, a number of preliminary tasks needs be accomplished: 
1) Modify the simulation program to run as fast as possible. 
2) Finding a "positive case", i.e., a model that comes close to the expected results, i.e., 
synchronization similar or better than model 4.5.4. Its performance should be matched 
or exceeded by the genetic algorithm. 
3) Selecting a number of parameters and a range of values of these. A portion of the 
positive case parameters' will remain constant, for the rest a range should be chosen, 
including the values of the positive case.  
4) A selection procedure must be chosen. 
5) A fitness measure must be chosen, probably the most critical task.  
 
5.2 From neurotransmitters to ions 
 
Beginnig on 2005, and using as starting point the BCK08 program used for the previous 
simulations, the program was ported to a more powerful compiler, renamed ION and an 
extensive series of modifications were performed. Though the general design 
philosophy based on celular automata and many of the data structures were not 
changed, the simulation program is quite different today, and is included as part of this 
work 
 
The most important single modification of the main algorithm is to simulate ions 
instead of neurotransmitters. The main problem with neurotransmitters is that there are 
too many of them, and new ones keep being discovered. Even worse,  the transmitter 
molecule docks in a postsynaptic neuroreceptor molecule, and it is the receptor that 
decides if the effect is excitatory or inhibitory, and how long it will last. For example, 
dopamine has five types of receptors and variants of these. One family (D1, D5) is 
excitatory and the second family (D2, D3, D4) is inhibitory. For the D4 receptor alone, 
Wikipedia quotes 18 variants (http://en.wikipedia.org/wiki/Dopamine_receptor, 2008). 
Different neuron types and anatomic locations have different dopamine receptors and 
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variants, each with potentially different temporal characteristics.  
 
Reducing the level of analysis, from ion channels to the ions themselves, the problem is 
enormously simplified. Neurotransmitters do not cross the cellular membranes nor 
influence the electrical state of neurons, ions do. Even better, there are only four 
neurotransmission-relevant ions: sodium, potassium, chloride and calcium (maybe 
magnesium should be added to the list, though neurology textbooks usually ignore it). 
The ions have a clear, either excitatory or inhibitory effect due to their electrical charge, 
and this is expressed in integer numbers: Na+, K+, Cl-, Ca++. How a neuron's resting 
potential, action potentials (spikes), temporal integration and many other basic input-
output mechanisms work, is well understood as the effect of ions crossing the 
membrane. It can be calculated using standard formulas like the Goldman and the 
Nernst equation. There are only three variables accounting for neural electrical state: 
how many ion channels (neuroreceptors) are open for every ion type at a given time,  
the electrical equilibrium, and the ion concentration (osmotic pressure).  
 
By following this reductionist approach, some components of cognitive systems are 
modelled as atoms. It seems implausible that going further to subatomic particles will 
be useful, so it's not possible to further reduce the problem. There is of course no 
guarantee that taking the black-box and reverse engineering to such a detailed level will 
produce useful models, but higher levels of analysis have not fared much better. 
 
In the program BCK08 used in the first series of simulations, the neurotransmission 
process is not perfectly represented. In an excitatory postsynaptic potential ("EPSP"), 
after a presynaptic spike, the neurotransmitter diffuses through the synaptic cleft, docks 
on neuroreceptors and opens the channels for ions. The neurotransmitter is then broken 
by enzymes in the cleft. Despite the inactivation of the neurotransmitter, the additional 
Na+ ions that have crossed the membrane would remain there, if it were not for the 
Na/K pump that forces them out at a more or less constant rate. The net result is that Na 
concentration increases fast for around one millisecond,  then returns slower to the 
resting level over some milliseconds. 
 
The program simulates an incoming spike as a pulse that lasts for a single time-step. 
The synaptic store undergoes an exponential decay. A more accurate representation 
would require a counter for the maximum duration of NTs in the cleft, ion channels 
opening and closing in a non-monotonic, nonlinear fashion, and a Na/Ka pump that 
reduces linearly the ions while avoiding negative values. Despite their name, as used, 
NT stores actually represent the effect of neurotransmitters in the form of ions. 
 
5.3 Program modifications 
 
Given the relative success that such a simple neurotransmission implementation 
delivered in the previous simulations, it was kept relatively intact. To make explicit that 
not neurotransmitters are being simulated but rather their effects, the "NT" prefix in 
most variables was changed to IO (Input/Output substance or IOns).  
 
The secondary NTs were originally included to simulate learning. These, along all parts 
of the main algorithm in COMPUTE.C that were related to learning, were eliminated. 
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Besides learning, secondary messengers were also used to simulate other long-term 
effects of spikes (like post-tetanic potentiation or LPT). However, it is still possible to 
define additional synapses for the same presynaptic cell, and define IOs with other time 
characteristics to represent C-AMP, G-proteins or calcium ions, for example. The 
normal IOs and the additional ones are linked by the fact that they are received during 
the spikes of the same presynaptic cell. Even if they are not used for the present 
simulations, the program has not lost this functionality in principle. 
 
Another type of input, "virtual synapses" were added. These can  be used to define 
synapses that receive their input (point to) not to other cell's axons, but to the cell's own 
State variable, or a constant value of zero (an always firing spike). Using virtual 
synapses, the program needs no special lines of code to account for energy or fatigue 
processes. Instead of the dedicated variables ATP, LAC, NT[0] and NT[1], used to 
represent energy management, virtual synapses are used. The IO type is chosen by the 
user, it can be any allowed type (0 to 7), but for consistency in the following the IO[0] 
represents enerby (IO[1] represents fatigue, but is not used in the simulations and its 
power is set to 0).  
 
Each cell has one virtual synapse of IO type 0, pointing to 0.  Its effect on the cell's 
input integration is controlled by its synaptic weight, half-life (HL_IO[0] set  to 150 
time steps), ref. per. (REF_PER[0], inactive) and power (IO_PO[0], set to 1.0). Given 
that the ref. per.  is set to 0, energy should have no effect. This is not the case, because a 
new parameter table has been added to implement constant decay of IOs. It is read from 
the PARAM.TXT file, and in the case of IO[0] it has the values: 
 -0.10  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
These values are added to the IO store of the appropriate type, indexed by the cell's 
State variable, as usual. The first value, corresponding to State 0 is negative, so IO[0] 
will be decremented by 0.1 on each spike. The other states produce an increment of 
0.01. This means that IO[0] will increase if the cell has a wavelength bigger than 10, 
and decrease if smaller than 9. 
 
Virtual synapses are also used to substitute the auxiliary input, which connects the input 
areas of the networkwith the "world". The program includes, as before, a retina which 
in turn receives its input from the world. The virtual synapses are connected to the 
retina, whose values are set to 0 (spike) when input is received. The use of virtual 
synapses means that all input to the cell is received exclusively from synapses, and all 
of them are processed in exactly the same way. This makes the program's code more 
simple and uniform, and gives the user control over parts of the simulation that 
otherwise would have to be rewritten and compiled. The price of this, is that now all 
such features must be provided by the user trough the structure and parameter files. 
 
The ref. per. for the cell as a whole, previously part of the source code, is now read as a 
parameter array from the PARAM.TXT file, under the name >REF_PER_CELL. The 
reason for this, is that neurotransmitters are electrically neutral, their diffusion and 
docking on neureceptors is not affected by the electrical state of the postsynaptic 
membrane. Moreover, the spike itself and the refractory period -both absolute and 
relative- are processes that run always in the same fashion, unaffected by NT sitting 
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outside the membrane. With the possible exception of Calcium,  ions -while each on a 
different way- always do the same. This means that instead of painstakingly testing 
thousands of combinations for the individual IOs in the REF_PER table, all that may be 
needed is the right form for the REF_PER_CELL array. One may compute with 
neurobiological simulation software the values for the effect of the ref. per. over 
individual ions if needed, but the important feature is the response of the cell as a 
whole.  
 
5.3.1 Cell’s structure and main algorithm 
 
The cell's data structure has changed little as a consequence of the modifications: 
 
extern int    *Type,              //cell's default neurotransmiter 
              *State,             //cell's "clock" (0 == depolarization) 
              *Axon,              //delay in transmission of spikes 
              *WaveL,             //last wavelength 
              *WaveL1,            //last but one wavelength 
              *SynNum,            //number of synapses declared 
              *Posflag;           //positive flag, catch negative ion amounts 
extern float  *TotalIo;           //total input*equa.*power*cell ref.per. 
extern float  (*Cell_Io)[MAXIO],  //total cell's store of neurotrans/ions 
              (*SynEq)  [MAXIO];  //equalizes number of syn. by NT/ion 
extern int    (*SynType)[MAX_SYN],//types of declared synapses 
              (*SynPos) [MAX_SYN];//neighbor' number, negative:free_syn 
extern int   *(*Syn)    [MAX_SYN];//points to neighbor's Axon 
extern float  (*SynWei) [MAX_SYN],//weights of synapses 
              (*SyIo)   [MAX_SYN];//Synaptic Input/Output, Neurotrans & Ions 
 
Secondary NTs and AusInp (the last one is now received through virtual synapses) have 
been eliminated. A few new variables have been added. Sustituting LastTir, WaveL and 
WaveL1, (last-but-one) record the wavelength. Posflag signals negative amounts of 
IOs.  Cell_Io[] substitutes NtInpP[], and TotalIo is now used instead of a local 
COMPUTE.C variable, to store the cell-wide input. 
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A description in pseudocode of the streamlined main algorithm: 
 
For each cell: 
     set all cell's IO stores to 0 
     set total input to 0 
     For each synapse in this cell: 
          multiply each synaptic store by its corresponding half-life 
          add/substract the linear decay 
 
          check if the presynaptic axon is spiking, if so, 
          add to the synaptic store an amount of IO 
          determined by the synaptic weight multiplied by 
          the refractory-period-table parameter as indexed 
          by the synapse's IO-type and the cell's state 
 
     add the synapse's IO store to the corresponding IO 
     store of the cell 
 
     add to the cell's total input each cell's IO store multiplied  
     by its corresponding power and equalization parameter.  
 
     if the total input multiplied by the cell's refractory period     
     is bigger than the cell's threshold do: 
          set the next state to 0 
          set the next axon to 0 
          set last-but-one wavelength to the last wavelength’s value 
          set the last wavelength to the state's value 
     if not, do: 
          increment by one the state 
          increment by the axon 
 
For each cell: 
     update the cell's state 
     if state is bigger than 12 do: 
          set state to 12 
          if axon bigger than 24 do: 
                set last-but-one wavelength to 24 
          set wavelength to 12 
          if total input is not negative do: 
               set state and next axon to 0 with a probability of 1% 
     update the cell's axon 
 
The only problem of this algorithm is, paradoxically, that inactive cells (State>12) take 
a little longer to compute than active ones, which must be accounted for in a parallel 
computer. 
 
A connection structure was defined, similar to the one used by Botvinick et al (2001) 
for the Stroop model (2.8). The purpose of using this connection structure, is not to 
produce a model of the Stroop task (although it would make it easier in the future). Its 
purpose is to have a connection structure where positive feedback stimulation within 
groups, lateral inhibition, and synchronization of cells' groups spreading to the next 
layer can be observed and analysed. 
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The main differences are: instead of single units, groups of 8 cells are used. There are 6 
input groups: 
 
cells   0 to  7 color red 
cells   8 to 15 color green 
cells  16 to 23 task: name color 
cells  24 to 31 task: read word 
cells  32 to 39 word "red" 
cells  40 to 47 word "green" 
 
Each group has four excitatory (type 2) synapses with other cells of the same group, 
and four inhibitory (type 4) with the opposite stimulus/task (this is known as lateral 
inhibition). The stimulation is received through virtual synapses to the retina, in turn the 
retina receives input from the world. The pattern in the world allows to use all 
combinations of stimulus (including neutral ones) and tasks. 
 
A middle layer receives input from the input cells. It is divided in 4 groups 
corresponding to "name color red", "name color green", "read word red" and "read 
word green". Each group's cell has two excitatory synapses with the appropriate 
stimulus, two excitatory with the task, two inhibitory ones with the opposite stimulus, 
and finally two inhibitory ones with the opposite task.  
 
Finally, there are two motor (i.e., response) groups of cells, using the same structure of 
the previous layer and receiving input only from that layer. The connections in detail 
can be found in the file STRUC.TXT. All synapses have a weight of 1.0, and all have a 
total of four excitatory inputs and four inhibitory ones. 
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5.3.2 Reference model 
 
After testing only around 50 parameter values combinations, a positive case model was 
found, clearly showing synchronization: 
 
 

 
 

Fig. 17 Reference model to test a genetic algorithm 
 
-The model shows fast synchronization of cell groups.  
-The synchronization is not totally stable for the individual cells.  
-The groups maintain a wave for a while, but within some hundreds of time steps de-
synchronize.  
-The wave pattern spreads from input to hidden layer to output layer, though the last 
one is barely perceptible. 
-The synchronization is remarkable because the ref. per. used is constant (4.5.1), unlike 
the one that produced stable synchronization in the first series of simulations 
-The synchronization is, in a sense, too stable. If the input is changed, the pattern shown 
does not change. Only if the simulation is reset, and the input is changed, other groups 
of cells synchronize. 
 
Though the model is far from perfect, it can be a basis on which to test a genetic 
algorithm, this is the "positive case" which the algorithm should find, as long as the 
way the fitness measurement can grasp its essential properties. 
 

 79



At this point, it is necessary to provide the theory behind genetic algorithms and a 
precise description how they work. 
 
5.4 Combinatorial Explosions 
 
The simulation program was originally written to implement a construction kit, it offers 
maximum flexibility when it comes to choose which are the relevant variables and the 
values of those. This means that there are many more variables than necessary, because 
it was not possible in advance to know what the users may consider relevant. The 
possible values for most variables are many, in the case of real-number variables (like 
half-life values for the effect of ions) they are infinite in theory. Obviously, some way 
must be found to limit the number of combinations that have to be tried. The first task 
is to determine the range, a minimum and maximum value for every variable. Second, 
the resolution of the variable, i.e. how many different values are to be allowed. One 
may choose for a real variable, for example, values starting at the minimum and 
increasing in 10% steps until they reach the maximum; or one may choose increases of 
1% which delivers ten times as many values to be tested. Since combinations of all 
variables are being tested, the problem grows extremely fast when variables are added 
or their resolution increases. Suppose for example, that there are only six variables, 
each with 15 possible values. The number of combinations is 15 to the sixth power, or 
11390625 different combinations. Testing all at a rate of one per second, means more 
than 131 days of computer time. Such extremely fast-growing problems are common in 
computer science, a fact known as "combinatorial explosion". The number of 
combinations in this particular problem is actually so big that it is not possible to 
calculate it in a pocket calculator, and rapidly overflows the maximum size of numbers 
normally used in computers. An actual calculation of the time required for an 
exhaustive search is futile, since it almost surely exceeds the age of the universe. 
 
5.5 Search space and local maxima 
 
The number of different values allowed for each variable is also crucial because 
choosing too few may prevent finding an optimum solution. To use an analogy, 
suppose one were required to find the tallest building in a big city measuring five by 
five kilometers. The problem has only two variables, latitude and longitude. The city is 
explored defining a grid whose squares measure 200 meters on the side, so there are 26 
possible latitudes and as many longitudes. One is allowed to measure the elevation only 
at the crossing points on the grid, so changing one’s measurement position means 
making leaps of 200 meters north, south, east or west. There are 676 such crossing 
points, at which one will find street-level elevations, the top of buildings or even traffic 
lights. Using a grid of 200 meter squares, one may find parks, living quarters and 
probably the financial district, but instead of the tallest building one may end up with 
the position of a neighborhood church. Halving the size of the squares to 100 meters,  
the search space grows to 2601 positions, and one may still miss the tallest building if 
the building has a narrow top floor and one is not lucky. Using a grid of 10 meter 
squares guarantees that one will find the tallest building, but one can still miss the TV 
antenna on the top, and the number of positions to search has grown to more than a 
quarter of a million.  
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Many algorithms get trapped in these so-called local maxima, points in which even 
searching in arbitrarily small distances around the last point will only deliver worse 
solutions that the last one. To follow our analogy, even if one reduces the size of the 
leaps from one’s position, it will not help if one is on top of a factory in an industrial 
area. At best, one will find a bigger factory, but not the Empire State Building.  The 
chances of avoiding local maxima depend to a great degree on the characteristics of the 
search space, and are better if the rate of change of the solution is slow as one searches 
around one’s last position. In our analogy, it means it is easier to find the tallest 
mountain in a mountain range than finding the tallest building in a city. In the last case, 
the elevation may vary from street-level to the highest point within one meter of 
horizontal distance. 
 
What kind of "landscape" can be expected in the search for neural synchronization? 
since the simulation is chaotic,  there may be great flatlands, soft hills, bottomless pits 
and the occasional Eiffel Tower or Matterhorn. All that can be realistically expected is 
to find at least some mountain range, without knowing if it's the Alps or the Himalayas. 
 
5.6 Heuristics 
 
When confronted with a search space to big or too complex, programmers may 
abandon conventional algorithms that guarantee to find the best solution. They develop 
instead what is called a heuristic, the computer version of a –sophisticated- rule of 
thumb. Heuristics do not guarantee an optimum solution, but rather a solution "good 
enough". This is the strategy of choice in so called NP-hard (non-deterministic 
polynomial-time hard) problems. These include problems sometimes apparently trivial, 
like choosing the order of a number of cities to be visited (traveling salesman problem), 
arranging objects in a container using the least space (knapsack problem) or even 
playing Tetris.  
 
Proving that a given problem is actually NP-hard is very difficult, and can be the 
subject for a mathematician's doctoral work. Let us simply assume at this point that the 
subject of this work has such a big solution search space, that it is justified to use a 
heuristic to find it. 
 
5.7 Genetic algorithms 
 
One family of heuristics that has been used for NP-hard problems is called the "genetic 
algorithm" class. These algorithms try to imitate the way nature uses to develop life 
forms adapted to their environments as described by Darwin and modern biology. 
Many of the terms used in genetic algorithms are taken from biology, but should be 
understood in this context as a simplistic analogy. Hopefully the reader will manage not 
to confuse real biological terms with those of artificial neural networks and genetic 
algorithms. 
 
The basic idea is to choose the values ("genes") for a  fixed set variables 
("chromosomes" or "genomes") at random. Each genome represents an individual 
within a large population. Then, each genome is tested against some criteria to find out 
how good it at solving the problem in question ("fitness"). Then, some genomes are 
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chosen ("selection") and some of their genes are changed in a random way 
("mutation"), or various genomes exchange some of the values ("crossover" or 
"recombination", the equivalent in higher life forms is sexual reproduction). Then the 
whole cycle repeats ("generation", not to be confused with a cellular automaton's 
generation), until the best solutions stop improving or a given number of cycles is 
reached.  
 
A step-by-step description: 
 
1. Choose the genes of each genome in the initial population at  random. 
2. Evaluate the fitness of each genome in the population 
3. Repeat the following steps: 
    A) Select best-ranking genomes to reproduce 
    B) Breed new generation through crossover and/or mutation and give birth to 
         offspring. 
    C) Evaluate the individual fitness of the offspring. 
    D) Replace the worst ranked part of population with offspring 
    E) If the criteria for termination is reached, end. If not, go to A 
 
5.8 An hypothetical example 
 
A practical example of a problem where genetic algorithms are used, is the design of 
camera lenses. In this case, the optical engineer would first set the number of genes i.e., 
individual lenses to be used. Each lens may be defined by five genes: the curvatures of 
the forward and backward surfaces, their positions in the optical axis, and the refractive 
index of the glass. In this specific case, constrains are chosen like maximum curvature 
(say +4 to -4 diopters), available types of glass, the position of the back surface must be 
behind the frontal one, and so on.  
 
If the gene with the maximum number of values is curvature, say hundred (not 
necessarily at regular intervals), The engineer should choose a population number that 
makes probable that all possible values are represented several times,  say thousand 
genomes. If the population is too small, the best value for one curvature may land 
together with poor values for the other genes, in a genome with low fitness. The 
selection process would wipe it out from the genetic pool before it has a chance of 
reproducing. 
 
Then the algorithm judges how good each genome is by calculating its spherical 
aberration, pincushion distortion, focal length, etc. and combining all in a single 
number. Once each fitness is calculated and the genomes are sorted by fitness, selection 
begins. The most simple way is truncation selection. From the fittest two thirds of the 
genomes, pairs are chosen at random and the offspring receives at random a gene from 
one of the "parents" (constrains may greatly complicate the selection, our engineer must 
find a way to prevent the third surface being forward of the second one, for example). 
The offspring then substitutes the un-fittest third of the population, their fitness is 
calculated, the genomes are sorted again and the next round of selection begins. 
 
Values for the genes are limited by the engineer's imagination and available computer 

 82



resources, but the advantage of such algorithms is that genes that the engineer would 
have never combined, have a chance because the selection process has no prejudice, it's 
simply random. The competence of our engineer is not the inspiration for a new design, 
but rather in the judicious way of choosing gene values, fitness evaluation procedure, 
and selection method. The results are often enough innovative and counterintuitive 
camera lenses, but this process is rarely mentioned in the press. 
 
5.9 Fitness proportionate selection 
 
The truncation selection described above is the most simple one, but in some cases it 
delivers poor results. The reason is that the fittest genomes have no higher chance of 
reproducing than the ones just above the lower third cut-off. Another reason, is that if 
the lower third of the population is eliminated in each generation, many of the "good 
genes" risk being eliminated from the genetic pool if they are part of overall poor 
genomes. 
 
A more complex method, is the "fitness proportionate selection". It is also known as 
roulette-wheel selection, and this analogy is easy to illustrate. As in truncation,  the 
process begins by sorting the genomes according to their fitness. Now, instead of 
producing a whole new generation of genomes that substitutes the lower third of the 
population, only one new genome is created every time. The fitness of all sorted 
genomes is added, this represents the total of pockets in the roulette. Instead of giving 
all genomes equal chances, each is assigned a number of pockets proportionate to its 
fitness. Even the un-fittest genomes stand a chance of getting selected, their chances are 
simply better (more pockets) if their fitness is higher. The ball (a pseudorandom 
number) rolls and falls in a pocket, the "mother" has been selected. Then the ball rolls 
again, and falls in the "father's" pocket. Of course, the same genome is not allowed to 
be mother and father for the same "baby", if that happens the ball rolls again until it 
chooses another father. Once both parents have been chosen, the baby is created by 
taking at random for every gene the corresponding one from either the mother or the 
father. Once the "baby" genome is tested for fitness, it is compared with the existing 
genomes beginning at the bottom of the ranking. If the baby is worse than the lowest-
fitness genome, it dies and a new baby from newly chosen parents is produced like 
before. Otherwise, the baby is sorted in the proper place, all lower-fitness genomes are 
shifted one place downwards, and the lowest genome dies since there's no place for it in 
a constant population.  
 
The roulette selection improves the efficiency of the sorting algorithm, but the more 
important advantage is that good genes whose genome has a low fitness have a better 
chance of reproduction. 
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5.10 Measuring synchronization 
 
It is difficult to describe with precision which kind of behavior the models should 
produce. There is detailed information available over synchronization of pairs of 
neurons, less data over small groups, and none over whole nervous systems. It is of 
course impossible to place electrodes on more that a very small proportion of all 
neurons of an organism. There is some evidence of a natural neural tendency to 
synchronization. For example, neurons in the primary visual cortex of humans show a 
big-amplitude alpha wave (8-12 Hz) with closed eyes. In the case of a grand mal 
epileptic seizure, most neurons in the cortex spike together at around 3 Hz. It seems 
plausible that brains are chaotic systems that must perform a delicate balance between 
too little and too much synchronization, and this balance is poorly understood. For the 
purposes of the following simulations, it is only expected that active cell groups will 
synchronize at high frequency, while inactive groups will either not synchronize or do 
it at low frequency. At any rate, a synchrony measurement is needed for the simulation. 
 
A genetic algorithm requires a fast, automatic measurement of the expected 
performance of the model. One would expected that standard statistic methods used by 
the scientific community would be easy to find. Yet no conventional statistic measure 
promises practical results when used with a genetic algorithm. 
 
This problem is far from obvious. After all, synchronization between pairs of neurons 
within a group of around hundred, has been measured using a single electrode by 
Ahissar et al. (1992) using cross-correlation. This statistic is frequently used by 
engineers to perform signal analysis, usually with the help of special hardware due to 
the heavy computational resources it requires in real time. Instead of implementing it, 
more simple statistics were tried. 
 
It seems simple enough to calculate a Pearson correlation coefficient between the firing 
time of two cells, even if the spike themselves have the discrete values "silent" and 
"firing". A simulation has the advantage of making accessible more information that is 
available to neurobiologists. Instead of correlating spikes,  one may take the State 
variables of the cells, which should be the same or close, even when they are not firing, 
and delivers values from 0 to 12. Such a correlation is fast to compute, though it 
increases the memory requirements because a record of the states must be kept over a 
minimum of two or more wavelengths. The situation is more complex when groups of 
cells have to be accounted.  With a group of cells, a general synchronization would 
require (n-1)*n Pearson calculations, each using over 24 value pairs. With 100 cells it 
means 9900 coefficients. The time it takes to calculate the synchronization may even be 
longer than running the simulation itself, partly because of heavy floating-point 
arithmetic.  
 
This should not have been be a  serious problem,  but during the debugging of the 
statistic a more fundamental problem was noticed. Some of the cell pairs were showing 
strong correlations, yet they belonged to different sensor areas and were out of phase. 
They should not show any correlation, because they had no synapses among them. 
After an unsuccessful search for a program error,  none was found. Whenever two cells 
had the same firing rate, the phase would produce a statistic artifact. Out-of-phase by 
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half a wavelength produces 0 correlation, the closest they are in phase delay the higher 
the value, reaching 1 if they fire together. The statistic would be influenced by the 
artifact of unrelated cells firing together on the same frequency, after all, that is what 
synchronization looks like. Then, another problem was found. The maximum State is 
limited to 12, so completely inactive cells also show perfect correlation. It was tried 
adding a variable not tied to State of WaveL, that will simply record how many time-
steps had gone since the last spike, even at the cost of eventually overflowing the 
variable and getting negative values. But the problem persisted,  since inactive cells are 
evaluated by Pearson as a perfectly linear correlation, with absolute values differing 
only in the constant no matter how big the values are. Pearson correlation is designed to 
detect two linear equations of the form ax+b and factor out a and b, it ignores 
synchronization altogether. 
 
Using both the State and WaveL variables of the cells was also considered, but Pearson 
and non-parametric correlation measures are designed for two variables, not two pairs 
of variables. Other alternatives like factor analysis can handle many variables, but 
factor analysis relies on a Pearson correlation table anyway, would need a heavy 
programming overhead, and would run orders of magnitude slower than an already 
computer-intensive simulation. 
 
Cross correlation would have a heavier computing burden to carry, and would fail 
partly on the same grounds. There is another important factor to consider. As shown in 
4.5.4, in the case of stochastic synchronization it is possible to have a highly stable 
wave produced by unstable cells. Since the wavelength of individual cells is constantly 
changing, they would show a low cross correlation with the network as a whole. Worse, 
correlation between two cells would be closer to 0, despite the fact that both are part of 
the same wave. So cross correlation is in this case much more affected by noise than it 
would be in other fields, and bias the fitness measurement against stochastic 
synchronization. This may even be the reason why such phenomena are not included in 
basic neural simulation literature. 
 
An interesting piece of anecdotal evidence for this, is that despite decades of neural 
research using electrodes, Singer's team discovery of neural synchronization (Gray et 
al.,1989) was not due to statistical analysis, it was simply heard: "One day the 
experiment did not work very welly, because some electrodes had no signal. Searching 
for an error, we changed the filters, and because the amplifiers were connected to a 
loudspeaker, a sound was heard, something  like a cat purring. [...] We had an 
indicator for a very synchronized signal" (Singer, 2000). It seems that human senses 
are better than statistics when it comes to detecting a signal embedded in noise. 
 
Genetic algorithms do not require, however, a commonly accepted way of defining the 
fitness of an individual, they simply require a fitness function that produces the 
expected results. The fitness function is of no relevance for the model itself, it is simply 
a programming tool. Without a background of standard methods for genetic algorithms 
in cognitive modeling, there is no choice but to develop synchronization-fitness 
measurement from scratch. 
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5.11 Fitness measurement as theory embodiment 
 
Before examining how the fitness can be measured, it is important to describe how the 
theory represented by a model is related to the fitness measure. Similarly to how 
models should fit data, genomes "fit" the fitness measure. This measure is the formal 
description of what is expected, and is not in principle excluded from the free 
parameters criticism. Suppose, for example, that a genetic algorithm would be used to 
develop a conventional BP-ANN, and the measurement were how well the genomes 
(cells, layers, connections, factor for the running average, etc.) agree with the empirical 
data when run. It is possible that the algorithm would deliver, without human 
intervention, a model similar to the ones developed by Botvinick et al. (2001). It would 
still be a questionable model. 
 
Just like any scientific method can be abused, genetic algorithms can be used the wrong 
way. The defense against this, is not asking the algorithm to fit the data directly, but to 
deliver genomes that fit a theory (e.g., conflict detection, attentional adjustment, etc.) 
and afterwards run the resulting model with inputs similar to the humans experiments, 
and see if the data is fitted. In our case, the theory is that cognitive contents are 
represented in brains as groups of synchronizing neurons.  
 
It is too early to know how this methodological strategy will be received by the 
scientific community, but at least it seems more conservative than choosing parameters 
by hand, and the grounds for the parameter selection are made explicit in a formal way. 
 
5.12 The accumulated synchronicity table 
 
The fitness  measurement was implemented using an "accumulated synchronicity 
table", or, shortened, accu-synch table. It is designed to require very little computer 
time, and -in its most simple form- its main data structures are only two, 2-dimensional 
arrays (tables) 13 variables wide on each dimension . After every iteration of the 
compute function, the data table increments one of its variables for each cell, indexed 
by the cell's State and WaveL variables.  
 
For example, suppose that a given cell is in State 3 and its last wavelength was 5. The 
data table will increment its content by 1, in the row 3, column 5. This will be done 
with every cell and every iteration, accumulating in the table this information until a 
fitness needs to be calculated (afterwards the table is erased). When the fitness is 
evaluated, every position in the data table is multiplied by its respective position on the 
second, "fitness" table. The fitness criteria are defined by  writing multiplication values 
on them. 
 
Cells having the same State and the same WaveL spiked the last time together, and at 
the last-but-one time too. The result is, that without synchronization, some positions of 
the table will accumulate bigger numbers than others, but they would do this at random 
on a pattern that can predicted from their mean frequency. If synchronized, some 
positions in the table will grow much faster, forming a column with the top being close 
to their mean wavelength. The column is formed due to the states changing on each 
time-step, and the top is the cut-off point because cells do not reach a higher State than 
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their wavelength. In case the synchronization is stochastic (4.5.4), the columns pattern 
will be fuzzy, but is still different than without synchronization. 
 
Suppose, for example, the table is as follows: 
 
const double FIT2[R_P_SPAN][R_P_SPAN] = { 
//0  1  2  3  4  5  6  7  8  9 10 11 12 Wavelength 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 0 state 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 1 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 2 
{ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 3 
{ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, // 4 
{ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, // 5 
{ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, // 6 
{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, // 7 
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, // 8 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, // 9 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, //10 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, //11 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};//12 
 
If the values of the last State before a Spike and last wavelength are identical for a 
given cells, they will be stored in the data table in the diagonal running from top left to 
top down. The fitness table shown here, is multiplied by the data and accumulated for 
all positions to calculate the fitness measure.  
 
5.13 Simulation procedure 
 
The reference for the  range of values of a given parameter to be selected, are taken 
from 5.3.2. The parameters subjected to the genetic algorithm, were the following: 
 
HL_IO[0]: 15 values, range 12-120 
HL_IO[2]: 15 values, range 2-20 
HL_IO[4]: 15 values, range 2-20 
IO_PO[0]: 15 values, range 0.513158118 to 1.948717100 
IO_PO[2]: 15 values, range 0.263331254 to 1.0 
IO_PO[4]: 15 values, range -0.263331254 to -1.0 
DELAY[2]: 1 to 12 
DELAY[4] 1 to current value of DELAY[2] 
 
The ranges were chosen by placing the reference in the middle of the range, and adding 
seven values bigger and seven smaller. In the case of delay, the reference values were 6 
for excitatory synapses, and 2 for inhibitory ones. The excitatory DELAY[2] was 
chosen at random between 1 and 12. For the inhibitory DELAY[4] the values were 
constrained to be no bigger than the excitatory delay. 
 
Each genome is tested by running it two screens (a screen: 300 time-steps), the fitness 
is measured at the end of each screen, and the values added to give an overall fitness. 
The first screen has input in the cell groups for red and color, the second screen in the 
groups for green and word-reading (5.3.1). 
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There is no termination criteria for the program, it simply runs until the user notices 
little or no improvement in the fitness of new genomes. The program was stopped after 
fitness stops improving, usually after running a couple of hours. During each run, a text 
file was written with the genomes produced, in order to track the evolution of the 
population. Additionally,  the best genome was stored (named PARAM00.TXT) in the 
standard format used by the program. 
 
The rest of the procedure, i.e., which selection method and how the fitness was 
measured, is not the same for each program run. Each run is equivalent to an 
experiment with unpredictable results, and the changes made are equivalent to 
independent variables. This is described separately in the various runs of the algorithm. 
Of the many runs performed, only four will be describes in detail for reasons of space. 
 
5.14 Results 
 
5.14.1 Preliminary runs 
 
The first version of the genetic algorithm used a truncation selection (5.8), a fitness 
evaluation table with the same values (e.g., 2.0) on all positions of the diagonal, and 
zero for the rest of the table. The algorithm converged very rapidly producing a 
population of identical genomes. The resulting behavior of the model shows very short 
wavelength for all cells, without synchronization i.e., uncontrolled tetanic spiking.  
 
Two problems were found. The first one, is that truncation selection eliminates fast 
many genes, namely those that find themselves at the lower third of the fitness ranking. 
To make a biological analogy, the variability in the genetic pool is rapidly reduced, and 
the end population consists exclusively of clones. Of course, recombination of two 
clones produces only another clone, since all genes are identical. In this way, the 
algorithm stops producing better genomes, no matter how long it runs. 
 
This problem was compounded by the use of the same values in the fitness evaluation 
table. Suppose that half of the cells is in perfect synchrony at wavelength three, and the 
other half is synchronized at wavelength nine. The first group’s state reaches the 
diagonal one third of the time-steps, while the second one does so only one ninth of the 
time steps. When the data table is multiplied by the fitness table, it gives a value to the 
fast group three times as big as the one of the slow group. This should be no problem 
because the evaluation is designed to give advantage to short-wavelength 
synchronization. Suppose now,  that none of the cells is actually synchronized, but 
simply have very similar wavelengths. The probability that fast cells appear 
synchronized is three times as high for cells of wavelength three than for cells of 
wavelength nine. This is an artifact that gives an undue high fitness to rapid-spiking 
cells. This artifact is more troublesome when many cells are part of the group being 
evaluated, and the first simulations computed the fitness value for all 100 cells.  
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5.14.2 run 0124 
 
To solve the problems mentioned above, the selection procedure was changed to fitness 
proportional selection (5.9). The second change, is to use values in the diagonal that are 
identical to the State/wavelength index between four and nine, and smaller or zero at 
both ends. The fitness table used: 
 
const double FIT2[R_P_SPAN][R_P_SPAN] = { 
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 0 state 
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 1 
{0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 2 
{0.0,0.0,0.0,1.5,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 3 
{0.0,0.0,0.0,0.0,4.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 4 
{0.0,0.0,0.0,0.0,0.0,5.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 5 
{0.0,0.0,0.0,0.0,0.0,0.0,6.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 6 
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,7.0,0.0,0.0,0.0,0.0,0.0}, // 7 
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,8.0,0.0,0.0,0.0,0.0}, // 8 
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,9.0,0.0,0.0,0.0}, // 9 
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,9.0,0.0,0.0}, //10 
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,9.0,0.0}, //11 
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};//12 
 
This was expected to decrease (or eliminate) the fitness advantage for 
too fast- and too slow-spiking genomes, and give equal chances to the 
middle range. The resulting best genome’s behavior: 
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Fig. 18 run 0124 
 
This run shows almost perfect synchronization for every group of cells, but has two 
deficiencies. First, the wavelength is too close to the maximum (10 time-steps). Second, 
it is insensitive to changes in stimulation. Once synchronized, it remains essentially 
unchanged. The model has landed in a position in the solution space that is simply too 
stable. Examining the genomes themselves, after 3165 new genomes the population 
consists exclusively of clones, so there is no improvement to be expected by running 
longer. 
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5.14.3 run 0128 
 
It seems that most of the improvement in the previous run is due to the fitness 
evaluation, so this was kept unchanged. The selection procedure was inadequate, so for 
this run one selection constrain was added. Every time a pair of parent genomes are 
selected, they are compared. If found to be identical, a new pair is chosen until the 
constrain is fulfilled. It follows that clones are allowed, but they cannot spread fast in 
the population. 
 
 

 
 
Fig 19 run 0128 
 
This result is very close to the reference model (5.3.2), though not identical. The main 
difference, is that though each group is synchronized, half of its cells do it in one phase, 
and the other half does it shifted by a half-wavelength. More important, the 
synchronization spreads from one layer to the next more clearly than in the reference 
model, so the genetic algorithm can be declared a qualified success. 
 
It is difficult to assess if this model is better than the reference, and if so, by how much. 
The reason is that there is no independent way to measure the performance, given that 
the fitness measurement itself is causing the difference.  
 
The genomes are not all identical, but various groups of identical genomes are present. 
The selection procedure still offers room for improvement. 
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5.14.4 run 0130 
 
One of the deficiencies of the reference model, is that the synchronization is not 
sensitive to input. Cells spike together for a while, then synchronization is broken and 
other cell groups take their place. When reset, the input plays a role in deciding which 
groups start to synchronize, but afterwards the semi-stability of the model takes over. 
Up to this point, the fitness evaluation has been applied to the whole system, 
irrespective of input. To explore if the genetic algorithm may improve this situation, 
The fitness function was modified to produce two values. The cells that according to 
input should be synchronized -including the task and response groups that receive no 
input except from previous layers- are added and multiplied by two, the rest is added to 
the total. This gives the “right” cells double weight in the fitness measurement. 
 
 

 
 
Fig 20 run 0130 
 
The model seems promising, but only at the beginning. If the simulation is run longer, 
the appropriate groups’ activity does not last. It may be simply the case that in order to 
generate stable, input-dependant synchronization, the reference model used is 
inadequate. It is also possible that the genetic algorithm has not been allowed to affect 
variables that are indispensable for this task, e.g. HL_IO[7] and IO_PO[7], which 
control the effect of the IO used to deliver input from the world. 
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5.14.5 run 0218 
 
As stated in 5.11, the way fitness is determined can be viewed as the formalization of a 
theory. The fitness table allows some flexibility in this respect, which will be illustrated 
here (only for the sake of a fictional example). When cells get “tired of spiking”, their 
wavelength becomes longer, in the form of a multiple of their previous frequency. 
When this happens, the cells that are still synchronized produce an harmonic resonance 
that eventually lets them fire in synchrony with their group. This can be represented by 
non-zero values in the fitness table beyond the diagonal. Only bigger state positions can 
be used, if not also normal-spiking cells would be affected: 
 
const double FIT2[R_P_SPAN][R_P_SPAN] = { 
//0  1  2  3  4  5  6  7  8  9 10 11 12 Wavelength 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 0 state 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 1 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 2 
{ 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 3 
{ 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0}, // 4 
{ 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0}, // 5 
{ 0, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 0}, // 6 
{ 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0}, // 7 
{ 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0}, // 8 
{ 0, 0, 0, 3, 0, 0, 0, 0, 0, 9, 0, 0, 0}, // 9 
{ 0, 0, 0, 0, 0, 5, 0, 0, 0, 0,10, 0, 0}, //10 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,10, 0}, //11 
{ 0, 0, 0, 3, 4, 0, 6, 0, 0, 0, 0, 0, 0}};//12 
 
Another change has been made, in order to eliminate identical genomes. 
Each time that a new genome is selected, it is compared with all 
existing genomes. If duplicated, one of its genes is chosen at random 
and changed at random, i.e., mutated.  
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Fig. 21 run 0218 
 
The model shows no improvement compared with previous ones, except that the 
genetic variability is greater. By including mutations there is no way to know if running 
the simulation longer will produce better results. It may be the case that more than one 
mutation for each individual is needed to measurably increase the fitness. 
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5.15 Discussion of simulations II 
 
The results of the simulations show that a genetic algorithm can indeed be developed to 
find parameter values of the kind used in the first series of simulations. Finding all of 
them would require porting the program to parallel hardware, yet a standard desktop 
computer is already capable of finding parameters in a much bigger solution space than 
it could be systematically explored by a human (not to speak of the methodological 
problems this would carry). 
 
Several tasks have to be accomplished before such a program can be run: 
 
1) The groups of cells show good synchronization internally, but frequently at a 
different phase. This is inevitable, because many groups have no connections between 
them. One simple way to change this, is to define first synapses at random between all 
groups. This would be a simple implementation of Hommel’s (2008) principle of 
feature integration. 
 
2) The fitness evaluations table should be further analysed. One of the main advantages 
of using parallel hardware would be the possibility of testing many different versions of 
the table. Choosing a table that delivers interesting results is equivalent to choosing 
among theories, and not between free parameters. The table could be removed from the 
program, and read from a file in a similar way as the structure and parameters are. In 
this way, it would even be possible to generate by software many of them, and let the 
final judgment to a human. 
 
One simple idea that may be worth to test, is a synchronization data table that is 
incremented only during spikes, and has as indexes the last wavelength and the last-but-
one. This would extend the synchronization measurement to three spikes instead of 
two.  
 
3) All parameters should be available to the genetic algorithm, though this is only 
possible using much computer resources. The REF_PER table, e.g., was set to constants 
mainly because it has so many values. Using look-up tables makes the simulation fast, 
but choosing the table’s values would require additional constrains that may prove 
difficult to realize. In the case of the REF_PER table, one such constrain could be that 
the values from one point of the re. per. to the next can only change by a given amount, 
so simply mixing values from different point of the ref. per. would not be possible. One 
possible solution for this, would be to use pre-written series of values, and letting the 
selection procedure choose among them. 
 
4) Criteria to automatically terminate a given run are necessary, a task relatively easy to 
implement. 
 
5) Finally, if the genetic algorithm begins to generate too many unfit new genomes, or 
if these are too similar to the already existent, the mutation rate can be increased. There 
is always the possibility that the algorithm becomes trapped in a local maximum, the 
equivalent of an evolutionary dead-end.  
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6 SIMULATIONS III 
 
After the development of a genetic algorithm, it is possible to conceive a cycle of 
development that includes as steps the various methods. As done in Simulations I, 
possibly relevant features can be identified. The models used the reverse engineering 
method to reduce the number of free parameters, and the laboratory method to identify 
the effect of the ref. per. as a possibly relevant feature. Still, many free parameters 
remained. In simulations II, the genetic algorithm was used to eliminate free 
parameters. Now, one of the interesting models of the first series (4.5.4) can be used as 
"positive case" and run through the genetic algorithm. The interesting features will -
hopefully- be found again, this time with the rest of the parameters not being free ones.  
 
It may be the case that the previously free parameters are found again, and the genetic 
variability is low. This would mean that by a extraordinary coincidence, all the right 
values of parameters chosen by hand were close to optimal, and the theory is restricted 
to a very specific and narrow range of parameters. Much more probable, is the case of 
other parameters are found, and/or the genetic variability is high. Statistics can be 
performed to identify the most common values of a given parameter, or factor analysis 
may be used to find specific combinations that tend to appear together. Finally, specific 
models that either unusual (that is, unlike the majority of the population) or typical 
representatives of a group of similar models, may be subjected to the laboratory 
method. Of special interest are variables that are parameter values that are very frequent 
across the population, these may be good candidates for relevant features.  
 
The original "interesting" feature (in our case the form of the ref. per.) should be tested 
again by the laboratory method, to add (or subtract) credibility to the claim of 
relevance. The same should be done with other features, as suggested by the statistics. 
Once this is done, one cycle of development had been completed. Hopefully, new 
interesting features have been identified, and probably irrelevant ones may be discarded 
making place for other biological features to be included, and the next iteration may 
begin.  
 
The next series of simulations should try to come close to completing one cycle of 
development, by using the genetic algorithm with the model in 4.5.4 as positive case 
 
The first step, is translating the old STRUC.TXT and PARAM.TXT data files to the 
new format required by the many changes in the simulation program. The files are 
named STRSTOSY.TXT AND PARSTOSY.TXT. The simulation produced the 
following result: 
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Fig. 22. model 4.5.4 adapted to run under the ION simulation program. The 
accumulated synchronicity table (5.12) is shown approximately in the middle the screen 
above the spike display. To the right of it is the new synchronicity table, showing only 
spiking cells indexed by the present wavelength and the previous wavelength, as 
proposed 5.15 (point 2, second paragraph). 
 
The model behaves in a virtually identical way to the model presented in 4.5.4. The 
individual spikes are different mainly because the compiler used for this simulation is a 
different one, and are not due to the many changes in the structure of the simulation 
program itself (technically: a different pseudo-random number generator was used, as 
well as floating-point arithmetic of higher precision). The model is still deterministic, 
resetting the simulation and running again produces an identical pattern of spikes.  
 
6.1 changes on the genetic algorithm 
 
Beside some minor changes in the graphics, all the changes were performed in the 
genetic algorithm on source file GENE.C. In model 4.5.4 there are no distinct areas of 
cell, but rather homogeneous random connections. The fitness measurement was 
adapted to this change as compared with model 2.18. Two parameters have been added 
to the solution space, the ref. per. (the independent variable in Simulations I) and cell-
wide ref. per. In this way, both the output for a given input, and the influence of the ref. 
per. in the receptivity to input itself, can interact with each other. This eliminates the 
cell's ref. per. as free parameter. The form of the function used for the cell's ref. per. has 
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as constrain that the values used have average 0.5, and the function is linear, the only 
difference being the rate at which the values increase or decrease. If the rate is too high 
(or low), non-linear flat sections appear at both extremes. A very similar arrangement 
was used the ref. per. input modulation. See appendix A.7, constant tables 
REF_PER_CELL_GEN and REF_PER_GEN for details.  
 
6.2 run 0909 
 
The fitness evaluation was simply adapted to results of accumulated synchronicity of 
the model 4.5.4 (as shown in the previous figure):  
 
>RATE_SYNCH--- 
  0  0  0  0  0  0  0  0  0  0  0  0  0 
  0  0  0  0  0  0  0  0  0  0  0  0  0 
  0  0  0  0  0  0  9  0  0  0  0  0  0 
  0  0  0  0  0  9  9  9  0  0  0  0  0 
  0  0  0  0  0  0  9  9  9  0  0  0  0 
  0  0  0  0  0  0  0  9  9  9  0  0  0 
  0  0  0  0  0  0  0  0  9  9  9  0  0 
  0  0  0  0  0  0  0  0  0  9  0  0  0 
  0  0  0  0  0  0  0  0  0  0  0  0  0 
  0  0  0  0  0  0  0  0  0  0  0  0  0 
  0  0  0  0  0  0  0  0  0  0  0  0  0 
  0  0  0  0  0  0  0  0  0  0  0  0  0 
  -1 0  0  0  0  0  0  0  0  0  0  0  0 
 
A small difference with previous forms of fitness evaluation is the use of a negative 
value in the lower right corner of the fitness table. The intention is to diminish the 
measured fitness of models whose cells fire continuously.  
 
A final, relatively important change was to limit the value of the synchronicity data to a 
maximum of 100. The reason for this, is to force the models to distribute their spikes 
over the whole expected area (the digits '9' on the fitness table). If more than 100 spikes 
are concentrated in given position, the excess would be wasted for the fitness 
measurement. 

 98



 
Running the program produced the following results:  
 

 
Fig. 23 Run 0909  
 
This result is surprising for two reasons. First, stochastic synchronization is achieved 
(and remains stable in the form shown at the right of the screen) but on each wave the 
cells spike twice, producing the green/red columns shown. If it were not for this short-
long-short-long wavelength pattern, the model would have shown better stochastic 
synchronization than the positive case used.  
 
The second surprise was found while searching for an error in the program that could 
have produced this result. The limit of a maximum 100 spikes on a position of the table 
had been wrongly implemented. Instead of converting values greater than 100 to 100, 
the operation used was modulo 100 (taking as result the rest of an integer division). So 
values of e. g., 85, 185, 285 ... 1085, etc were all converted to 85. Despite this defective 
implementation, the genetic algorithm achieved the expected stochastic 
synchronization. This shows that despite the difficulties that this method carries, it is 
actually able to  find solutions in parameters combinations that a researcher (the author 
in this case) could not have thought about. 
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6.3 run 0923 
 
Finally, the error was corrected, and the limit was taken out of the program and read as 
a model parameter from the data file.  A new fitness evaluation was tested:  
 
>RATE_SYNCH--- 
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 -1 -1 -1 -1 -1  6  6  7  8  9 -1 -1 -1 
 -1 -1 -1 -1 -1  6 -1 -1 -1  8 -1 -1 -1 
 -1 -1 -1 -1 -1  5 -1 -1 -1  7 -1 -1 -1 
 -1 -1 -1 -1 -1  5 -1 -1 -1  7 -1 -1 -1 
 -1 -1 -1 -1 -1  5  5  5  6  6 -1 -1 -1 
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
   
>RATESYNCHCAP- 
 370 
 
The theory expressed in this fitness evaluation, is that all activity outside the expected 
one should decrease the fitness (-1 values). The wanted wavelengths 
should oscillate between 5 and 9. The values used are adjusted in inverse proportion to 
the expected spikes at a given frequency (5 in diagonal 5, 9 in diagonal 9). Finally, the 
cells should oscillate between wavelengths 5 and 9 but do so without having two 
consecutive equal wavelengths (the rest of the positive values forming a square. The 
limit for the spikes was set rather arbitrarily to 270, and being a single value it cannot 
adjust for expected spikes at a given position of the table (it should be in future 
versions). The results: 
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Fig. 24 run 0923 
 
This model synchronizes fast, the individual cells have no stable frequency, and the 
wave is much less spread than 4.5.4., it can be considered an improvement over the 
positive case model used as reference. 
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7 GENERAL DISCUSSION 
 
The use of formal models of cognition is certainly an improvement over non-formal 
models. The main reason is that the theory implicit in the model, is completely 
unambiguous and predictions are precise. As a consequence, the results of models are 
quantitative, which makes it possible to compare them with empirical data.  
 
The use of neural networks as formal models, improves the plausibility because it uses 
features known to be present in neural systems, like cells and connections with variable 
weight. However, in the field of cognitive conflict, BP-ANNs are frequently developed 
to model a single effect, and the models differ from each other (free parameters). A 
comprehensive theory of cognitive conflict -and the control mechanisms than 
counteract it- should be able to model many of these effects at the same time. 
 
This work proposes four hypotheses (1.1) concerning this problem: 
1) ANN cells should have a internal state to account for sequence and timing effect. 
2) The state-dependant input/output can be implemented using known neural features. 
3) It is possible to develop such models efficiently using principles from cellular 
automata. 
4) Cognitive contents can be represented as synchronized cells. 
 
This work also proposes four methods to develop better models: 
A) The black box method 
B) The reverse engineering method 
C) Genetic algorithms 
D) The laboratory method 
 
That hypothesis 1 is probably true, is shown -without simulations- by using the black 
box method in 2.1. In short form, the argument claims that sequence and timing must 
be represented in models, because they are crucial in classical and operant conditioning, 
as well as in the Gratton effect and negative priming. To put it in everyday words: if a 
neural network does not recall what happened before, neither the order of events nor 
their timing can affect the network's behavior. It follows that additionally to long term 
memory (connections weights) cells need a shorter-term memory, i. e., an internal state 
that influences their input/output.  
 
Using reverse engineering, the internal state (hypothesis 2) is implemented in 
Simulations I in the form of synaptic-level storage and decay of input. State-dependant 
input/output is implemented by using the same device and adding refractory-period 
dependant input. The laboratory method is used to suggest that the ref. per. is probably 
one of the neural features relevant for models. 
 
The development of a simulation fast enough to be used in a genetic algorithm 
(Simulations II and III) suggests that cellular automata (hypothesis 3) are a promising 
concept for neural network models. Genetic algorithms, together with reverse 
engineering, are also useful to reduce or eliminate the number of free parameters.  
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Hypothesis 4 (synchronization) was not proven. There is however extensive 
neurobiological evidence that suggests it is correct, this makes it possible to treat it 
more like an assumption. Simulations I (4.5.4) suggest a feedback mechanism that 
produces stochastic synchronization, and 5.10 why this type of mechanism is difficult 
to detect with standard statistical methods. Whether previously not described, not 
present in nature, or simply unknown to the author, the discovery of this 
synchronization suggest that the methods presented here may be useful in neural 
modeling.  
 
Finally, the attempt to show how the proposed methods can reinforce each other was 
performed in Simulations III. Although only partially successful, the interaction of such 
methods with more traditional ones may be a promising scientific strategy for the 
future.  
 
Altogether, this work is an attempt to go beyond deploring the unsatisfactory state of 
cognitive modeling. It tries to pinpoint specific problems of models, in which directions 
to search for solutions, and non-traditional or overlooked methods to find those 
solutions. To what measure this attempt has been fruitful, is maybe better left to the 
ultimate scientific tool (to paraphrase Oscar Wilde), the method that dares not speak its 
name: intuition. 
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// ion.h first line 
 
#include <stdio.h> //FILE 
/* 
const int 
   //general caracteristics of cellular automata 
   N_C      = 100, //total Number of Cells 
   MAX_SYN  =  40, //MAXimum number of SYNapses by cell, must be < N_C 
   MIO      =   8, //Maximum number of neurotransmiter/Ions types 
   R_P_SPAN =  13, //"normal" span of Refractory Period 
   //other values used in compile time 
   WO_SZ_X  =  20, //size of world, including two-row margins (in squares) 
   WO_SZ_Y  =  20, 
   WS       =   8, //side-size in pixels of World's squares 
   WO_PO_X  = 504, //position of world map, upper-left corner (in pixels) 
   WO_PO_Y  = 176, //..also vertical margin for plot-depo() 
   WAVES    =   4, //how many "EEG" of groups of cells are to be ploted 
   RNDSZ    =   7; //rnd vector's size 
 
due to a bug in gpp, previously declared constants cannot be used 
to define the size of arrays, have to use #define 
*/ 
 
#define N_C      100 
#define MAX_SYN   40 
#define MIO        8 
#define R_P_SPAN  13 
#define WO_SZ_X   20 
#define WO_SZ_Y   20 
#define WS         8 
#define SHOW_GEN 250 
#define WAVES      4 
#define AREAS     12 
#define RNDSZ      7 
 
#define MAXRBOWCOLORS 16 
 
//#define NDEBUG 
#include <assert.h> 
 
extern const int FX,FY;//font size in pixels, hires.c 
 
typedef unsigned char byte; 
 
//vars of main() 
extern const int ON; //used for virtual_syn with constant input 
                     //presynaptic axon is firing if == 0 
 
extern int    *Type,              //cell's default neurotransmiter 
              *State,             //cell's "clock" (0 == depolarization) 
              *Axon,              //delay in transmission of spikes 
              *WaveL,             //last wavelength 
              *SynNum,            //number of synapses declared 
              *Posflag;           //positive flag, catch negative ion amounts 
extern float  *TotalIo;           //total input*equa.*power*cell ref.per. 
extern float  (*Cell_Io)[MIO],    //total cell's store of neurotrans/ions 
              (*SynEq)  [MIO];    //equalizes number of syn. by NT/ion 
extern int    (*SynType)[MAX_SYN],//types of declared synapses 
              (*SynPos) [MAX_SYN];//neighbor' number, negative:free_syn 
extern int   *(*Syn)    [MAX_SYN];//points to neighbor's Axon 
extern float  (*SynWei) [MAX_SYN],//weights of synapses 
              (*SyIo)   [MAX_SYN];//Synaptic Input/Output, Neurotrans & Ions 
 
//global parameter pseudo-constants user-defined 
extern int 

 109



   EegB[WAVES],   //"electroencephalograph" channels 
   EegE[WAVES], 
   AREA_B[AREAS], //area's begin (first cell) 
   AREA_E[AREAS]; //area's end   (last cell) 
extern char AREA_NAME[AREAS][20]; 
 
extern int RANGE[4][MIO];//x-axis nt/io type 
                         //line[0][io-type] IO top of range on noisy reset(1) 
                         //line[1][io-type]    bottom 
                         //line[2][io-type] WEIGHT top 
                         //line[3][io-type]        bottom 
 
extern int 
   HL_IOG [MIO],  //Half-Life  of neurotransmitter/ion (generations) 
   MASTER_DELAY,  //default delay, value 0 means fire in _next_ generation 
   DELAY  [MIO],  //cell's delay by type 
   Spontaneous,   //to make cells fire without input 
   EQUA;//?? 
    
extern double 
   HL_IO [MIO],   //Half-Life of NTs & ions (factor) 
   NT_TH [MIO],   //NT ThresHold; 
   NT_PO [MIO];   //NT POwer 
 
extern double 
   MOTOR_TH,                //MOTOR ThresHold 
   FIXDECAY[MIO][R_P_SPAN], //add xor substract to IO stores 
                            //depending on type&ref.per. 
   REF_PER [MIO][R_P_SPAN], //REFractory PERiod (ion absorption) 
   REF_PER_CELL[R_P_SPAN];  //REFractory PERiod (CELL sensitivity) 
 
extern char SEED[81],       //random number generator's seed 
            STRUCFIL[81],   //structure file's name 
            PARAMFIL[81];   //parameter file's name 
 
extern int  RBOW[MAXRBOWCOLORS], //rainbow, defined in start_graphics() 
            NtCol[MIO],          //colors of NT/ions 
            WO_COL[8];           //world colors 
 
//program's internal global variables 
extern int  RndVec[RNDSZ], //random number generator 
            RndIdx;        //gerator's index 
             
extern byte NeiSta[N_C][N_C];        //Neighbor's Status 
extern int World[WO_SZ_Y][WO_SZ_X]; //defined in set-World-up 
extern int WO_PO_X,WO_PO_Y; 
             
extern double Left,  //runnig average of activity in motor zone 
              Right, //idem 
              Move;  //idem 
 
//sensor input uses virtual syns to these vars 0:firing else:inactive               
extern int North, 
           East, 
           South, 
           West; 
                       //frog's retina 
extern int Pix[9][4];  //pix[0][ ] is dummy, always black 
                       //pix[ ][0] world values 
                       //ACHTUNG: 0:firing   else:inactive 
                       // first dimension map (looking up/north): 
                       //                      1 2 3 
                       //                      4 5 6 
                       //                      7(f)8 
                       //2nd dimension: R,G,B. 
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extern long   Gen;       //counter of automata's generations 
 
extern int    Frog_po_x, //default frog's position (X axis) 
              Frog_po_y, //idem Y axis 
              TimePos,   //X-axis position for depo & EEG 
              Interactive_mode,  //1:interactive 0:batch 
              SEE;       //show hires on batch 
               
extern char   Direc,     //direction: 'n'orth, 'e'ast, 's'outh, 'w'est 
              DispUp;    //display up (paraMs Bars For...) 
 
//************** global to gene.c, used by hires.c ******************* 
 
extern long His2D[R_P_SPAN][R_P_SPAN]; 
 
extern long His3D[AREAS][R_P_SPAN][R_P_SPAN]; 
 
extern long Accumulated; 
 
// *** functions ***************************************************** 
 
// *** main.c *** 
 
void alarm(char *msg,char *str_fil, unsigned uLine) ; 
 
int rnd(int range) ; 
 
void reset_generator(void) ; 
 
double half_life(int generations) ; 
 
void hl_factors(void) ; 
 
void setEqu(void) ; 
 
void retina(void) ; 
 
void compass(void) ; 
 
char motor_navigation(char reset) ; 
 
int cold_start(void) ; 
 
//void batch(int see) ; moved to gene.c 
 
void main_command_line_params(int argc,char *argv[]) ; 
 
// *** compute.c *** 
int check_cells(void) ; 
 
void compute(void) ; 
 
// *** hires.c *** 
 
int start_graphics(void) ; 
 
void plot_n(int x, int y, int size, int color) ; 
 
void plot_4(int x, int y, int color) ; 
 
void plot_depo(void) ; 
 
void plot_waves(void) ; 
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void plot_nei(int what) ; 
 
void plot_wei(void) ; 
 
void plot_frog(void) ; 
 
void plot_World(void) ; 
 
void show_synchro_table(void) ; //uses His2D from gene.c 
 
void synchro_stats(void) ; //shows instantaneous, not accumulated 
 
void histogram(int full) ; 
 
void show_LMRG(void) ; 
 
void bars(void) ; 
 
void restore_text_mode(void) ; 
 
// *** files.c *** 
 
void set_World_up(FILE *dta_fil, int load_fil) ; 
 
void reset(int noise) ; 
 
void read_nei(int reads,int readed,int syntype) ; 
 
int wrap(int first, int last, int pos) ; 
 
void loc_nei(int first, int last, int syn_typ, 
             int n0, int n1, int n2, int n3) ; 
 
void rnd_nei(int z_b, int z_e, int s_q, int s_t, int n_b, int n_e) ; 
 
void virtual_syn(int first, int last, int syn_typ, float weight, char *target) ; 
 
int load_struc_file(char *struc_file_name) ; 
 
int load_param_file(char *params_file_name) ; 
 
int save_params(int interactive, char *genename) ; 
 
// *** menus.c *** 
 
void clean_line(int first, int last) ; 
 
void menu_line_tx(void) ; 
 
void menu_line_gr(void) ; 
 
double ask_double(char message[],double min,double max,double old) ; 
 
int ask_int(char message[],int min,int max,int old) ; 
 
int change_cell() ; 
 
void show_syn(int cell, int begin, int tempi) ; 
 
void show_cell(int cell) ; 
 
void def_menu_gr(void) ; 
 
void show_table(int x,int y) ; 
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void show_table_gr(int x,int y) ; 
 
void display_up(void) ; 
 
void change_params(void) ; 
 
void change_ref_per(void) ; 
 
void warm_reset(int noise) ; 
 
long menu_gr(void) ; 
 
// gene.c 
 
char * sex(int woman, int man) ; 
 
void roulette_selection(long count) ; 
 
void bubble_sort(void) ; 
 
void accu_synch(int mode) ; 
 
double rate_accu_synch(int zonesrow) ; 
 
double two_screens(void) ; 
 
void set_params(int which) ; 
 
void seed_orga(int which, 
               int hl_iog0, int hl_iog2, int hl_iog4, 
               int nt_po0, int nt_po2, int nt_po4, 
               int delay2, int delay4, 
               double fitness) ; 
 
void seed_popu(void) ; 
 
//void dump_organism(struct organism which_orga, int orga_num) ; 
 
void batch(void) ; 
 
 
//******************* global constants & macros ***************** 
 
#define TEST 
 
#define F __FILE__ 
 
#define L __LINE__ 
 
#ifdef TEST 
 
   #define ASSE(f,str)                \ 
      if (f)                          \ 
         NULL;                        \ 
      else                            \ 
         alarm(str,__FILE__,__LINE__) 
   #else 
 
      #define ASSE(f,str) NULL 
 
#endif 
 
//good-old EGA colors 
#define BLACK         0 
#define BLUE          1 

 113



#define GREEN         2 
#define CYAN          3 
#define RED           4 
#define MAGENTA       5 
#define BROWN         6 
#define LIGHTGRAY     7 
#define DARKGRAY      8 
#define LIGHTBLUE     9 
#define LIGHTGREEN   10 
#define LIGHTCYAN    11 
#define LIGHTRED     12 
#define LIGHTMAGENTA 13 
#define YELLOW       14 
#define WHITE        15 
 
//ion.h last line 
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//compute.c first line 
 
#include <math.h> 
#include "ion.h" 
 
int check_cells(void) { 
   int c,c2; 
   for(c=0; c<N_C; c++) { 
      for(c2=0; c2<MIO; c2++) 
         if( (Cell_Io[c][c2] < -0.0001) || (Cell_Io[c][c2] > 50.0) ) 
            return(c); 
      for(c2=0; c2<SynNum[c]; c2++) 
         if( (SyIo[c][c2] < -0.0001 ) || (SyIo[c][c2] > 50.0) ) 
            return(c); 
      } 
   return(-1); 
}//check_cells 
 
void compute(void) { 
   double tot_inp = 0.0, //total NTs input (formula) 
          nt_act[MIO]; 
   int c,c2, 
       cell_typ,         //local cell type 
       ref_per,          //local Refractory Period (to use States > R_P_SPAN) 
       syn_typ,          //local Synaptic Type 
       next_state[N_C],  // defined in formula, synchronize generations 
       next_axon[N_C];   // idem 
 
   for(c=0; c<N_C; c++) { //for all cells 
      tot_inp = 0.0; 
      for(c2=0; c2<MIO; c2++) { 
         nt_act[c2] = 0.0; 
         Cell_Io[c][c2] *= HL_IO[c2];            //cell's total stores decay 
         } 
      cell_typ = Type[c]; 
      ref_per = State[c]; 
      Posflag[c] = 1; 
      TotalIo[c] = 0.0; 
      for(c2=0; c2<SynNum[c]; c2++) { 
         syn_typ = SynType[c][c2]; 
         SyIo[c][c2] *= HL_IO[syn_typ];        //syn store decays  ??? 
         SyIo[c][c2] += FIXDECAY[syn_typ][ref_per]; ///new and improved?? 
         if(SyIo[c][c2] < 0.0) { 
            Posflag[c] = 0; 
            Cell_Io[c][syn_typ] -= SyIo[c][c2]; ///??? 
            SyIo[c][c2] = 0.0; 
            } 
         Cell_Io[c][syn_typ] += FIXDECAY[syn_typ][ref_per]; 
         if(*Syn[c][c2] - DELAY[syn_typ] == 0) { //neighbor's axon firing? 
            SyIo [c][c2]      += SynWei[c][c2] * REF_PER[syn_typ][ref_per]; 
            Cell_Io[c][syn_typ] += SynWei[c][c2] * REF_PER[syn_typ][ref_per]; 
            } 
         nt_act[syn_typ] += SyIo[c][c2]; 
         } 
      for(c2=0; c2<MIO; c2++) 
         tot_inp += (nt_act[c2] * SynEq[c][c2] * NT_PO[c2]); //pri 
      //FORMULA 
      TotalIo[c] = tot_inp; 
      tot_inp *= REF_PER_CELL[ref_per]; 
      //cell can't fire if some NT/ion store is negative 
      if(tot_inp > NT_TH[cell_typ]) { //&& (Posflag[c]) ) { 
         next_state[c] = 0;              //FIRE! 
         next_axon[c] = 0; //put spike on axon-delay 
         WaveL[c] = State[c];  //update wavelength 
         } 
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      else { 
         next_state[c] = State[c] + 1; 
         next_axon[c] = Axon[c] + 1;  //?? overflows 
         } 
      }//for all cells 
 
   for(c=0; c<N_C;  c++) {                          //bug somewhere here??? 
      State[c] = next_state[c]; //update cell's State 
      if(State[c] >= R_P_SPAN) { 
         State[c] = R_P_SPAN-1; 
         WaveL[c] = R_P_SPAN-1; 
//         if((Posflag[c])&&(!rnd(Spontaneous))) { //random firing?? 
         if((TotalIo[c] > -0.01)&&(!rnd(Spontaneous))) { //random firing?? 
            State[c] = 0; 
            next_axon[c] = 0; 
            } 
         } 
      Axon[c] = next_axon[c];    //idem axon ?? 
      } 
//   if(check_cells() >= 0) { 
//      show_cell(check_cells()); ??? 
//      return(1); 
//      } 
//   return(0); 
}//compute 
//compute.c last line 

 116



//gene.c first line 
 
#include "ion.h" 
#include <bios.h> //bioskey() 
//population, number of organisms 
#define POPU 100 
 
FILE *gene_output; 
 
struct organism { 
          int hl_iog0, 
              hl_iog2, 
              hl_iog4, 
              nt_po0, 
              nt_po2, 
              nt_po4, 
              delay2, 
              delay4; 
          double fitness; 
          char name[20]; 
          }; 
                       
struct organism Orga[POPU+1]; //organisms, Orga[POPU] or... 
struct organism Baby;         //...Baby is the newborn 
 
long His2D[R_P_SPAN][R_P_SPAN]; //used by hires.c 
 
long His3D[AREAS][R_P_SPAN][R_P_SPAN]; //this too 
 
long Accumulated = 0; 
 
//int SEE = 0; //to avoid printf in hires 
 
const int HL_IOG0[15] = {12,18,24,30,36,42,48,54,60,66,72,84,96,108,120}, 
          HL_IOG2[15] = { 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,14,16,18,20}, 
          HL_IOG4[15] = { 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,14,16,18,20}; 
 
// 0.163507991, 0.179858790, 0.197844669, 0.217629136, 0.239392049, 
// 0.263331254, 0.289664380, 0.318630818, 0.350493899, 0.385543289, 
// 0.424097618, 0.466507380, 0.513158118, 0.564473930, 0.620921323, 
// 0.683013455, 0.751314801, 0.826446281, 0.909090909, 1.000000000, 
// 1.100000000, 1.210000000, 1.331000000, 1.464100000, 1.610510000, 
// 1.771561000, 1.948717100, 2.143588810, 2.357947691, 2.593742460, 
// 2.853116706, 3.138428377, 3.452271214, 3.797498336, 4.177248169, 
// 4.594972986, 5.054470285, 5.559917313, 6.115909045,    *= 1.1 
 
const double NT_PO0[15] = {0.513158118, 
                           0.564473930, 
                           0.620921323, 
                           0.683013455, 
                           0.751314801, 
                           0.826446281, 
                           0.909090909, 
                           1.000000000, 
                           1.100000000, 
                           1.210000000, 
                           1.331000000, 
                           1.464100000, 
                           1.610510000, 
                           1.771561000, 
                           1.948717100}, 
                            
             NT_PO2[15] = {0.263331254, 
                           0.289664380, 
                           0.318630818, 
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                           0.350493899, 
                           0.385543289, 
                           0.424097618, 
                           0.466507380, 
                           0.513158118, 
                           0.564473930, 
                           0.620921323,           
                           0.683013455, 
                           0.751314801, 
                           0.826446281, 
                           0.909090909, 
                           1.000000000}, 
                            
             NT_PO4[15] = {-0.263331254, 
                           -0.289664380, 
                           -0.318630818, 
                           -0.350493899, 
                           -0.385543289, 
                           -0.424097618, 
                           -0.466507380, 
                           -0.513158118, 
                           -0.564473930, 
                           -0.620921323, 
                           -0.683013455, 
                           -0.751314801, 
                           -0.826446281, 
                           -0.909090909, 
                           -1.000000000}; 
 
//*********************** variables global to gene.c ******************* 
 
void init_orga(void) { 
int c; 
   for(c=0; c<=POPU; c++) { //include newborn one 
      Orga[c].hl_iog0 = 0; 
      Orga[c].hl_iog2 = 0; 
      Orga[c].hl_iog4 = 0; 
      Orga[c].nt_po0  = 0; 
      Orga[c].nt_po2  = 0; 
      Orga[c].nt_po4  = 0; 
      Orga[c].delay2  = 0; 
      Orga[c].delay4  = 0; 
      Orga[c].fitness = 0; 
      strcpy(Orga[c].name,"0123456789012345678\0"); 
      } 
}//init_orga 
 
 
void baptice(struct organism *doe) { 
//must be longer than range of parameters 
const char *cODE = "0123456789abcdef\0"; 
   doe->name[0] = cODE[doe->hl_iog0]; 
   doe->name[1] = cODE[doe->hl_iog2]; 
   doe->name[2] = cODE[doe->hl_iog4]; 
   doe->name[3] = cODE[doe->nt_po0]; 
   doe->name[4] = cODE[doe->nt_po2]; 
   doe->name[5] = cODE[doe->nt_po4]; 
   doe->name[6] = doe->delay2 + 'A'; 
   doe->name[7] = doe->delay4 + 'A'; 
   doe->name[8] = '\0'; 
}//baptice 
 
 
void set_params(int which) { 
   HL_IOG[0] = HL_IOG0[Orga[which].hl_iog0]; 
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   HL_IOG[2] = HL_IOG2[Orga[which].hl_iog2]; 
   HL_IOG[4] = HL_IOG4[Orga[which].hl_iog4]; 
   NT_PO[0]  = NT_PO0[Orga[which].nt_po0]; 
   NT_PO[2]  = NT_PO2[Orga[which].nt_po2]; 
   NT_PO[4]  = NT_PO4[Orga[which].nt_po4]; 
   DELAY[2]  = Orga[which].delay2; 
   DELAY[4]  = Orga[which].delay4; 
   Orga[which].fitness = 0.0; 
}//set_params 
 
 
void seed_orga(int which, 
               int hl_iog0, int hl_iog2, int hl_iog4, 
               int nt_po0, int nt_po2, int nt_po4, 
               int delay2, int delay4, 
               double fitness) { 
   Orga[which].hl_iog0 = hl_iog0; 
   Orga[which].hl_iog2 = hl_iog2; 
   Orga[which].hl_iog4 = hl_iog4; 
   Orga[which].nt_po0  = nt_po0; 
   Orga[which].nt_po2  = nt_po2; 
   Orga[which].nt_po4  = nt_po4; 
   Orga[which].delay2  = delay2; 
   Orga[which].delay4  = delay4; 
   set_params(which); 
   Orga[which].fitness = fitness; 
   baptice(&Orga[which]); 
}//seed_orga 
 
 
void copy_orga(int target, int source) { 
   Orga[target].hl_iog0 = Orga[source].hl_iog0; 
   Orga[target].hl_iog2 = Orga[source].hl_iog2; 
   Orga[target].hl_iog4 = Orga[source].hl_iog4; 
   Orga[target].nt_po0  = Orga[source].nt_po0; 
   Orga[target].nt_po2  = Orga[source].nt_po2; 
   Orga[target].nt_po4  = Orga[source].nt_po4; 
   Orga[target].delay2  = Orga[source].delay2; 
   Orga[target].delay4  = Orga[source].delay4; 
   Orga[target].fitness = Orga[source].fitness; 
   strcpy(Orga[target].name,Orga[source].name); 
}//copy_orga 
 
 
void dump_orga(struct organism which_orga, int orga_num) { 
char line[256] = 
"---------1---------2---------3---------4---------5---------6---------7\0"; 
 
   sprintf(line,"\n%3d: %2d %2d %2d %2d %2d %2d %2d %2d %10.4f %s", 
           orga_num, 
           which_orga.hl_iog0, 
           which_orga.hl_iog2, 
           which_orga.hl_iog4, 
           which_orga.nt_po0, 
           which_orga.nt_po2, 
           which_orga.nt_po4, 
           which_orga.delay2, 
           which_orga.delay4, 
           which_orga.fitness, 
           which_orga.name); 
   fprintf(gene_output,line); 
   if(!SEE) printf("%s",line); 
}//dump_orga 
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void dump_popu(void) { 
int c; 
   for(c=0; c<POPU; c++) 
      dump_orga(Orga[c],c); 
   fprintf(gene_output,"\n\n"); 
   if(!SEE) printf("\n"); 
}//dump_popu 
 
 
int clone_test(struct organism *doe) { 
int c; 
   for(c=0; c<POPU; c++) 
      if(strcmp(Orga[c].name,doe->name) == 0) 
         return(1); 
   return(0); 
}//clone_test 
 
 
void mutate(struct organism *doe) { 
   switch(random() % 7) { 
      case 0: doe->hl_iog0 = random() % 15; break; 
      case 1: doe->hl_iog2 = random() % 15; break; 
      case 2: doe->hl_iog4 = random() % 15; break; 
      case 3: doe->nt_po0  = random() % 15; break; 
      case 4: doe->nt_po2  = random() % 15; break; 
      case 5: doe->nt_po4  = random() % 15; break; 
      case 6: doe->delay2  = (random() % (R_P_SPAN-1)) + 1; 
              doe->delay4  = (random() % doe->delay2) + 1; 
              break; 
      } 
}//mutate 
 
 
void seed_popu(void) { 
int c; 
   for(c=0; c<POPU; c++) { 
      Orga[c].hl_iog0 = random() % 15; 
      Orga[c].hl_iog2 = random() % 15; 
      Orga[c].hl_iog4 = random() % 15; 
      Orga[c].nt_po0  = random() % 15; 
      Orga[c].nt_po2  = random() % 15; 
      Orga[c].nt_po4  = random() % 15; 
      Orga[c].delay2  = (random() % (R_P_SPAN-1)) + 1; 
      Orga[c].delay4  = (random() % Orga[c].delay2) + 1; 
      Orga[c].fitness = 0.0; 
      baptice(&Orga[c]); 
      } 
}//seed_popu 
 
 
char * sex(int woman, int man) { 
//positive==looks like mami, neg.like papi 0==perfect mix 
char *mix = "???????????????????\0"; 
int looks_like = 42; 
   while((looks_like < -3) || (looks_like > 3)) { //force 2 swaps 
      looks_like = 0; 
      if(random()%2) { Baby.hl_iog0 = Orga[woman].hl_iog0; 
         mix[0]='+'; ++looks_like; } 
      else {           Baby.hl_iog0 = Orga[  man].hl_iog0; 
         mix[0]='-'; --looks_like; } 
          
      if(random()%2) { Baby.hl_iog2 = Orga[woman].hl_iog2; 
         mix[1]='+'; ++looks_like; } 
      else {           Baby.hl_iog2 = Orga[  man].hl_iog2; 
         mix[1]='-'; --looks_like; } 
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      if(random()%2) { Baby.hl_iog4 = Orga[woman].hl_iog4; 
         mix[2]='+'; ++looks_like; } 
      else {           Baby.hl_iog4 = Orga[  man].hl_iog4; 
         mix[2]='-'; --looks_like; } 
       
      if(random()%2) { Baby.nt_po0 = Orga[woman].nt_po0; 
         mix[3]='+'; ++looks_like; } 
      else {           Baby.nt_po0 = Orga[  man].nt_po0; 
         mix[3]='-'; --looks_like; } 
 
      if(random()%2) { Baby.nt_po2 = Orga[woman].nt_po2; 
         mix[4]='+'; ++looks_like; } 
      else {           Baby.nt_po2 = Orga[  man].nt_po2; 
         mix[4]='-'; --looks_like; } 
 
      if(random()%2) { Baby.nt_po4 = Orga[woman].nt_po4; 
         mix[5]='+'; ++looks_like; } 
      else {           Baby.nt_po4 = Orga[  man].nt_po4; 
         mix[5]='-'; --looks_like; } 
    
      if(random()%2) { 
         Baby.delay2 = Orga[woman].delay2; 
         Baby.delay4 = Orga[woman].delay4; 
         mix[6]='+'; 
         mix[7]='='; 
         ++looks_like; 
         } 
      else { 
         Baby.delay2 = Orga[  man].delay2; 
         Baby.delay4 = Orga[  man].delay4; 
         mix[6]='-'; 
         mix[7]='='; 
         --looks_like; 
         } 
      } 
   mix[8]='\0'; 
 
   Baby.fitness = 0.0; //There's no future, no future for you. 
 
   baptice(&Baby); 
 
   return(mix); 
    
}//sex 
 
 
void roulette_selection(long count) { 
long acfi[POPU], //accumulated fitness array 
     accufit = 0, 
     ball = 0, 
     mutations = 0; 
int mother = 0, 
    father = 0, 
    c; 
   if(count >= 1234567891) { 
      printf("\nstuck after 1234567891 babys, press any key"); 
      getch(); 
      } 
   for(c=0; c<POPU; c++) { 
      accufit += (long) (Orga[c].fitness*100.0); 
      acfi[c] = accufit; 
      } 
   //choose father and mother with different genomes 
   while(strcmp(Orga[father].name,Orga[mother].name) == 0) { 
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      ball = random() % accufit; 
      for(c=0; c<POPU; c++) 
         if(ball <= acfi[c]) { 
            mother = c; 
            break; 
            } 
      ball = random() % accufit; 
      for(c=0; c<POPU; c++) 
         if(ball <= acfi[c]) { 
            father = c; 
            break; 
            } 
      } 
/* 
   fprintf(gene_output,"\nmami"); 
   dump_orga(Orga[mother],mother); 
   fprintf(gene_output,"\npapi"); 
   dump_orga(Orga[father],father); 
   fprintf(gene_output, 
      "\n                                        %s mix",sex(mother,father)); 
*/ 
   sex(mother,father); 
   while(clone_test(&Baby)) { 
      mutate(&Baby); 
      baptice(&Baby); 
      ++mutations; 
      } 
 
   reset(0); 
   HL_IOG[0] = HL_IOG0[Baby.hl_iog0]; 
   HL_IOG[2] = HL_IOG2[Baby.hl_iog2]; 
   HL_IOG[4] = HL_IOG4[Baby.hl_iog4]; 
   NT_PO[0]  = NT_PO0[Baby.nt_po0]; 
   NT_PO[2]  = NT_PO2[Baby.nt_po2]; 
   NT_PO[4]  = NT_PO4[Baby.nt_po4]; 
   DELAY[2]  = Baby.delay2; 
   DELAY[4]  = Baby.delay4; 
   Baby.fitness = two_screens(); 
 
   dump_orga(Baby,-1); 
   fprintf(gene_output,"  muta:%3d",mutations); 
   if(!SEE) printf("  muta:%3d",mutations); 
 
   c=POPU-1; 
   while(c>0) { //sort baby in population 
      if(Baby.fitness < Orga[c-1].fitness) break; 
      Orga[c]=Orga[c-1]; 
      --c; 
      } 
   if(Baby.fitness >= Orga[c].fitness) { 
      Orga[c]=Baby; 
      fprintf(gene_output," :) "); 
      if(!SEE) printf(" :) "); 
      } 
   else { 
      fprintf(gene_output," X( "); 
      if(!SEE) printf(" X( "); 
      } 
 
}//roulette_selection 
 
 
void bubble_sort(void) { //what a shame... 
struct organism orgacopy[POPU]; 
int order[POPU]; 
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int swaped = 1,temp,c; 
   for(c=0; c<POPU; c++) order[c] = c; 
   while(swaped) { 
      swaped = 0; 
      for(c=0; c<POPU-1; c++) 
         if(Orga[order[c]].fitness < Orga[order[c+1]].fitness) { 
           temp = order[c]; 
           order[c] = order[c+1]; 
           order[c+1] = temp; 
           swaped = 1; 
           } 
      } 
   for(c=0; c<POPU; c++) 
      orgacopy[c] = Orga[order[c]]; 
   for(c=0; c<POPU; c++) 
      Orga[c] = orgacopy[c]; 
}//bubble_sort 
 
 
void accu_synch(int mode) { //accumulated synchronization measure 
int c,c2,c3;               //mode:0 clean mode:1accumulate 
   if(mode == 0) { 
      for(c=0; c<AREAS; c++) 
         for(c2=0; c2<R_P_SPAN; c2++) 
            for(c3=0; c3<R_P_SPAN; c3++) 
               His3D[c][c2][c3] = 0; 
      for(c=0; c<R_P_SPAN; c++) 
         for(c2=0; c2<R_P_SPAN; c2++) 
            His2D[c][c2] = 0; 
      Accumulated = 0; 
      } 
   else { 
      for(c=0; c<AREAS; c++) 
         for(c2=AREA_B[c]; c2<AREA_E[c]; c2++) 
            His3D[c][State[c2]][WaveL[c2]]++; 
      for(c=0; c<N_C; c++) 
         His2D[State[c]][WaveL[c]]++; 
      Accumulated++; 
      } 
}//accu_synch 
 
 
double rate_accu_synch(int zonesrow) { 
const double FIT2[R_P_SPAN][R_P_SPAN] = { 
//0  1  2  3  4  5  6  7  8  9 10 11 12 Wavelenght 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 0 state 
 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 1 
 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 2 
 
{ 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 3 
 
{ 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0}, // 4 
 
{ 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0}, // 5 
 
{ 0, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 0}, // 6 
 
{ 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0}, // 7 
 
{ 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0}, // 8 
 
{ 0, 0, 0, 3, 0, 0, 0, 0, 0, 9, 0, 0, 0}, // 9 
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{ 0, 0, 0, 0, 0, 5, 0, 0, 0, 0,10, 0, 0}, //10 
 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,10, 0}, //11 
 
{ 0, 0, 0, 3, 4, 0, 6, 0, 0, 0, 0, 0, 0}};//12 
 
int zones[3][12] = {{1,1,1,1,1,1,1,1,1,1,1,1}, 
                    {1,0,1,0,0,0,1,0,0,0,1,0}, //color task, red input 
                    {0,0,0,1,0,1,0,0,0,1,0,1}};//word task, green input 
double his_add[R_P_SPAN][R_P_SPAN], 
       his_sub[R_P_SPAN][R_P_SPAN], 
       rate = 0.0; 
int //big1sta = 12, big1wav = 12, 
    //big2sta = 12, big2wav = 12, 
    //big3sta = 12, big3wav = 12, 
    add_cells = 0, 
    sub_cells = 0, 
    c,c2,c3; 
     
   for(c=0; c<R_P_SPAN; c++) 
      for(c2=0; c2<R_P_SPAN; c2++) { 
         his_add[c][c2] = 0.0; 
         his_sub[c][c2] = 0.0; 
         } 
          
   for(c=0; c<AREAS; c++) 
      if(zones[zonesrow][c]) { 
         for(c2=0; c2<R_P_SPAN; c2++) 
            for(c3=0; c3<R_P_SPAN; c3++) 
               his_add[c2][c3] += His3D[c][c2][c3]; 
         add_cells += AREA_E[c] - AREA_B[c] + 1; 
         } 
      else { 
         for(c2=0; c2<R_P_SPAN; c2++) 
            for(c3=0; c3<R_P_SPAN; c3++) 
               his_sub[c2][c3] += His3D[c][c2][c3]; 
         sub_cells += AREA_E[c] - AREA_B[c] + 1; 
         } 
          
//   if(add_cells) 
//      for(c=0; c<R_P_SPAN; c++) 
//         for(c2=0; c2<R_P_SPAN; c2++) 
//            his_add[c][c2] = his_add[c][c2] / add_cells; 
//   if(sub_cells) 
//      for(c=0; c<R_P_SPAN; c++) 
//         for(c2=0; c2<R_P_SPAN; c2++) 
//            his_add[c][c2] = his_add[c][c2] - (his_sub[c][c2] / sub_cells); 
   rate = 0.0; 
//   for(c=0; c<R_P_SPAN-1; c++) 
//      for(c2=0; c2<R_P_SPAN-1; c2++) 
//         rate += His2D[c][c2]*FIT2[c][c2]; 
   for(c=0; c<R_P_SPAN-1; c++) 
      for(c2=0; c2<R_P_SPAN-1; c2++) { 
         his_add[c][c2] -= his_sub[c][c2]; 
         his_add[c][c2] *= FIT2[c][c2]; 
         rate += his_add[c][c2]; 
         } 
   if(rate<0.0) rate *= -0.01;//roulette needs positive numbers 
   return(rate / Accumulated); 
}//rate_accu_synch 
 
 
double two_screens(void) { 
double run = 0.0; 
int c; 
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   reset(0); 
   hl_factors();                 //transform half-lifes to factors 
   if(EQUA) setEqu(); 
   if(SEE) plot_World();                 //show frog's world 
   if(SEE) show_LMRG(); 
 
   accu_synch(0); 
   for(c=0; c<SHOW_GEN; c++) { //first screen 
      retina(); 
      compass(); 
      compute(); 
      accu_synch(1); 
      if(check_cells() != -1) return(0.0); 
      Gen++; 
      motor_navigation(' ');  //unused return 
      ++TimePos; 
      if(SEE) plot_depo(); 
      } 
   run = rate_accu_synch(1); 
 
   if(SEE) { 
      if(DispUp == 'B') bars(); 
      if(DispUp == 'H') {histogram(1); synchro_stats(); } 
      } 
 
   accu_synch(0); 
   TimePos = 0; 
   Frog_po_y = 10; 
   plot_World();  
   for(c=0; c<SHOW_GEN; c++) {   //second screen 
      retina(); 
      compass(); 
      compute(); 
      accu_synch(1); 
      if(check_cells() != -1) return(0.0); 
      Gen++; 
      motor_navigation(' ');  //unused return 
      ++TimePos; 
      if(SEE) plot_depo(); 
      } 
   run += rate_accu_synch(2); 
 
   if(SEE) { 
      if(DispUp == 'B') bars(); 
      if(DispUp == 'H') {histogram(1); synchro_stats(); } 
      } 
   return(run / 2.0); 
}//two_screens 
 
 
void batch(void) { //if SEE==1:show depo,etc. 0:run blind, print text 
long c; 
int c2; 
   reset(0); 
   if( (gene_output = fopen("geneout.txt","w+")) == NULL) { 
         clean_line(1,1); 
         printf("can't save file geneout.txt"); 
         delay(2000); 
         exit(1); 
         } 
   if(SEE) if(start_graphics()) exit(1); 
 
   init_orga(); 
    
   seed_popu(); 
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   for(c=0; c<POPU; c++) { 
      reset(0); 
      set_params(c); 
      Orga[c].fitness = two_screens(); 
      if(!SEE) printf("%6D \n",c); 
      } 
 
   bubble_sort(); 
 
   dump_popu(); 
    
   srand48(1234567891L);//limits.h: #define LONG_MAX 2147483647L 
   for(c=0; c<10000; c++) { 
      roulette_selection(c); 
      fprintf(gene_output," babys:%6D ",c); 
      printf(" babys:%6D ",c); 
      if(!SEE) if(c % 100 == 0) dump_popu(); 
      if(bioskey(1)) { 
         getch(); 
         break; 
         } 
      } 
   fprintf(gene_output,"\n\n after %D babys \n\n",c); 
   dump_popu(); 
    
   fclose(gene_output); 
   reset(0); 
   hl_factors(); 
   if(EQUA) setEqu(); 
   set_params(0); 
   save_params(0,"param00.txt"); 
   fclose(gene_output); 
   exit(0); 
}//batch 
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// ion_main.c first line 
//  written by Aquiles Luna-Rodr¡guez 
//  email: luna@unibw-hamburg.de 
//  compiles on DJGPP with GRX graphics 
 
#include <conio.h>    //getch gotoxy kbhit color-names 
 
#include "ion.h" 
 
const int ON = 0; 
 
//cell's components 
int         *Type, 
            *State, 
            *Axon, 
            *WaveL, 
            *SynNum, 
            *Posflag; 
float       *TotalIo; 
float       (*Cell_Io)[MIO], 
            (*SynEq)  [MIO]; 
int         (*SynType)[MAX_SYN], 
            (*SynPos) [MAX_SYN]; 
int        *(*Syn)    [MAX_SYN]; 
float       (*SynWei) [MAX_SYN], 
            (*SyIo)   [MAX_SYN]; 
 
//global parameters, user-defined 
//these are only dummy values, definition is in params.bck and struc.bck 
int EegB[WAVES] ={  0, 0, 0, 0}, 
    EegE[WAVES] ={ -1,-1,-1,-1}; 
int AREA_B[AREAS] = {0,0,0,0,0,0,0,0,0,0,0,0}, 
    AREA_E[AREAS] = {0,0,0,0,0,0,0,0,0,0,0,0}; 
char AREA_NAME[AREAS][20]={"00-----------------\0", 
                           "01-----------------\0", 
                           "02-----------------\0", 
                           "03-----------------\0", 
                           "04-----------------\0", 
                           "05-----------------\0", 
                           "06-----------------\0", 
                           "07-----------------\0", 
                           "08-----------------\0", 
                           "09-----------------\0", 
                           "10-----------------\0", 
                           "11-----------------\0"}; 
int RANGE[4][MIO]; 
 
int    HL_IOG [ MIO ], 
       MASTER_DELAY = 0, //minimum, 0 fires next generation 
       DELAY  [MIO] = { 0,0,0,0,0,0,0,0}, 
       Spontaneous = 250, 
       EQUA = 0; 
double HL_IO [ MIO ], 
       NT_TH [ MIO ], 
       NT_PO[MIO]; 
double MOTOR_TH = 0.0, 
       FIXDECAY[MIO][R_P_SPAN], 
       REF_PER[MIO][R_P_SPAN], 
       REF_PER_CELL[R_P_SPAN]; 
 
char SEED[81] = "0123456789\0", 
     STRUCFIL[81] = "12345678.123\0", 
     PARAMFIL[81] = "12345678.123\0"; 
int  RBOW[MAXRBOWCOLORS],//defined in start_graphics() 
     NtCol[MIO] = {15,15,15,15,15,15,15,15}, 
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     WO_COL[8] = {BLACK,LIGHTRED,LIGHTGREEN,LIGHTBLUE, 
                  YELLOW,CYAN,LIGHTMAGENTA,WHITE}; 
 
//program's internal global variables 
int  RndVec[RNDSZ]= {1,1,1,1,1,1,1}, 
     RndIdx = 0; 
byte NeiSta[N_C][N_C]; 
int World[WO_SZ_Y][WO_SZ_X]; 
int WO_PO_X = SHOW_GEN*2+4, 
    WO_PO_Y = 400; //magic?? 
double Left        = 0.0, 
       Right       = 0.0, 
       Move        = 0.0; 
 
int    North  = 1, 
       East   = 1, 
       South  = 1, 
       West   = 1; 
        
int Pix[9][4] = {{0,0,0,0}, //ACHTUNG: 0:firing else:inactive 
                 {0,1,1,1}, 
                 {0,1,1,1}, 
                 {0,1,1,1}, 
                 {0,1,1,1}, 
                 {0,1,1,1}, 
                 {0,1,1,1}, 
                 {0,1,1,1}, 
                 {0,1,1,1}}; 
                  
long   Gen              = 0; 
int    Frog_po_x        = 9, 
       Frog_po_y        = 9, 
       TimePos          = -1, 
       Interactive_mode = 1, 
       SEE              = 1; 
char   Direc            = 'n', 
       DispUp           = 'H'; 
 
//=========================== functions ============================== 
 
void alarm(char *msg,char *str_fil, unsigned uLine) { 
   fflush(NULL); 
   if(str_fil!=NULL) 
      fprintf(stderr,"\n %s %s, line %u \n",msg,str_fil, uLine); 
   else fprintf(stderr,"\n %s\n",msg); 
   fflush(stderr); 
   while(getch()!='q') ; 
}//alarm 
 
//************************************************ 
int rnd(int range) { //returns integer random numbers between 0 and range-1 
   const int pRIME = 4001; //pRIME and RNDVEC *must* be prime numbers 
   long templ = 0; 
   int c; 
   if(range <= 0) 
      return(-1); //division by 0?? 
   if (++RndIdx >= RNDSZ) RndIdx = 0; 
   for(c=0; c<RNDSZ; c++) 
      templ += RndVec[c]; 
   templ %= pRIME; 
   RndVec[RndIdx] = (int)templ; 
   for(c=0; c<RNDSZ; c++) 
      assert(RndVec[c] >= 0 && RndVec[c] < pRIME); 
   assert(RndIdx >= 0 && RndIdx < RNDSZ); 
//   return( (int) (templ * range / pRIME) ); 
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   return( (int) (templ % range) ); 
}//rnd 
//************************************************ 
void reset_generator(void) { 
long key[RNDSZ]; 
int c,c2; 
   #ifdef TEST 
      c = 0; 
      while(SEED[c] != '\0') { 
         if(SEED[c] < 0) alarm("not ASCII in SEED",NULL,NULL); 
         c++; 
         } 
      if(c<RNDSZ) alarm("SEED to short",NULL,NULL); 
   #endif 
   for(c=0; c<RNDSZ; c++) key[c] = 0; 
   c = c2 = 0; 
   while(1) { 
      if(SEED[c] == '\0') break; 
      key[c2] = (key[c2] * 256 + SEED[c]) % 4001; //?? magic == pRIME 
      c++; 
      if(++c2>=RNDSZ) c2 = 0; 
      } 
   for(RndIdx = 0, c=0; c<RNDSZ; RndVec[c] = (int)key[c], c++) ; 
}//reset_generator 
 
 
//************************************************ 
double half_life(int generations) { 
//   for(c=0; c<100; c++) { 
//       if(c%5==0) printf("\n"); 
//       printf(" %12.9f,",half_life(c)); 
//       } 
 
const double HL_GEN[150] = { 
  0.000000000,  0.500000000,  0.707106590,  0.793700218,  0.840895653, 
  0.870551109,  0.890898705,  0.905724525,  0.917004585,  0.925875664, 
  0.933033943,  0.938931465,  0.943873405,  0.948077202,  0.951695442, 
  0.954840660,  0.957602501,  0.960045815,  0.962224007,  0.964175224, 
  0.965935707,  0.967532158,  0.968983650,  0.970313072,  0.971531868, 
  0.972655296,  0.973692894,  0.974654198,  0.975548744,  0.976382256, 
  0.977160454,  0.977889061,  0.978571892,  0.979214668,  0.979819298, 
  0.980391502,  0.980929375,  0.981440544,  0.981925011,  0.982384682, 
  0.982821465,  0.983235359,  0.983632088,  0.984009743,  0.984370232, 
  0.984715462,  0.985045433,  0.985360146,  0.985663414,  0.985953331, 
  0.986231804,  0.986500740,  0.986758232,  0.987006187,  0.987246513, 
  0.987477303,  0.987698555,  0.987914085,  0.988120079,  0.988320351, 
  0.988514900,  0.988701820,  0.988883018,  0.989058495,  0.989228249, 
  0.989392281,  0.989552498,  0.989706993,  0.989857674,  0.990004539, 
  0.990147591,  0.990284920,  0.990418434,  0.990550041,  0.990675926, 
  0.990799904,  0.990921974,  0.991038322,  0.991152763,  0.991265297, 
  0.991374016,  0.991478920,  0.991581917,  0.991683006,  0.991782188, 
  0.991877556,  0.991972923,  0.992064476,  0.992154121,  0.992241859, 
  0.992327690,  0.992411613,  0.992493629,  0.992573738,  0.992653847, 
  0.992730141,  0.992806435,  0.992878914,  0.992951393,  0.993023872, 
  0.993092537,  0.993161201,  0.993227959,  0.993292809,  0.993357658, 
  0.993420601,  0.993481636,  0.993542671,  0.993601799,  0.993660927, 
  0.993718147,  0.993775368,  0.993830681,  0.993884087,  0.993937492, 
  0.993990898,  0.994042397,  0.994093895,  0.994143486,  0.994193077, 
  0.994240761,  0.994288445,  0.994334221,  0.994379997,  0.994425774, 
  0.994469643,  0.994513512,  0.994557381,  0.994599342,  0.994641304, 
  0.994681358,  0.994723320,  0.994763374,  0.994801521,  0.994839668, 
  0.994877815,  0.994915962,  0.994954109,  0.994990349,  0.995026588, 
  0.995060921,  0.995095253,  0.995131493,  0.995163918,  0.995198250, 
  0.995230675,  0.995263100,  0.995295525,  0.995327950,  0.995358467}; 
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   double hi = 1.0, 
          lo = 0.0, 
          tempd = 0.0; 
   int c; 
   if(generations < 0) return(0.0); 
   if(generations >= 999) return (1.0); 
   if(generations < 150) return HL_GEN[generations]; 
   for(c=0; c<20; c++) { 
      tempd = (hi + lo) / 2.0; 
      if (pow(tempd,generations) < 0.5) lo = tempd; 
      if (pow(tempd,generations) > 0.5) hi = tempd; 
      } 
   return(tempd); 
}//half_life 
 
//************************************************ 
void hl_factors(void) { 
   int c; 
   for(c=0; c<MIO; c++) 
      HL_IO [c] = half_life(HL_IOG[c]); 
}//hl_factors 
 
//************************************************ 
void setEqu(void) { 
   int nt[MIO]; 
   int c,c2; 
   for(c=0; c<N_C; c++) { 
      for(c2=0; c2<MIO; c2++) 
         nt[c2] = 0; 
      for(c2=0; c2<SynNum[c]; c2++) 
         nt[SynType[c][c2]]++; 
      for(c2=0; c2<MIO; c2++) 
         if(nt[c2] > 0) SynEq[c][c2] = 1.0 / nt[c2]; 
      } 
}//setEqu 
 
//*********************************************************************** 
void retina(void) { //looks ahead 
int c; 
   //using normal logic 
   for(c=0; c<9; c++) {Pix[c][0]=0; Pix[c][1]=0; Pix[c][2]=0; Pix[c][3]=0; } 
   switch (Direc) { //store world's colors in pixel[ ][0] 
      case 'n':Pix[1][0] = World[Frog_po_y-2][Frog_po_x-1]; //up left 
               Pix[2][0] = World[Frog_po_y-2][Frog_po_x  ]; //up 
               Pix[3][0] = World[Frog_po_y-2][Frog_po_x+1]; //up right 
               Pix[4][0] = World[Frog_po_y-1][Frog_po_x-1]; //middle left 
               Pix[5][0] = World[Frog_po_y-1][Frog_po_x  ]; //middle 
               Pix[6][0] = World[Frog_po_y-1][Frog_po_x+1]; //middle right 
               Pix[7][0] = World[Frog_po_y  ][Frog_po_x-1]; //left 
               Pix[8][0] = World[Frog_po_y  ][Frog_po_x+1]; //right 
               break; 
      case 'e':Pix[1][0] = World[Frog_po_y-1][Frog_po_x+2]; 
               Pix[2][0] = World[Frog_po_y  ][Frog_po_x+2]; 
               Pix[3][0] = World[Frog_po_y+1][Frog_po_x+2]; 
               Pix[4][0] = World[Frog_po_y-1][Frog_po_x+1]; 
               Pix[5][0] = World[Frog_po_y  ][Frog_po_x+1]; 
               Pix[6][0] = World[Frog_po_y+1][Frog_po_x+1]; 
               Pix[7][0] = World[Frog_po_y-1][Frog_po_x  ]; 
               Pix[8][0] = World[Frog_po_y+1][Frog_po_x  ]; 
               break; 
      case 's':Pix[1][0] = World[Frog_po_y+2][Frog_po_x+1]; 
               Pix[2][0] = World[Frog_po_y+2][Frog_po_x  ]; 
               Pix[3][0] = World[Frog_po_y+2][Frog_po_x-1]; 
               Pix[4][0] = World[Frog_po_y+1][Frog_po_x+1]; 
               Pix[5][0] = World[Frog_po_y+1][Frog_po_x  ]; 
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               Pix[6][0] = World[Frog_po_y+1][Frog_po_x-1]; 
               Pix[7][0] = World[Frog_po_y  ][Frog_po_x+1]; 
               Pix[8][0] = World[Frog_po_y  ][Frog_po_x-1]; 
               break; 
      case 'w':Pix[1][0] = World[Frog_po_y+1][Frog_po_x-2]; 
               Pix[2][0] = World[Frog_po_y  ][Frog_po_x-2]; 
               Pix[3][0] = World[Frog_po_y-1][Frog_po_x-2]; 
               Pix[4][0] = World[Frog_po_y+1][Frog_po_x-1]; 
               Pix[5][0] = World[Frog_po_y  ][Frog_po_x-1]; 
               Pix[6][0] = World[Frog_po_y-1][Frog_po_x-1]; 
               Pix[7][0] = World[Frog_po_y+1][Frog_po_x  ]; 
               Pix[8][0] = World[Frog_po_y-1][Frog_po_x  ]; 
               break; 
      } 
   for(c=1; c<=8; c++) //inverted logic: 0:firing else:inactive 
      switch(Pix[c][0]) {   //transform colors in red, green & blue pixels 
         case 0:Pix[c][1] = 1; Pix[c][2] = 1; Pix[c][3] = 1; break; //black 
 
         case 1:Pix[c][1] = 0; Pix[c][2] = 1; Pix[c][3] = 1; break; //red 
          
         case 2:Pix[c][1] = 1; Pix[c][2] = 0; Pix[c][3] = 1; break; //green 
 
         case 3:Pix[c][1] = 1; Pix[c][2] = 1; Pix[c][3] = 0; break; //blue 
          
         case 4:Pix[c][1] = 0; Pix[c][2] = 0; Pix[c][3] = 1; break; //yellow 
 
         case 5:Pix[c][1] = 1; Pix[c][2] = 0; Pix[c][3] = 0; break; //cyan 
 
         case 6:Pix[c][1] = 0; Pix[c][2] = 1; Pix[c][3] = 0; break; //magenta 
 
         case 7:Pix[c][1] = 0; Pix[c][2] = 0; Pix[c][3] = 0; break; //white 
         default: assert(0);//(0,"funny RGB component in pixel"); 
         } 
}//retina 
 
 
void compass(void) { 
   if(AREA_B[3]+AREA_E[3] > 0) //test for north 
   switch (Direc) {            //inverted logic 
      case 'n':North = 0; East = 1; South = 1; West = 1; 
               break; 
      case 'e':North = 1; East = 0; South = 1; West = 1; 
               break; 
      case 's':North = 1; East = 1; South = 0; West = 1; 
               break; 
      case 'w':North = 1; East = 1; South = 1; West = 0; 
               break; 
      } 
}//compass 
 
 
//************************************************ 
char motor_navigation(char reset) { 
#define wAIT  250 
#define pAST  0.95 
#define nOW   0.05 
static int pause = wAIT;    //wait for cold-start/reset frog to warm-up 
static char status = '\0'; // \0 no behavior 
                           //  l left 
                           //  r right 
                           //  m move(free) 
                           //  e no move(empty) 
                           //  + move(food), reinforced 
                           //  c crash, punished 
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double left = 0.0, move = 0.0, right = 0.0; 
int c,opox,opoy;  //old position in X and Y axis 
 
   switch(reset) { 
      case ' ':break; 
      case 'f':pause = wAIT; break; //frozen 
      case '+':status = '+'; 
               pause = wAIT; 
               break; 
      case '-':status = 'c'; 
               pause = wAIT; 
               break; 
      default:printf("\n\007bad motor_navigation parameter"); getch(); 
      } 
   if(pause > 0) { 
      --pause; 
      switch(status) { 
         case'\0': 
         case'e': 
         case'l': 
         case'r': 
         case'm':break; 
         case'+'://for(c=AREA_B[10]; c<=AREA_E[10]; AuxInp[c]+=STI, c++); 
                 break; ///??? 
         case'c'://for(c=AREA_B[11]; c<=AREA_E[12]; AuxInp[c]+=STI, c++); 
                 break; ///??? 
         default:printf("\n\007funny motor_navigation status"); getch(); 
         } 
      return(status); 
      } 
   status = '\0'; 
   opox = Frog_po_x; //store actual position in case it tries to move and crashes 
   opoy = Frog_po_y; 
    
   for(c=AREA_B[7]; c<=AREA_E[7]; c++) 
      if(!State[c]) left = left + 1.0; 
   left /= AREA_E[7] - AREA_B[7] + 1; 
   Left = (Left * pAST) + (left * nOW); 
    
   for(c=AREA_B[8]; c<=AREA_E[8]; c++) 
      if(!State[c]) move = move + 1.0; 
   move /= AREA_E[8] - AREA_B[8] + 1; 
   Move = (Move * pAST) +(move * nOW); 
    
   for(c=AREA_B[9]; c<=AREA_E[9]; c++) 
      if(!State[c]) right = right + 1.0; 
   right /= AREA_E[9] - AREA_B[9] + 1; 
   Right = (Right * pAST) +(right * nOW); 
    
                           //order changed: move has priority 
   if (Move > MOTOR_TH) { 
      switch (Direc) { 
         case 'n': --Frog_po_y; break; 
         case 'e': ++Frog_po_x; break; 
         case 's': ++Frog_po_y; break; 
         case 'w': --Frog_po_x; break; 
         } 
      switch(World[Frog_po_y][Frog_po_x]) { 
         case 0:status = 'e';   //empty space, no movement, no reinf. 
                Frog_po_y = opoy; 
                Frog_po_x = opox; 
//                printf("\007"); 
                break; 
         case 1://status = 'c';   //rock (red), no movement, punishment 
                //Frog_po_y = opoy; 
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                //Frog_po_x = opox; 
//                printf("\007"); 
                //break; 
         case 2://status = 'm'; 
                //plot_n(WO_PO_X+((opox-2)*WS),WO_PO_Y+((opoy-2)*WS), 
                //       WS,WO_COL[World[opoy][opox]]); 
                //plot_frog(); 
                //break; //free (green), moves, no reinf. 
         case 3: 
         case 4: 
         case 5: 
         case 6://break;//?? 
         case 7://status = '+'; 
                //--World[Frog_po_y][Frog_po_x]; 
                plot_n(WO_PO_X+((opox-2)*WS),WO_PO_Y+((opoy-2)*WS), 
                       WS,WO_COL[World[opoy][opox]]); 
                plot_frog(); 
                break; 
         default:printf("\n\007motor/navigation error"); getch(); 
         } 
      pause = wAIT; 
      Left = Move = Right = 0.0; 
      plot_frog(); 
      } 
   if ( (status =='\0') && (Left > MOTOR_TH) ) { 
      status = 'l'; 
      switch (Direc) { 
         case 'n': Direc = 'w'; break; 
         case 'e': Direc = 'n'; break; 
         case 's': Direc = 'e'; break; 
         case 'w': Direc = 's'; break; 
         } 
      pause = wAIT; 
      Left = Move = Right = 0.0; 
      plot_frog(); 
      } 
   if ( (status =='\0') && (Right > MOTOR_TH) ) { 
      status = 'r'; 
      switch (Direc) { 
         case 'n': Direc = 'e'; break; 
         case 'e': Direc = 's'; break; 
         case 's': Direc = 'w'; break; 
         case 'w': Direc = 'n'; break; 
         } 
      pause = wAIT; 
      Left = Move = Right = 0.0; 
      plot_frog(); 
      } 
   return(status); 
}//motor_navigation 
 
//cleans up all global vars. not defined on declaration (except RBOW) 
//************************************************ 
int cold_start(void) { 
   int c,c2; 
 
   Type    = (int *) malloc (N_C * sizeof(int)); 
   if(Type==NULL) return 1; 
 
   State   = (int *) malloc (N_C * sizeof(int)); 
   if(State==NULL) return 1; 
 
   Axon    = (int *) malloc (N_C * sizeof(int)); 
   if(Axon==NULL) return 1; 
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   WaveL = (int *) malloc (N_C * sizeof(int)); 
   if(WaveL==NULL) return 1; 
 
   SynNum  = (int *) malloc (N_C * sizeof(int)); 
   if(SynNum==NULL) return 1; 
 
   Posflag  = (int *) malloc (N_C * sizeof(int)); 
   if(Posflag==NULL) return 1; 
 
   TotalIo  = (float *) malloc (N_C * sizeof(float)); 
   if(TotalIo==NULL) return 1; 
 
   Cell_Io  = (float (*)[MIO]) malloc (N_C * MIO * sizeof(float)); 
   if(Cell_Io==NULL) return 1; 
 
   SynEq   = (float (*)[MIO]) malloc (N_C * MIO * sizeof(float)); 
   if(SynEq==NULL) return 1; 
 
   SynType = (int (*)[MAX_SYN]) malloc (N_C * MAX_SYN * sizeof(int)); 
   if(SynType==NULL) return 1; 
 
   SynPos = (int (*)[MAX_SYN]) malloc (N_C * MAX_SYN * sizeof(int)); 
   if(SynPos==NULL) return 1; 
 
   Syn =  (int*(*)[MAX_SYN]) malloc (N_C * MAX_SYN * sizeof(int*)); 
   if(Syn==NULL) return 1; 
 
   SynWei = (float (*)[MAX_SYN]) malloc (N_C * MAX_SYN * sizeof(float)); 
   if(SynWei==NULL) return 1; 
 
   SyIo = (float (*)[MAX_SYN]) malloc (N_C * MAX_SYN * sizeof(float)); 
   if(SyIo==NULL) return 1; 
 
   for(c=0; c<N_C; c++) { 
      Type[c]    = 0; //types 0 and 1 are undefined; allowed: 2->MIO 
      State[c]   = 0; 
      Axon[c]    = R_P_SPAN; 
      SynNum[c]  = 0; 
      Posflag[c] = 1; 
      TotalIo[c] = 0.0; 
      for(c2 = 0; c2<MIO;  c2++) { 
         Cell_Io[c][c2] = 0.0; 
         SynEq  [c][c2] = 1.0; //no equalization 
         } 
      for(c2=0; c2<MAX_SYN; c2++) { 
         SynType[c][c2] =    0;  //type 0 undefined 
         SynPos [c][c2] =   -1;  //range of actual nei 0..N_C, -1 undefined 
         Syn    [c][c2] = NULL;  //doesn't points to anything yet 
         SynWei [c][c2] =  0.0; 
         SyIo   [c][c2] =  0.0; 
         } 
      } 
       
   for(c=0; c<4; c+=2) 
      for(c2=0; c2<MIO; c2++) { //??check 
         RANGE[c][c2] = 1; 
         RANGE[c+1][c2] = 0; 
         } 
 
   for(c=0; c<MIO; c++) { 
      HL_IOG[c] = 0; 
      HL_IO[c] = 0.0; 
      NT_TH[c] = 0.0; 
      NT_PO[c] = 0.0; 
      for(c2=0; c2<R_P_SPAN; c2++) { 
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         FIXDECAY[c][c2] = 0.0; 
         REF_PER[c][c2] = 0.0; 
         } 
      } 
       
   for(c=0; c<R_P_SPAN; c++) 
      REF_PER_CELL[c] = 0.0;//?? 
       
   for(c=0; c<N_C; c++) //status of neighbor, 0 no conection, 127 itself 
      for(c2=0; c2<N_C; c2++) 
         NeiSta[c][c2] = (c != c2) ?  0 : 127; 
   for(c=0; c<WO_SZ_Y; c++) 
      for(c2=0; c2<WO_SZ_X; c2++) 
         World[c][c2] = 0; 
   return 0; 
}//cold_start 
 
 
void main_command_line_params(int argc,char *argv[]) { 
   if(argc == 1) { 
      if(load_struc_file("struc.txt") ) exit(1); 
      if(load_param_file("param.txt") ) exit(2); 
      } 
   if(argc == 2) { 
      if(load_struc_file("struc.txt") ) exit(1); 
      if(load_param_file(argv[1]) ) exit(2); 
      } 
   if(argc == 3) { 
      if(load_struc_file(argv[1]) ) exit(1); 
      if(load_param_file(argv[2]) ) exit(2); 
      } 
   if(argc == 4) { 
      Interactive_mode = 0; 
      if(load_struc_file(argv[1]) ) exit(1); 
      if(load_param_file(argv[2]) ) exit(2); 
      if(strcmp(argv[3],"batch") == 0 ) {SEE=0; batch();} 
      else if(strcmp(argv[3],"batchsee") == 0 ) {SEE = 1; batch();} 
         else exit(3); 
      } 
}//main_command_line_params 
 
 
//============================ MAIN ================================= 
int main(int argc,char *argv[]) { 
long loops,c; //main's variables 
   clrscr(); 
   if(cold_start()) return 1; 
   main_command_line_params(argc,argv); 
   reset(0); 
   if(start_graphics()) return 1; 
   hl_factors();                 //transform half-lifes to factors 
   if(EQUA) setEqu(); 
   plot_World();                 //show frog's world 
   show_LMRG(); 
//   seed_orga(0,9,1,8,8,9,2,2,6,1.4189); 
   while (1) { 
      loops = menu_gr();         //main menu, wait for command 
      if(!loops) break;          //exit ion on Quit || escape 
      accu_synch(0); 
      for(c=0; c<loops; c++) {   //if loops > 0  (main loop) 
         retina(); 
         compass(); 
         compute(); 
         accu_synch(1); 
         if(check_cells() != -1) {    //compute metabolism 
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            show_cell(check_cells()); 
            break; 
            } 
         Gen++; 
         motor_navigation(' ');  //unused return 
         //histogram(0);            //cleans lower-right corner too ?? 
         show_LMRG(); 
         if (++TimePos >= SHOW_GEN) { 
           TimePos = 0; 
           if (DispUp == 'B') display_up(); 
           if (DispUp == 'H') display_up(); 
           } 
         //plot_waves();           //show EEG 
         plot_depo();            //show "firing" cells (wavelength->color) 
         if( kbhit() ) { 
            getch(); 
            break; 
            } //if a key was pressed, stop->menu 
         } 
      } 
   printf("\nend\n"); 
   return 0; 
}//main 
// This is the end, my only friend, the end. 
 
 

 136



// files.c first line 
 
#include <string.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <dos.h> 
#include "ion.h" 
 
 
void set_World_up(FILE *dta_fil, int load_fil) { 
static byte world_model[WO_SZ_Y][WO_SZ_X]; 
   char line[80]; 
   int c,c2; 
   if(load_fil) { 
      for(c=0; c<WO_SZ_Y; c++) { 
         fscanf(dta_fil,"%s",&line); 
         if(strlen(line)!=WO_SZ_X) 
            alarm("wrong line size in World",NULL,NULL); 
         for(c2=0; c2<WO_SZ_X; c2++) 
            world_model[c][c2] = line[c2]; 
         } 
      assert(c==WO_SZ_Y); 
      } 
   reset_generator(); 
   for(c=0; c<WO_SZ_Y; c++) 
      for(c2=0; c2<WO_SZ_X; c2++) 
         switch (world_model[c][c2]) { 
            case '0': 
            case '.':World[c][c2] = 0; break; //darkgray (empty) 
            case '1': 
            case '-':World[c][c2] = 1; break; //red (stone) 
            case '2': 
            case '+':World[c][c2] = 2; break; //green (free) 
            case '3': 
            case '*':World[c][c2] = 3; break; //blue  (food) 
            case '4':World[c][c2] = 4; break; //yellow 
            case '5':World[c][c2] = 5; break; //cyan 
            case '6':World[c][c2] = 6; break; //magenta 
            case '7':World[c][c2] = 7; break; //white 
            case 'r':World[c][c2] = rnd(3)+1; break; 
            case 's':World[c][c2] = rnd(4)+1; break; 
            case 't':World[c][c2] = rnd(5)+1; break; 
            case 'u':World[c][c2] = rnd(6)+1; break; 
            case 'v':World[c][c2] = rnd(7)+1; break; 
            case 'F':World[c][c2] = 2;        //frog's position 
                     Frog_po_y = c; 
                     Frog_po_x = c2; 
                     break; 
            case   0:if(!load_fil) {World[c][c2] = 0; break;} 
            default :alarm("unrecogniced char in World",NULL,NULL); 
            } 
}//set_World_up 
 
//************************************************ 
void reset(int noise) { 
   int c,c2; 
   for(c=0; c<MIO; c++) 
      if((RANGE[0][c]-RANGE[1][c] < 1) || 
         (RANGE[2][c]-RANGE[3][c] < 1)) { 
         alarm("\007 range top - range bottom <= 0",NULL,NULL); 
         exit(1); 
         } 
   Left    = 0.0; 
   Right   = 0.0; 
   Move    = 0.0; 
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   Gen     = 0; 
   Frog_po_x = 9; 
   Frog_po_y = 9; 
   TimePos = -1; 
   Direc   = 'n'; 
   set_World_up(0,0); //resets generator anyway 
   for(c=0; c<N_C; c++) { 
      //Type determined by struc.txt 
      State[c]   =  rnd(R_P_SPAN - 2) + 1;//initial states are random (!0) 
      Axon[c] = R_P_SPAN; //?? 
      WaveL[c] =  State[c];//rnd(R_P_SPAN - 2) + 1; 
      //SynNum is determined by struc.txt 
      Posflag[c] = 1; 
      TotalIo[c] = 0.0; 
      for(c2 = 0; c2<MIO; c2++) 
         Cell_Io[c][c2] = 0.0; 
      for(c2=0; c2<MAX_SYN; c2++) { 
         if(SynPos[c][c2] >= 0) 
            SynWei [c][c2] = (rnd(RANGE[2][SynType[c][c2]]- 
                                  RANGE[3][SynType[c][c2]])*0.01)+ 
                                 (RANGE[3][SynType[c][c2]]*0.01); 
         SyIo[c][c2] =  0.0; 
         } 
      } 
   if(noise) 
      for(c=0; c<N_C; c++) 
         for(c2=0; c2<SynNum[c]; c2++) { 
            SyIo[c][c2] = (rnd(RANGE[0][SynType[c][c2]] - 
                               RANGE[1][SynType[c][c2]])*0.01) + 
                          (RANGE[1][SynType[c][c2]]*0.01); 
            Cell_Io[c][SynType[c][c2]] += SyIo[c][c2]; 
            } 
   accu_synch(0); 
   accu_synch(1); 
}//reset 
 
//************************************************ 
void read_nei(int reads,int readed,int syntype) { //>read--- 
   Syn    [reads][SynNum[reads]] = &Axon[readed]; //no check?? 
   SynType[reads][SynNum[reads]] = (syntype < 0) ? Type[readed] : syntype; 
   SynPos [reads][SynNum[reads]] = readed; 
   NeiSta [reads][readed] = (byte)SynType[reads][SynNum[reads]]; 
   ++SynNum[reads]; 
}//read_nei 
 
//************************************************ 
int wrap(int first, int last, int pos) { 
   if (pos < first) pos += (last - first + 1); 
      else if (pos > last)  pos -= (last - first + 1); 
   return(pos); 
}//wrap 
 
//************************************************ 
void loc_nei(int first, int last, int syn_typ, //local neighborhood 
             int n0, int n1, int n2, int n3) { 
   const int lOC_NEIS = 4; 
   int c,c2, 
       nei_pos, 
       nei[lOC_NEIS]; 
   nei[0] = n0; nei[1] = n1; nei[2] = n2; nei[3] = n3; 
   if( (first < 0) || (last >= N_C) || (first >= last) ) { 
      printf("\n\007 out of range in loc_nei "); 
      printf("\nfirst %sd  last %2d  type %2d    %3d  %3d  %3d  %3d", 
             first,last,syn_typ,n0,n1,n2,n3); 
      getch(); 
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      return; 
      } 
   for(c=0; c<lOC_NEIS; c++) 
      if( abs(nei[c]) > (last-first) ) { 
         printf("\n\007 neighbor distance bigger than target size "); 
         getch(); 
         return; 
         } 
   for(c=first; c<=last; c++) 
      for(c2=0; c2<lOC_NEIS; c2++) { 
         if(!nei[c2]) continue; //neighbor position == 0 -> no synapse 
         if(SynNum[c] + 1 >= MAX_SYN) { 
            printf("\n\007 too many neighbors on cell %2d",c); 
            getch(); 
            continue;} 
         nei_pos = wrap(first, last, c+nei[c2]); 
         if(NeiSta[c][nei_pos] != 0) { 
            printf("\n  taken: cell %d   neighbor %d (press a key)" 
                   ,c,nei_pos); 
            getch(); 
            continue;} 
         Syn    [c][SynNum[c]] = &Axon[nei_pos]; //?? 
         SynType[c][SynNum[c]] = (syn_typ < 0) ? Type[nei_pos] : syn_typ; 
         SynPos [c][SynNum[c]] = nei_pos; 
         NeiSta[c][nei_pos] = (byte) SynType[c][SynNum[c]]; 
         ++SynNum[c]; 
         } 
}//loc_nei 
 
           //zone begin,id end ,quantity of syn,id type,neighbor's address 
//************************************************ 
void rnd_nei(int z_b, int z_e, int s_q, int s_t, int n_b, int n_e) { 
   int c,c2, 
       target_size, 
       tempi; 
   target_size = n_e - n_b + 1; 
   for(c=z_b; c <= z_e; c++) { 
      if(SynNum[c]+s_q >= MAX_SYN) { 
         printf("\n\007too many synapses in cell:%d (%d)",c,SynNum[c]); 
         printf("  %d %d %d %d %d %d",z_b,z_e,s_q,s_t,n_b,n_e); 
         getch(); 
         continue; 
         } 
      else 
         for(c2=SynNum[c]; c2<SynNum[c]+s_q; c2++) { 
            do tempi = rnd(target_size); 
               while (NeiSta[c][n_b + tempi]); 
            Syn[c][c2] = &Axon [n_b + tempi]; //?? 
            //if s_t < 0 take the Type of neighbor 
            SynType[c][c2] = (s_t < 0) ? Type[n_b + tempi] : s_t; 
            SynPos [c][c2] = n_b + tempi; 
            NeiSta[c][n_b + tempi] = (byte) SynType[c][c2]; 
            } 
      SynNum[c] += s_q; 
      } 
}//rnd_nei 
 
//************************************************ 
//produce input from own state, sensors, constant, etc. 
void virtual_syn(int first,int last,int syn_typ,float weight,char *target) { 
char target_name[31][20] = {"on\0",                // 0 
                            "state\0",             // 1 
                            "wave_length\0",       // 2 
                            "far_left_red\0",      // 3 
                            "far_left_green\0",    // 4 
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                            "far_left_blue\0",     // 5 
                            "far_middle_red\0",    // 6 
                            "far_middle_green\0",  // 7 
                            "far_middle_blue\0",   // 8 
                            "far_right_red\0",     // 9 
                            "far_right_green\0",   //10 
                            "far_right_blue\0",    //11 
                            "near_left_red\0",     //12 
                            "near_left_green\0",   //13 
                            "near_left_blue\0",    //14 
                            "near_middle_red\0",   //15 
                            "near_middle_green\0", //16 
                            "near_middle_blue\0",  //17 
                            "near_right_red\0",    //18 
                            "near_right_green\0",  //19 
                            "near_right_blue\0",   //20 
                            "side_left_red\0",     //21 
                            "side_left_green\0",   //22 
                            "side_left_blue\0",    //23 
                            "side_right_red\0",    //24 
                            "side_right_green\0",  //25 
                            "side_right_blue\0",   //26 
                            "north\0",             //27 
                            "east\0",              //28 
                            "south\0",             //29 
                            "west\0"};             //30 
int recogniced = 0, 
    c,c2; 
    
   if( (first < 0) || (last >= N_C) || (first > last) ) { 
      printf("\n\007 out of range in virtual syn "); 
      printf("\nfirst %2d  last %2d  type %2d weight %f target %s", 
             first,last,syn_typ,weight,target); 
      getch(); 
      return; 
      } 
   if((syn_typ < 0) || (syn_typ >= MIO)) { 
      printf("\n\007 wrong NT type in virtual syn "); 
      printf("\nfirst %2d  last %2d  type %2d weight %f target %s", 
             first,last,syn_typ,weight,target); 
      getch(); 
      return; 
      } 
       
   for(c=0; c<31; c++) 
      if( strcmp(target,target_name[c]) == 0 ) { 
         recogniced = 1; 
         if(Interactive_mode) printf("\n%s",target); 
         for(c2=first; c2<=last; c2++) { 
            if(SynNum[c2] + 1 >= MAX_SYN) { 
               printf("\n\007 too many neighbors on cell %2d",c); 
               getch(); 
               continue; 
               } 
            else switch(c) { 
               case  0:SynPos [c2][SynNum[c2]] = -2; 
                       //compiler bitches for lost of "const" 
                       Syn    [c2][SynNum[c2]] = &ON; 
                       break; 
               case  1:SynPos [c2][SynNum[c2]] = -3; 
                       Syn    [c2][SynNum[c2]] = &State[c2]; 
                       break; 
               case  2:SynPos [c2][SynNum[c2]] = -4; 
                       Syn    [c2][SynNum[c2]] = &WaveL[c2];//??bug: never 0 
                       break; 
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               case  3:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[1][1]; 
                       break; 
               case  4:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[1][2]; 
                       break; 
               case  5:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[1][3]; 
                       break; 
               case  6:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[2][1]; 
                       break; 
               case  7:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[2][2]; 
                       break; 
               case  8:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[2][3]; 
                       break; 
               case  9:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[3][1]; 
                       break; 
               case 10:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[3][2]; 
                       break; 
               case 11:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[3][3]; 
                       break; 
               case 12:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[4][1]; 
                       break; 
               case 13:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[4][2]; 
                       break; 
               case 14:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[4][3]; 
                       break; 
               case 15:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[5][1]; 
                       break; 
               case 16:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[5][2]; 
                       break; 
               case 17:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[5][3]; 
                       break; 
               case 18:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[6][1]; 
                       break; 
               case 19:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[6][2]; 
                       break; 
               case 20:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[6][3]; 
                       break; 
               case 21:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[7][1]; 
                       break; 
               case 22:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[7][2]; 
                       break; 
               case 23:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[7][3]; 
                       break; 
               case 24:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[8][1]; 
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                       break; 
               case 25:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[8][2]; 
                       break; 
               case 26:SynPos [c2][SynNum[c2]] = -5; 
                       Syn    [c2][SynNum[c2]] = &Pix[8][3]; 
                       break; 
               case 27:SynPos [c2][SynNum[c2]] = -6; 
                       Syn    [c2][SynNum[c2]] = &North; 
                       break; 
               case 28:SynPos [c2][SynNum[c2]] = -6; 
                       Syn    [c2][SynNum[c2]] = &East; 
                       break; 
               case 29:SynPos [c2][SynNum[c2]] = -6; 
                       Syn    [c2][SynNum[c2]] = &South; 
                       break; 
               case 30:SynPos [c2][SynNum[c2]] = -6; 
                       Syn    [c2][SynNum[c2]] = &West; 
                       break; 
               default:alarm("\nunrecogniced virtual synapse target",NULL,NULL); 
               } 
            SynType[c2][SynNum[c2]] = syn_typ; 
            SynWei [c2][SynNum[c2]] = weight; 
            ++SynNum[c2]; 
            } 
         } 
   if(!recogniced) { 
      printf("\n\007 unrecogniced target in virtual syn. "); 
      printf("\nfirst %2d  last %2d  type %2d weight %f target %s", 
             first,last,syn_typ,weight,target); 
      getch(); 
      return; 
      } 
}//virtual_syn 
 
 
//************************************************ 
int load_struc_file(char *struc_file_name) { 
#define cODE_SIZE 15 //0..13, 14 == '\0' 
#define pAS_SZ   256 //pascal size of strings 
#define mAX_CODE  22 //total of recogniced codes 
   FILE *struc_fil; 
   char big_line[pAS_SZ] = "\0"; 
   char code [cODE_SIZE] = "\0"; 
   char code_list[mAX_CODE][cODE_SIZE] = { ">Eeg0---------\0", // 0 
                                           ">Eeg1---------\0", // 1 
                                           ">Eeg2---------\0", // 2 
                                           ">Eeg3---------\0", // 3 
                                           ">PLEAdummy----\0", // 4 
                                           ">PAINdummy----\0", // 5 
                                           ">area---------\0", // 6 
                                           ">NtCol--------\0", // 7 
                                           ">World--------\0", // 8 
                                           ">Type---------\0", // 9 
                                           ">readdummy----\0", //10 
                                           ">loc_nei------\0", //11 
                                           ">rnd_nei------\0", //12 
                                           ">stop---------\0", //13 
                                           ">virtual_syn--\0", //14 
                                           ">eastdummy----\0", //15 
                                           ">southdummy---\0", //16 
                                           ">westdummy----\0", //17 
                                           ">leftdummy----\0", //18 
                                           ">movedummy----\0", //19 
                                           ">rightdummy---\0", //20 
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                                           ">end.---------\0" }; 
   int dumch, 
       c,c2, 
       dum1,dum2,dum3,dum4,dum5,dum6,dum7; //dummy integer 1, 2, ...?? 
   float dumfl; 
   strcpy(big_line,struc_file_name); 
   if( (struc_fil = fopen(big_line,"r+")) == NULL) 
      while(1) { 
         printf("\n\n[q]->quit  [space bar]->type structure-file's name "); 
         dumch = getch(); 
         if((dumch == 'q')||(dumch =='Q')) return(1); 
         else { 
            printf("\n\nplease type [file_name.txt] [RETURN]: "); 
            scanf("%s",&big_line); 
            } 
         if( (struc_fil = fopen(big_line,"r+")) == NULL) 
            printf("\n\ncan't find file \"%s\"",big_line); 
         else break; 
         } 
   strcpy(STRUCFIL,big_line); 
   if(Interactive_mode) printf("\nloading structure file: %s",STRUCFIL); 
   do { 
      fgets(code,cODE_SIZE,struc_fil); 
      if(code[0] != '>') continue; 
      for(c=0; c<mAX_CODE; c++) 
         if( strcmp(code,code_list[c]) == 0 ) { 
            if(Interactive_mode) printf("\n%s",code); 
            switch(c) { 
               case  0:fscanf(struc_fil,"%d%d",&EegB[0],&EegE[0]); 
                       if(Interactive_mode) printf(" %3d %3d",EegB[0],EegE[0]); break; 
               case  1:fscanf(struc_fil,"%d%d",&EegB[1],&EegE[1]); 
                       if(Interactive_mode) printf(" %3d %3d",EegB[1],EegE[1]); break; 
               case  2:fscanf(struc_fil,"%d%d",&EegB[2],&EegE[2]); 
                       if(Interactive_mode) printf(" %3d %3d",EegB[2],EegE[2]); break; 
               case  3:fscanf(struc_fil,"%d%d",&EegB[3],&EegE[3]); 
                       if(Interactive_mode) printf(" %3d %3d",EegB[3],EegE[3]); break; 
               case  4:break; 
               case  5:break; 
               case  6:for(c2=0; c2<AREAS; c2++) { 
                          fscanf(struc_fil,"%d%d %s", 
                                 &AREA_B[c2], 
                                 &AREA_E[c2], 
                                 &AREA_NAME[c2]); 
                          } 
                       break; //ex-GREY 
               case  7:fgets(big_line,pAS_SZ,struc_fil); 
                       if(Interactive_mode) printf("\n"); 
                       for(c2=0; c2<MIO; c2++) { 
                          fscanf(struc_fil,"%d",&NtCol[c2]); 
                          if(Interactive_mode) printf("%4d",NtCol[c2]); 
                          } 
                        break; 
               case  8:set_World_up(struc_fil,1); break; 
               case  9:fscanf(struc_fil,"%d%d%d",&dum1,&dum2,&dum3); 
                       if(Interactive_mode) printf(" %3d %3d %3d ",dum1,dum2,dum3); 
                       if( (dum3 < 0) || (dum3 >= MIO) ) { 
                          if(Interactive_mode) printf("\n\007wrong cell type: 
%d\n",dum3); 
                          getch(); 
                          break; 
                          } 
                       for(c2=dum1; c2 <= dum2; c2++) 
                          Type[c2] = dum3; 
                       break; 
               case 10:fscanf(struc_fil,"%d%d%d",&dum1,&dum2,&dum3); 
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                       if(Interactive_mode) printf(" %3d %3d %3d",dum1,dum2,dum3); 
                       read_nei(dum1,dum2,dum3); 
                       break; 
               case 11:fscanf(struc_fil,"%d%d%d%d%d%d%d", 
                          &dum1,&dum2,&dum3,&dum4,&dum5,&dum6,&dum7); 
                       if(Interactive_mode) printf(" %3d %3d %3d %3d %3d %3d %3d", 
                          dum1,dum2,dum3,dum4,dum5,dum6,dum7); 
                       loc_nei(dum1,dum2,dum3,dum4,dum5,dum6,dum7); 
                       break; 
               case 12:fscanf(struc_fil,"%d%d%d%d%d%d", 
                          &dum1,&dum2,&dum3,&dum4,&dum5,&dum6); 
                       if(Interactive_mode) printf(" %3d %3d %3d %3d %3d %3d", 
                          dum1,dum2,dum3,dum4,dum5,dum6); 
                       rnd_nei(dum1,dum2,dum3,dum4,dum5,dum6) ; 
                       break; 
               case 13:if(Interactive_mode) printf("    press any key"); 
                       getch(); 
                       break; 
               case 14:fscanf(struc_fil,"%d%d%d%f %s", 
                          &dum1,&dum2,&dum3,&dumfl,&big_line); 
                       if(Interactive_mode) printf(" %3d %3d %3d %f %s", 
                          dum1,dum2,dum3,dumfl,big_line); 
                       virtual_syn(dum1,dum2,dum3,dumfl,big_line); 
                       break; 
               case 15:break; 
               case 16:break; 
               case 17:break; 
               case 18:break; 
               case 19:break; 
               case 20:break; 
               case 21:if(Interactive_mode) { 
                          printf("\n  END OF DATA press any key"); 
                          getch(); 
                          clrscr(); 
                          } 
                       goto terminate; 
               } 
         } 
      }while(1); 
   terminate: 
   fclose(struc_fil); 
   return(0); 
}//struc_file 
 
 
//************************************************ 
int load_param_file(char *param_file_name) { 
#define cODE_SIZE 15 
#define mAXCODES  22 
#define bIG      256 
const float fT = 100.01; 
FILE *in_fil; 
char cODE_LIST[mAXCODES][cODE_SIZE] = { ">HL_IOG-------\0",  // 0 
                                        ">RANGE--------\0",  // 1 
                                        ">dummy2-------\0",  // 2 
                                        ">dummy3-------\0",  // 3 
                                        ">NT_TH--------\0",  // 4 
                                        ">NT_PO--------\0",  // 5 
                                        ">MASTER_DELAY-\0",  // 6 
                                        ">DELAY--------\0",  // 7 
                                        ">dummy8-------\0",  // 8 
                                        ">Spontaneous--\0",  // 9 
                                        ">dummy10------\0",  //10 
                                        ">dummy11------\0",  //11 
                                        ">dummy12------\0",  //12 
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                                        ">MOTOR_TH-----\0",  //13 
                                        ">REF_PER------\0",  //14 
                                        ">REF_PER_CELL-\0",  //15 
                                        ">EQUALIZE-----\0",  //16 
                                        ">dummy17------\0",  //17 
                                        ">FIXDECAY-----\0",  //18 
                                        ">dummy19------\0",  //19 
                                        ">dummy20------\0",  //20 
                                        ">end.---------\0" };//21 
char code[cODE_SIZE] = "\0", 
     big_line[bIG]   = "\0"; 
int missing[mAXCODES], 
    abort_flag = 0, 
    //auto_flag = 1, 
    dumch, 
    c,c2,c3; 
 
   for(c=0; c<mAXCODES; missing[c]=0, c++) ; 
   //set dummies as read 
   missing[ 2] = 1; 
   missing[ 3] = 1; 
   missing[ 8] = 1; 
   missing[10] = 1; 
   missing[11] = 1; 
   missing[12] = 1; 
   missing[17] = 1; 
   missing[19] = 1; 
   missing[20] = 1; 
//   gotoxy(1,1); 
   strcpy(big_line,param_file_name); 
   if( (in_fil = fopen(big_line,"r+")) == NULL) 
      while(1) { 
         //auto_flag = 0; 
         printf("\n\n[q]->quit  [space bar]->type parameters-file's name "); 
         dumch = getch(); 
         if((dumch == 'q')||(dumch =='Q')) 
            return(1); //goto 
         else { 
            printf("\n\nplease type [file_name.txt] [RETURN]: "); 
            scanf("%s",&big_line); 
            } 
         if( (in_fil = fopen(big_line,"r+")) == NULL) 
            printf("\n\ncan't find file \"%s\"",big_line); 
         else break; 
         } 
   strcpy(PARAMFIL,big_line); 
   if(Interactive_mode) printf("\nloading parameter file: %s",PARAMFIL); 
   while(!feof(in_fil)) { 
      strcpy(code, "\0"); 
      fgets(code,cODE_SIZE,in_fil); 
      if(code[0] != '>') continue;  //ignore lines not beginning with '>' 
      for(c=0; c<mAXCODES; c++) 
         if( strcmp(code,cODE_LIST[c]) == 0 ) { 
            missing[c]++; 
            if(Interactive_mode) printf("\n%s",code);         //print heading 
            fgets(big_line,bIG,in_fil); //read rest of the line 
            switch(c) { 
               case  0:for(c2=0; c2<MIO; c2++) { 
                          fscanf(in_fil,"%d",&HL_IOG[c2]); 
                          if(Interactive_mode) printf(" %4d ",HL_IOG[c2]); 
                          } 
                       break; 
               case  1:if(Interactive_mode) printf("\n"); 
                       for(c2=0; c2<MIO; c2++) { 
                          fscanf(in_fil,"%d",&RANGE[0][c2]); 
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                          if(Interactive_mode) printf(" %4d ",RANGE[0][c2]) ; 
                          } 
                       if(Interactive_mode) printf("\n"); 
                       for(c2=0; c2<MIO; c2++) { 
                          fscanf(in_fil,"%d",&RANGE[1][c2]); 
                          if(Interactive_mode) printf(" %4d ",RANGE[1][c2]) ; 
                          } 
                       if(Interactive_mode) printf("\n"); 
                       for(c2=0; c2<MIO; c2++) { 
                          fscanf(in_fil,"%d",&RANGE[2][c2]); 
                          if(Interactive_mode) printf(" %4d ",RANGE[2][c2]) ; 
                          } 
                       if(Interactive_mode) printf("\n"); 
                       for(c2=0; c2<MIO; c2++) { 
                          fscanf(in_fil,"%d",&RANGE[3][c2]); 
                          if(Interactive_mode) printf(" %4d ",RANGE[3][c2]) ; 
                          } 
                       break; 
               case  2:break; 
               case  3:break; 
               case  4:for(c2=0; c2<MIO; c2++) { 
                          fscanf(in_fil,"%lf",&NT_TH[c2]); 
                          if(Interactive_mode) printf(" %4d ",(int)(NT_TH[c2] * fT) ); 
                          } 
                       break; 
               case  5:for(c2=0; c2<MIO; c2++) { 
                          fscanf(in_fil,"%lf",&NT_PO[c2]); 
                          if(Interactive_mode) printf(" %4d ",(int)(NT_PO[c2] * fT) ); 
                          } 
                       break; 
               case  6:fscanf(in_fil,"%d",&MASTER_DELAY); 
                       if(Interactive_mode) printf(" %4d",MASTER_DELAY); 
                       --MASTER_DELAY; 
                       break; 
               case  7:for(c2=0; c2<MIO; c2++) { 
                          fscanf(in_fil,"%d",&DELAY[c2]); 
                          if(Interactive_mode) printf(" %4d ",DELAY[c2]); 
                          --DELAY[c2]; 
                          } 
                       break; 
               case  8:break; 
               case  9:fscanf(in_fil,"%d",&Spontaneous); 
                       if(Interactive_mode) printf(" %4d",Spontaneous); 
                       break; 
               case 10:break; 
               case 11:break; 
               case 12:break; 
               case 13:fscanf(in_fil,"%lf",&MOTOR_TH); 
                       if(Interactive_mode) printf(" %4d ",(int)(MOTOR_TH * fT) ); 
                       break; 
               case 14:for(c2=0; c2<MIO; c2++) { 
                          if(Interactive_mode) printf("\n"); 
                          for(c3=0; c3<R_P_SPAN; c3++) { 
                             fscanf(in_fil,"%lf",&REF_PER[c2][c3]); 
                             if(Interactive_mode) printf(" %3d",(int)(REF_PER[c2][c3] 
* 100.01)); 
                             } 
                          } 
                       break; 
               case 15:if(Interactive_mode) printf("\n"); 
                       for(c2=0; c2<R_P_SPAN; c2++) { 
                          fscanf(in_fil,"%lf",&REF_PER_CELL[c2]); 
                          if(Interactive_mode) printf(" %4.2lf ",REF_PER_CELL[c2]); 
                          } 
                       break; 
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               case 16:fscanf(in_fil,"%d",&EQUA); 
                       if(Interactive_mode) printf(" %4d ",EQUA); 
                       break; 
               case 17:break; 
               case 18:for(c2=0; c2<MIO; c2++) { 
                          if(Interactive_mode) printf("\n"); 
                          for(c3=0; c3<R_P_SPAN; c3++) { 
                             fscanf(in_fil,"%lf",&FIXDECAY[c2][c3]); 
                             if(Interactive_mode) printf(" %3d",(int)(FIXDECAY[c2][c3] 
* 100.01)); 
                             } 
                          } 
                       break; 
               case 19:break; 
               case 20:if(Interactive_mode) { 
                          printf("    press any key");//?? two stops & crash 
                          getch(); 
                          } 
                       break; 
               case 21:if(Interactive_mode) { 
                          printf("\n  END OF DATA press any key"); 
                          getch(); 
                          clrscr(); 
                          } 
                       break; 
               } 
            } 
      } 
   fclose(in_fil); 
   missing[16] = 1; //stop not required 
   for(c=0; c<mAXCODES; c++) 
      if(missing[c] != 1) { 
         abort_flag = 1; 
         printf("\n\n*** %s ",cODE_LIST[c]); 
         printf("missing, duplicated or bad formated ***\n"); 
         getch(); 
         } 
   if (abort_flag) return(1); else return(0); 
}//load_params 
 
//************************************************ 
int save_params(int interactive, char *genename) { 
#define bIG 256 
   const char *oUT_NAME  = "param.txt\0";     //default output file 
   FILE *out_fil; 
   char big_line[bIG] = "\0"; 
   int dumch,c,c2; 
 
   if(interactive) 
      while(1) { //***************saving**************** 
         strcpy(big_line,oUT_NAME); 
         clean_line(1,1); 
         printf("[RETURN]->save as %s   [x]->exit ",big_line); 
         printf("  [any letter]->type a file name "); 
         dumch = getch(); 
         if(dumch != 13) { //if not a [RETURN] 
            if((dumch == 'x')||(dumch == 'X')) 
               return(1); 
            else { 
               clean_line(1,1); 
               printf("please type [file name] [RETURN]  "); 
               scanf("%s",&big_line); 
               } 
            } 
         if( (out_fil = fopen(big_line,"w+")) == NULL) { 

 147



            clean_line(1,1); 
            printf("can't save file \"%s\"",big_line); 
            delay(2000); 
            } 
            else break; 
         } 
   else 
      if( (out_fil = fopen(genename,"w+")) == NULL) { 
         clean_line(1,1); 
         printf("can't save file \"%s\"",big_line); 
         delay(2000); 
         return(-1); 
         } 
 
   fprintf(out_fil,"/*\n>HL_IOG-------\n");  //0 
   for(c=0; c<MIO; c++) 
      fprintf(out_fil," %4d ",HL_IOG[c]); 
 
   fprintf(out_fil,"\n>RANGE--------\n");    //1 
   for(c=0; c<MIO; c++) 
      fprintf(out_fil," %4d ",RANGE[0][c]); 
   fprintf(out_fil,"\n"); 
   for(c=0; c<MIO; c++) 
      fprintf(out_fil," %4d ",RANGE[1][c]); 
   fprintf(out_fil,"\n"); 
   for(c=0; c<MIO; c++) 
      fprintf(out_fil," %4d ",RANGE[2][c]); 
      fprintf(out_fil,"\n"); 
   for(c=0; c<MIO; c++) 
      fprintf(out_fil," %4d ",RANGE[3][c]); 
 
   fprintf(out_fil,"\n>NT_TH--------\n");    //4 
   for(c=0; c<MIO; c++) 
      fprintf(out_fil," %7.4lf ",NT_TH[c]); 
 
   fprintf(out_fil,"\n>NT_PO--------\n");    //5 
   for(c=0; c<MIO; c++) 
      fprintf(out_fil," %7.4lf ",NT_PO[c]); 
 
   fprintf(out_fil,"\n>MASTER_DELAY-\n");    //6 
   fprintf(out_fil," %4d",MASTER_DELAY+1); 
 
   fprintf(out_fil,"\n>DELAY--------\n");    //7 
   for(c=0; c<MIO; c++) 
      fprintf(out_fil," %4d ",DELAY[c]+1); 
 
   fprintf(out_fil,"\n>Spontaneous--\n");    //9 
   fprintf(out_fil," %4d",Spontaneous); 
 
   fprintf(out_fil,"\n>MOTOR_TH-----\n");    //13 
   fprintf(out_fil," %1.4lf",MOTOR_TH); 
 
   fprintf(out_fil,"\n>REF_PER------\n");    //14 
   for(c=0; c<MIO; c++) { 
      for(c2=0; c2<R_P_SPAN; c2++) 
         fprintf(out_fil," %1.2lf",REF_PER[c][c2]); 
      fprintf(out_fil,"\n"); 
      } 
   fprintf(out_fil,"\n>REF_PER_CELL-\n");    //15 
   for(c2=0; c2<R_P_SPAN; c2++) 
      fprintf(out_fil," %4.2lf",REF_PER_CELL[c2]); 
   fprintf(out_fil,"\n"); 
    
   fprintf(out_fil,"\n>EQUALIZE-----\n");    //16 
   fprintf(out_fil," %d",EQUA); 
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   fprintf(out_fil,"\n>FIXDECAY-----\n");    //18 
   for(c=0; c<MIO; c++) { 
      for(c2=0; c2<R_P_SPAN; c2++) 
         fprintf(out_fil," %5.2lf",FIXDECAY[c][c2]); 
      fprintf(out_fil,"\n"); 
      } 
 
   fprintf(out_fil,"\n>end.---------\n*/");  //21 end 
   fclose(out_fil); 
   menu_line_tx(); 
   return(0); 
}//save_params 
 
//files.c last line 
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//menus.c first line 
 
#include <conio.h>    //gotoxy getch 
#include <string.h>   //strcpy strlen 
#include <dos.h>      //delay 
#include <grx20.h>    //outtextxy 
#include "ion.h" 
 
char dumline[81]; 
 
//************************************************ 
void clean_line(int first, int last) { 
int c; 
   dumline[0] = 'ú'; 
   for(c=1; c<79; c++) dumline[c] = ' '; 
   dumline[79] = 'ú'; 
   dumline[80] = '\0'; 
   assert(first > 0 && last <= 25 && last >= first);//,"cleaning false line");//?? 
   for(c=first; c<=last; c++) { 
      gotoxy(1,c); 
      printf("%s",dumline); 
      } 
   gotoxy(1,first); 
}//clean_line 
 
//************************************************ 
void menu_line_tx(void) { 
   clean_line(1,1); 
   setcolor(DARKGRAY); //?? to print screen grabs on white paper 
   switch(DispUp) { 
      case 'B':printf(" Quit 0 1 2 3 bars Histo paraMs ref-Per"); 
               printf(" Fix-io cEll Neig Wei Reset saVe       "); 
               break; 
      case 'H':printf(" Quit 0 1 2 3 Bars histo paraMs ref-Per"); 
               printf(" Fix-io cEll Neig Wei Reset saVe       "); 
               break; 
      case 'M':printf(" Quit 0 1 2 3 Bars Histo params  ref-Per"); 
               printf(" Fix-io cEll Neig Wei Reset saVe RETURN"); 
               break; 
      case 'P':printf(" Quit 0 1 2 3 Bars Histo paraMs ref-per"); 
               printf(" Fix-io cEll Neig Wei Reset saVe RETURN"); 
               break; 
      case 'F':printf(" Quit 0 1 2 3 Bars Histo paraMs ref-Per"); 
               printf(" fix-io cEll Neig Wei Reset saVe RETURN"); 
               break; 
      default:alarm(" DispUp undefined",NULL,NULL); 
      } 
}//menu_line_tx 
 
void menu_line_gr(void) { 
   switch(DispUp) { 
      case 'B':sprintf(dumline," Quit 0 1 2 3 bars Histo paraMs ref-Per "); 
               GrTextXY(  0,  0, dumline, WHITE, BLACK); 
               sprintf(dumline,"Fix-io cEll Neig Wei Reset saVe       "); 
               GrTextXY(FX*34,  0,dumline , WHITE, BLACK); 
               break; 
      case 'H':sprintf(dumline," Quit 0 1 2 3 Bars histo paraMs ref-Per "); 
               GrTextXY(  0,  0, dumline, WHITE, BLACK); 
               sprintf(dumline,"Fix-io cEll Neig Wei Reset saVe       "); 
               GrTextXY(FX*34,  0,dumline , WHITE, BLACK); 
               break; 
      case 'M':sprintf(dumline," Quit 0 1 2 3 Bars Histo params ref-Per "); 
               GrTextXY(  0,  0,dumline , WHITE, BLACK); 
               sprintf(dumline,"Fix-io cEll Neig Wei Reset saVe RETURN"); 
               GrTextXY(FX*34,  0,dumline , WHITE, BLACK); 
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               break; 
      case 'P':sprintf(dumline," Quit 0 1 2 3 Bars Histo paraMs ref-per "); 
               GrTextXY(  0,  0,dumline , WHITE, BLACK); 
               sprintf(dumline,"Fix-io cEll Neig Wei Reset saVe RETURN"); 
               GrTextXY(FX*34,  0,dumline , WHITE, BLACK); 
               break; 
      case 'F':sprintf(dumline," Quit 0 1 2 3 Bars Histo paraMs ref-Per "); 
               GrTextXY(  0,  0,dumline , WHITE, BLACK); 
               sprintf(dumline,"fix-io cEll Neig Wei Reset saVe RETURN"); 
               GrTextXY(FX*34,  0,dumline , WHITE, BLACK); 
               break; 
      default:alarm(" DispUp undefined",NULL,NULL); 
      } 
}//menu_line_gr 
 
 
//************************************************ 
double ask_double(char message[],double min,double max,double old) { 
double tempd = 0.0; 
   clean_line(1,1); 
   printf("%s min:%1.3lf max:%1.3lf actual:%1.3lf new: ",message,min,max,old); 
   gets(dumline); 
   if(dumline[0] =='\0') { menu_line_tx(); return(old); } 
      else { 
      sscanf(dumline,"%lf",&tempd); 
      menu_line_tx(); 
      if(tempd<min || tempd>max) return(old); else return(tempd); 
      } 
}//ask_double 
 
//************************************************ 
int ask_int(char message[],int min,int max,int old) { 
int tempi = 0; 
   clean_line(1,1); 
   printf("%s min:%d max:%d actual:%d new: ",message,min,max,old); 
   gets(dumline); 
   if(dumline[0] =='\0') { menu_line_tx(); return(old); } 
      else { 
      sscanf(dumline,"%d",&tempi); 
      menu_line_tx(); 
      if(tempi<min || tempi>max) return(old); else return(tempi); 
      } 
}//ask_int 
 
 
//************************************************ 
int change_cell() { 
   int temp,c; 
   gotoxy( 7,2); printf("®91"); 
   gotoxy(19,2); printf("®92"); 
   gotoxy(30,2); printf("®93"); 
   gotoxy(45,2); printf("®94"); 
   for(c=0; c<MIO; c++) {gotoxy(c*9+11,4); printf("®%d1",c); } 
   temp = ask_int("type the digits after '®' ",1,94,0); 
   return(temp); 
}//change_cell 
 
//************************************************ 
void show_syn(int cell, int begin, int tempi) { 
const float fT = 1.0; 
   int c; 
   printf("\n\nTY"); 
   for(c=begin; c<tempi; c++) 
      printf("%7d",SynType[cell][c]); 
   printf("\nNE"); 
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   for(c=begin; c<tempi; c++) 
      printf("%7d",SynPos[cell][c]); 
   printf("\nIO"); 
   for(c=begin; c<tempi; c++) 
      printf("% 6.4f",SyIo[cell][c] * fT); 
   printf("\nWE"); 
   for(c=begin; c<tempi; c++) 
      printf("% 6.4f",SynWei[cell][c] * fT); 
}//show_syn 
 
//************************************************ 
void show_cell(int cell) { 
   double ntinploc[MIO]; //nt input local-var 
   int c = 0, tempi = 0, returned = 0, dumch = '-'; 
 
   GrSetMode(GR_default_text); 
 
   do { 
      clean_line(1,25); 
      gotoxy(1,1); 
      if(cell < 0) cell += N_C; 
         else if(cell >= N_C) cell -= N_C; 
      printf("cell %2d®[cursor]    [return]®changes   ",cell); 
      printf("[space]®exit   generation: %d",Gen); 
      printf("\ntype %d    state %2d    axon %2d", 
             Type[cell],State[cell],Axon[cell]); 
      printf("    w.length %2d    syn-num %2d    +-%d  total%6.3f", 
             WaveL[cell],SynNum[cell],Posflag[cell],TotalIo[cell]); 
      printf("\n     [0]      [1]      [2]      [3]"); 
      printf("      [4]      [5]      [6]      [7]"); 
      printf("\nIO"); 
      for(c=0; c<MIO; c++) { 
         printf("  %6.3f ",Cell_Io[cell][c]*SynEq[cell][c]); 
         ntinploc[c] = 0.0; 
         } 
          
      printf("\nio");               //debug 
      for(c=0; c<SynNum[cell]; c++) 
         ntinploc[SynType[cell][c]] += SyIo[cell][c]; 
      for(c=0; c<MIO; c++) 
         printf(" %6.4f",ntinploc[c]); 
      if(SynNum[cell] > 0) { 
         tempi = (SynNum[cell] > 10) ? 10 : SynNum[cell]; 
         show_syn(cell, 0,tempi); 
         } 
      if(SynNum[cell] > 10) { 
         tempi = (SynNum[cell] > 20) ? 20 : SynNum[cell]; 
         show_syn(cell,10,tempi); 
         } 
      if(SynNum[cell] > 20) { 
         tempi = (SynNum[cell] > 30) ? 30 : SynNum[cell]; 
         show_syn(cell,20,tempi); 
         } 
      if(SynNum[cell] > 30) { 
         tempi = (SynNum[cell] > 40) ? 40 : SynNum[cell]; 
         show_syn(cell,30,tempi); 
         } 
      dumch = getch(); 
      if(dumch==0)//double-byte char 
         switch(getch()) { 
            case 72: cell -= 10; break; 
            case 77: cell++;     break; 
            case 80: cell += 10; break; 
            case 75: cell--;     break; 
            } 
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         else if(dumch==13) 
            switch(returned=change_cell()) { 
               case  1: case 11: case 21: case 31: 
               case 41: case 51: case 61: case 71: 
                       Cell_Io[cell][returned/10] = 
                          ask_double("NT/IOn",0.0,1000.0, 
                          Cell_Io[cell][returned/10] * 
                          SynEq[cell][returned/10]) 
                          / SynEq[cell][returned/10]; 
                       break; 
               case  2: case 12: case 22: case 32: 
               case 42: case 52: case 62: case 72: 
                       break; 
               case 91:Type[cell] = ask_int("cell type:",2,MIO,Type[cell]); 
                       break; 
               case 92:State[cell] = 
                          ask_int("cell state:",0,1000,State[cell]); 
                       break; 
               case 93:Axon[cell] = 
                          ask_int("axon state:",0,R_P_SPAN,Axon[cell]); 
                       break; 
               case 94:WaveL[cell] = 
                          ask_int("wavelength:",1,1000,WaveL[cell]); 
                       break; 
               default:clean_line(1,1); 
                       printf("DOES NOT COMPUTE"); 
                       delay(1000); 
                       menu_line_tx(); 
               } 
            else if(dumch == ' ') break; 
      } 
      while (1); 
   start_graphics(); 
   plot_World(); 
   show_LMRG(); 
}//show_cell 
 
//************************************************ 
void def_menu_gr(void) {  //default menu, parameters 
const int lAST_COL = 400; 
char line[81]="\0"; 
int c; 
 
   for(c=0; c<MIO; c++) { 
      sprintf(line,"%d   %4d  %1.4f  %6.3f  %1.3f  %2d", 
         c,HL_IOG[c],HL_IO[c],NT_PO[c],NT_TH[c],DELAY[c]+1); 
      GrTextXY(0,(FY*c)+(2*FY),line,WHITE,BLACK); 
      switch (c) { 
         case 0:sprintf(line,"  %4.3lf  moto",MOTOR_TH); 
                GrTextXY(lAST_COL,(FY*c)+(2*FY),line,WHITE,BLACK);break; 
         case 1:sprintf(line," %3d    delay",MASTER_DELAY+1); 
                GrTextXY(lAST_COL,(FY*c)+(2*FY),line,WHITE,BLACK);break; 
         case 2:sprintf(line," %3d  Spontan",Spontaneous); 
                GrTextXY(lAST_COL,(FY*c)+(2*FY),line,WHITE,BLACK);break; 
         case 3:sprintf(line,"   %d     equa",EQUA); 
                GrTextXY(lAST_COL,(FY*c)+(2*FY),line,WHITE,BLACK);break; 
         } 
      } 
   sprintf(line,"  %s",STRUCFIL); 
   GrTextXY(lAST_COL,(FY*6)+(2*FY),line,WHITE,BLACK); 
   sprintf(line,"  %s",PARAMFIL); 
   GrTextXY(lAST_COL,(FY*7)+(2*FY),line,WHITE,BLACK); 
   sprintf(line, 
      "IO  «l-g   «l-f     pow   thres  del"); 
   GrTextXY(0,FY,line,WHITE,BLACK); 
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   menu_line_gr(); 
}//def_menu_gr 
 
 
//************************************************ 
void show_table(int x,int y) { 
   int c,c2; 
   clean_line(2,11); 
   switch (DispUp) { 
      case 'P':for(printf("y:IO    x:time-step"), c=0; c<y; c++) { 
                  printf("\n%d)",c); 
                  for(c2=0; c2<x; c2++) 
                     if(REF_PER[c][c2] == 0.0) printf(" 0.0 "); 
                        else printf(" %1.2lf",REF_PER[c][c2]); 
                  } 
               for(printf("\n  "), c=0; c<x; c++) 
                  if(c<10) printf(" [0%d]",c); 
                  else printf(" [%2d]",c); 
               printf("\nC8"); 
               for(c2=0; c2<x; c2++) 
                  if(REF_PER_CELL[c2] == 0.0) printf(" 0.0 "); 
                  else printf(" %1.2lf",REF_PER_CELL[c2]); 
               break; 
      case 'F':for(printf("y:IO    x:time-step"), c=0; c<y; c++) { 
                  printf("\n%d",c); 
                  for(c2=0; c2<x; c2++) 
                     if(FIXDECAY[c][c2] == 0.0) printf("  0.0 "); 
                     else printf(" %5.2lf",FIXDECAY[c][c2]); 
                  } 
               for(printf("\n  "), c=0; c<x; c++) 
                  if(c<10) printf(" [0%d] ",c); 
                  else printf(" [%2d] ",c); 
               //printf("time"); 
               break; 
      } 
}//show_table 
 
//************************************************ 
void show_table_gr(int x,int y) { 
   int c,c2; 
   switch (DispUp) { 
      case 'P':sprintf(dumline,"y:IO    x:time-step"); 
               GrTextXY(0,FY,dumline,WHITE,BLACK); 
               for( c=0; c<y; c++) { 
                  sprintf(dumline,"%d)",c); 
                  GrTextXY(0,(FY*c)+(FY*2),dumline,WHITE,BLACK); 
                  for(c2=0; c2<x; c2++) { 
                     if(REF_PER[c][c2] == 0.0) sprintf(dumline," 0.0 "); 
                        else sprintf(dumline," %1.2lf",REF_PER[c][c2]); 
                     GrTextXY((50*c2)+15,(FY*c)+(FY*2),dumline,WHITE,BLACK); 
                     } 
                  } 
               for(c=0; c<x; c++) { 
                  if(c<10) sprintf(dumline," [0%d]",c); 
                  else sprintf(dumline," [%2d]",c); 
                  GrTextXY((50*c)+15,(FY*10),dumline,WHITE,BLACK); 
                  } 
               sprintf(dumline,"C  "); 
               GrTextXY(0,FY*(y+3),dumline,WHITE,BLACK); 
               for(c2=0; c2<x; c2++) { 
                  if(REF_PER_CELL[c2] == 0.0) sprintf(dumline," 0.0 "); 
                  else sprintf(dumline," %1.2lf",REF_PER_CELL[c2]); 
                  GrTextXY((50*c2)+15,(FY*(y+3)),dumline,WHITE,BLACK); 
                  } 
               break; 
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      case 'F':sprintf(dumline,"y:IO    x:time-step"); 
               GrTextXY(0,FY,dumline,WHITE,BLACK); 
               for( c=0; c<y; c++) { 
                  sprintf(dumline,"%d)",c); 
                  GrTextXY(0,(FY*c)+(FY*2),dumline,WHITE,BLACK); 
                  for(c2=0; c2<x; c2++) { 
                     if(FIXDECAY[c][c2] == 0.0) sprintf(dumline,"  0.0 "); 
                        else sprintf(dumline," %5.2lf",FIXDECAY[c][c2]); 
                     GrTextXY((50*c2)+15,(FY*c)+(FY*2),dumline,WHITE,BLACK); 
                     } 
                  } 
               for(c=0; c<x; c++) { 
                  if(c<10) sprintf(dumline," [0%d]",c); 
                  else sprintf(dumline," [%2d]",c); 
                  GrTextXY((50*c)+20,(FY*10),dumline,WHITE,BLACK); 
                  } 
               break; 
      } 
}//show_table_gr 
 
//************************************************ 
void display_up(void) { 
   switch(DispUp) { 
      case 'B':bars(); break; 
      case 'H':histogram(1); 
               synchro_stats(); 
               break; 
      case 'M':def_menu_gr(); break; 
      case 'P':show_table_gr(R_P_SPAN,MIO); break; 
      case 'F':show_table_gr(R_P_SPAN,MIO); break; 
      default:printf("DispUp invalid"); getch(); 
      } 
}//display_up 
 
//************************************************ 
void change_params(void) { 
int which,hidi,lodi,c,c2; //hi-digit, low-digit 
   which = hidi = lodi = 0; 
   gotoxy(1,2); 
   printf("IO  «l-g      «l-f        pow      thres     del"); 
   for(c=0; c<MIO; c++) { 
      gotoxy(1,c+3); 
      printf("%d   %4d®1%d  %1.3lf®2%d  %6.3lf®3%d  %1.3lf®4%d  %2d®5%d", 
             c,HL_IOG[c],c,HL_IO[c],c,NT_PO[c],c,NT_TH[c],c,DELAY[c]+1,c); 
      switch (c) { 
         case 1:printf("   %1.3lf  moto®1",MOTOR_TH);   break; 
         case 2:printf("   %3d   delay®2",MASTER_DELAY+1);break; 
         case 3:printf("   %3d Spontan®3",Spontaneous);break; 
         case 4:printf("     %d    equa®4",EQUA);       break; 
         } 
      } 
   printf("   %s",STRUCFIL); 
   printf("   %s",PARAMFIL); 
 
   clean_line(1,1); 
   which = ask_int("please type the digits after '®' ",1,57,0); 
   hidi = (int) which / 10; 
   lodi = which - (hidi*10); 
   switch(which) { 
      case 10: case 11: case 12: case 13: case 14: case 15: case 16: case 17: 
         HL_IOG[lodi] = ask_int("NT/IOn «-life generations",0,9999, 
                                HL_IOG[lodi]); 
         HL_IO[lodi] = half_life(HL_IOG[lodi]); 
         break; 
      case 20: case 21: case 22: case 23: case 24: case 25: case 26: case 27: 
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         HL_IO[lodi] = ask_double("NT/IOn «-life factor",0.0,1.0,HL_IO[lodi]); 
         break; 
      case 30: case 31: case 32: case 33: case 34: case 35: case 36: case 37: 
         NT_PO[lodi] = ask_double("NT/IOn power ",-1000.0,1000.0, 
                                   NT_PO[lodi]); 
         break; 
      case 40: case 41: case 42: case 43: case 44: case 45: case 46: case 47: 
         NT_TH[lodi] = ask_double("NT/IOn ThresHold ",0.0,1000.0,NT_TH[lodi]); 
         break; 
      case 50: case 51: case 52: case 53: case 54: case 55: case 56: case 57: 
         DELAY[lodi] = ask_int("NT/IOn axon Delay  ",1,R_P_SPAN-1,DELAY[lodi]+1)-1; 
         break; 
      case  1:MOTOR_TH = ask_double("motor threshold",0.0,1000.0,MOTOR_TH); 
              break; 
      case  2:MASTER_DELAY = ask_int("master axon delay", 
                                     1,R_P_SPAN-1,MASTER_DELAY+1)-1; 
 
              for(c=2; c<MIO; c++) DELAY[c] = MASTER_DELAY; 
              break; 
      case  3:Spontaneous = ask_int("spontaneous firing(one in x chances)", 
                                     0,999,Spontaneous); 
              break; 
      case  4:if(EQUA) { 
                 EQUA = 0; 
                 for(c=0; c<N_C; c++) 
                    for(c2=0; c2<MIO; c2++) 
                       SynEq[c][c2] = 1.0; 
                 } 
              else {EQUA = 1; setEqu();} 
              break; 
      default:clean_line(1,1); 
              printf("DOES NOT COMPUTE"); 
              delay(1000); 
      } 
   menu_line_tx(); 
}//change_params 
 
//************************************************ 
void change_table(void) { 
   int y,x; 
   if(DispUp == 'P') { 
      y = ask_int("          IO ",0,MIO , 0); 
      if((y<0) || (y>MIO)) return; 
      x = ask_int("          time step ",0,R_P_SPAN-1,0); 
      if((x<0) || (y>=R_P_SPAN)) return; 
      if(y<MIO) REF_PER[y][x] = ask_double("ion % crossing membran ", 
                                           0.0,100.0,REF_PER[y][x]); 
      if(y==MIO) REF_PER_CELL[x] = ask_double("cell's refractory period ", 
                                               0.0,100.0,REF_PER_CELL[x]); 
      } 
   if(DispUp == 'F') { 
      y = ask_int("          IO ",0,MIO-1 , 0); 
      if((y<0) || (y>=MIO)) return; 
      x = ask_int("          time step ",0,R_P_SPAN-1,0); 
      if((x<0) || (y>=R_P_SPAN)) return; 
      FIXDECAY[y][x] = ask_double("add/substract ion amount ", 
                                  -9.9,9.9,FIXDECAY[y][x]); 
      } 
}//change_table 
 
 
//************************************************ 
void warm_reset(int noise) { 
   char dum_str[80] = "\0"; 
   int c; 
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   clean_line(1,1); 
   printf(" [RETURN] \"%s\"   [s] new seed   [space] exit",SEED); 
   switch (getch()) { 
      case ' ':break; 
      case 13 :strcpy(SEED,"0123456789\0"); 
               reset(noise); 
               motor_navigation('f'); 
               break; 
      case 's':clean_line(1,1); 
               printf("type seed >= %d characters ",RNDSZ); 
               scanf("%s",&dum_str); 
               if(strlen(dum_str)<RNDSZ) break; 
               for(c=0; c<strlen(dum_str); c++) 
                  if(dum_str[c] < 0) 
                     goto do_nothing; 
               strcpy(SEED,dum_str); 
               gotoxy(50,1); 
               printf("readed: %s ",dum_str); 
               delay(1000); 
               reset(noise); 
               motor_navigation('f'); 
               break; 
      } 
   do_nothing: c++;///??? 
}//warm_reset 
 
//************************************************ 
long menu_gr(void) { 
   int opoy,opox,dumch; 
   while (1) { 
      dumch = '-'; 
      menu_line_gr(); 
      display_up(); 
      dumch = getch(); 
      switch( dumch ) { 
         case '0':return(1);           //1 Generation 
         case '1':return(10);          //10   Gen. 
         case '2':return(SHOW_GEN);    //one spike-plot screen 
         case '3':return(2147483647l); //2147483647 biggest signed long int 
 
         case 'C':if(getbkcolor() == 0) setbkcolor(LIGHTGRAY); 
                  else setbkcolor(BLACK);//??undocumented, just for screengrabs 
                  break; 
         case 'n':plot_nei(1); break; 
         case 'N':plot_nei(2); break; 
         case 'w':plot_wei(); 
                  plot_World(); 
                  show_LMRG(); 
                  break; 
         case 'b':DispUp = 'B'; break; 
         case 'h':DispUp = 'H'; break; 
         case 'e':show_cell(0); break; 
         case 13 :switch (DispUp) { //13=ASCII for RETURN 
                     case 'M':GrSetMode(GR_default_text); 
                              change_params(); 
                              start_graphics(); 
                              plot_World(); 
                              show_LMRG(); 
                              break; 
                     case 'P':GrSetMode(GR_default_text); 
                              show_table(R_P_SPAN,MIO); 
                              change_table(); 
                              start_graphics(); 
                              plot_World(); 
                              show_LMRG(); 
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                              break; 
                     case 'F':GrSetMode(GR_default_text); 
                              show_table(R_P_SPAN,MIO); 
                              change_table(); 
                              start_graphics(); 
                              plot_World(); 
                              show_LMRG(); 
                              break; 
                     } 
                  break; 
         case 'm':GrFilledBox(0,0,800,WO_PO_Y-2,BLACK); DispUp = 'M'; break; 
         case 'p':GrFilledBox(0,0,800,WO_PO_Y-2,BLACK); DispUp = 'P'; break; 
         case 'f':GrFilledBox(0,0,800,WO_PO_Y-2,BLACK); DispUp = 'F'; break; 
         case 'R'://GrSetMode(GR_default_text); ?? 
                  //warm_reset(1); 
                  reset(1); 
                  //start_graphics(); 
                  plot_World(); 
                  show_LMRG(); 
                  break; 
         case 'r'://GrSetMode(GR_default_text); 
                  //warm_reset(0); 
                  reset(0); 
                  //start_graphics(); 
                  plot_World(); 
                  show_LMRG(); 
                  break; 
         case 'v':GrSetMode(GR_default_text); //save parameters 
                  save_params(1,"params.txt"); 
                  start_graphics(); 
                  plot_World(); 
                  show_LMRG(); 
                  break; 
         case '+':motor_navigation('+'); break; //reinforce 
         case '-':motor_navigation('-'); break; //punish 
         case  0 :switch(getch()) { 
                     case  77:switch(Direc) {          //cursor right 
                                 case 'n':Direc = 'e'; break; 
                                 case 'e':Direc = 's'; break; 
                                 case 's':Direc = 'w'; break; 
                                 case 'w':Direc = 'n'; break; 
                                 } 
                              plot_frog(); 
                              break; 
                     case  72:opoy = Frog_po_y; opox = Frog_po_x; 
                              plot_n(WO_PO_X+((Frog_po_x-2)*WS), 
                                 WO_PO_Y+((Frog_po_y-2)*WS), 
                                 WS,WO_COL[World[Frog_po_y][Frog_po_x]]); 
                              switch(Direc) {          //cursor up 
                                 case 'n':--Frog_po_y; break; 
                                 case 'e':++Frog_po_x; break; 
                                 case 's':++Frog_po_y; break; 
                                 case 'w':--Frog_po_x; break; 
                                 } 
                              if( (Frog_po_y<2) || (Frog_po_y > WO_SZ_Y-3) || 
                                  (Frog_po_x<2) || (Frog_po_x > WO_SZ_X-3) ) { 
                                  Frog_po_y = opoy; 
                                  Frog_po_x = opox; 
                                  } 
                              plot_frog(); 
                              break; 
                     case  75:switch(Direc) {          //cursor left 
                                 case 'n':Direc = 'w'; break; 
                                 case 'e':Direc = 'n'; break; 
                                 case 's':Direc = 'e'; break; 
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                                 case 'w':Direc = 's'; break; 
                                 } 
                              plot_frog(); 
                              break; 
                     case  80:opoy = Frog_po_y; opox = Frog_po_x; 
                              plot_n(WO_PO_X+((Frog_po_x-2)*WS), 
                                 WO_PO_Y+((Frog_po_y-2)*WS), 
                                 WS,WO_COL[World[Frog_po_y][Frog_po_x]]); 
                              switch(Direc) {          //cursor up 
                                 case 'n':++Frog_po_y; break; 
                                 case 'e':--Frog_po_x; break; 
                                 case 's':--Frog_po_y; break; 
                                 case 'w':++Frog_po_x; break; 
                                 } 
                              if( (Frog_po_y<2) || (Frog_po_y > WO_SZ_Y-3) || 
                                  (Frog_po_x<2) || (Frog_po_x > WO_SZ_X-3) ) { 
                                  Frog_po_y = opoy; 
                                  Frog_po_x = opox; 
                                  } 
                              plot_frog(); 
                              break; 
                     } 
                  break; 
         case 'q':               //feed-up with program... 
         case  27:GrSetMode(GR_default_text); 
                  return(0);     //ascii 27 == ESC, terminate program 
         } 
      } 
}//menu_gr 
//menus.c last line 
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//hires.c first line 
 
#include <conio.h>    //getch gotoxy 
#include <math.h>     //log sqrt 
#include <grx20.h> 
#include <grxkeys.h> 
#include "ion.h" 
 
const int VGA = 1, 
          FX= 8, //graphics-default-Font horizontal size in pixels 
          FY=13; //idem vertical 
 
 
int Rgb[3][MAXRBOWCOLORS]; 
 
//************************************************ 
int start_graphics(void) { 
const int RGB[3][MAXRBOWCOLORS] = //red, green, blue 
/* 
   setrgbpalette(pal.colors[ 0], 0, 0, 0);//blac 
   setrgbpalette(pal.colors[ 1],63, 0, 0);//red 
   setrgbpalette(pal.colors[ 2],63,27, 0);//rry 
   setrgbpalette(pal.colors[ 3],63,39, 0);//ry 
   setrgbpalette(pal.colors[ 4],63,51, 0);//ryy 
   setrgbpalette(pal.colors[ 5],63,63, 0);//yell 
   setrgbpalette(pal.colors[ 6],47,63, 0);//lemo 
   setrgbpalette(pal.colors[ 7], 0,63, 0);//gree used as text-color :-( 
   setrgbpalette(pal.colors[ 8], 0,63,63);//cyan 
   setrgbpalette(pal.colors[ 9], 0,43,63);//ccb 
   setrgbpalette(pal.colors[10], 0,26,63);//cbb 
   setrgbpalette(pal.colors[11], 0, 0,63);//blue 
   setrgbpalette(pal.colors[12],63, 0,63);//mage 
   setrgbpalette(pal.colors[13],33,33,33);//dark 
   setrgbpalette(pal.colors[14],53,53,53);//ligh 
   setrgbpalette(pal.colors[15],63,63,63);//whit 
*/ 
{{  0,255,255,255,255,255,190,  0,  0,  0,  0,  0,255,134,202,255}, 
 {  0,  0,109,148,206,255,255,255,255,174,105,  0,  0,134,202,255}, 
 {  0,  0,  0,  0,  0,  0,  0,  0,255,255,255,255,255,134,202,255}}; 
/* 
{{255,255,255,255,255,255,255,208,144,  0, 
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0}, 
     
 {  0,  0,  0, 80,128,192,255,255,255,255, 
  255,255,192,128, 80,  0,  0,  0,  0,  0}, 
   
 {255,112,  0,  0,  0,  0,  0,  0,  0,  0, 
  112,255,255,255,255,255,176,128, 96, 64}}; 
*/ 
int c; 
   GrSetDriver(NULL); 
   if(GrCurrentVideoDriver() == NULL) { 
      printf("No graphics driver found\n"); 
      getch(); 
      exit(1); 
      } 
   if(VGA) GrSetMode(GR_width_height_bpp_graphics,640,480,8); 
   else GrSetMode(GR_width_height_bpp_graphics,800,600,8); 
   for(c=0;c<MAXRBOWCOLORS;c++) { 
      Rgb[0][c] = RGB[0][c]; 
      Rgb[1][c] = RGB[1][c]; 
      Rgb[2][c] = RGB[2][c]; 
      } 
   for(c=0;c<MAXRBOWCOLORS;c++) { 
      GrSetColor(c+56,Rgb[0][c],Rgb[1][c],Rgb[2][c]); 
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      RBOW[c] = c+56; 
      } 
   for(c=0; c<16; c++) //GrSetColor(c+72,128-(c-72),(c-72)*2,(c-72)*2); 
      GrSetColor(c+ 72, 63+c*12, 63, 63); 
   for(c=0; c<16; c++) 
      GrSetColor(c+ 88,255, 63+c*12, 63); 
   for(c=0; c<16; c++) 
      GrSetColor(c+104,255-c*12,255, 63); 
   for(c=0; c<16; c++) 
      GrSetColor(c+120, 63,255, 63+c*12); 
   for(c=0; c<16; c++) 
      GrSetColor(c+136, 63,255-c*12,255); 
   for(c=0; c<16; c++) 
      GrSetColor(c+152, 63+c*12, 63+c*12,255); 
   for(c=168; c<256; c++) GrSetColor(c,255,0,255); 
   if(VGA) { 
      GrLine(0,479,639,479,WHITE); 
      GrLine(639,0,639,479,WHITE); 
      WO_PO_Y = 200; 
      } 
   return(0); 
}//start_graphics 
 
//************************************************ 
//substitute calls by GrFilledBox ?? 
void plot_n(int x, int y, int size, int color) { 
   int c,c2; 
   for(c=0; c<size; c++) 
      for(c2=0; c2<size; c2++) 
         GrPlot(x+c2,y+c,color); 
}//plot_n 
 
//************************************************ 
void plot_4(int x, int y, int color) { 
   if(GrPixel(x,y) == color) return;//check if plot needed 
   GrPlot(x  ,y  ,color); 
   GrPlot(x  ,y+1,color); 
   GrPlot(x+1,y  ,color); 
   GrPlot(x+1,y+1,color); 
}//plot_4 
 
//************************************************ 
void plot_depo(void) { 
int y,color; 
   if(TimePos == 0) 
      plot_4(SHOW_GEN*2-2,WO_PO_Y-2,BLACK); 
   else 
      plot_4(TimePos*2-2,WO_PO_Y-2,BLACK); 
   plot_4(TimePos*2,WO_PO_Y-2,WHITE); 
   for(y=0; y<N_C; y++) { 
      if(State[y]==0)                     //on depolarization... 
         color = RBOW[WaveL[y]]; 
      else 
         color = BLACK;                 //no depo: erase 
      plot_4(TimePos*2,y*2+WO_PO_Y,color); 
      } 
}//plot_depo 
 
//************************************************ 
void plot_waves(void) { 
#define tRUNCATE 22 
static int eeg[250][WAVES],//TimePos range: 0..249 
           wave_pos[WAVES]; 
int c,c2,wave[WAVES],wc; // wc: waves counter 
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   if(eeg[0][0] == 0)  { //static vars set to 0 in declaration 
      wave_pos[0] = getmaxy()-24; 
      wave_pos[1] = getmaxy()-16; 
      wave_pos[2] = getmaxy()-8; 
      wave_pos[3] = getmaxy(); 
      for(c=0; c<250; c++) 
         for(c2=0; c2<WAVES; eeg[c][c2] = wave_pos[c2], c2++); 
      } 
   for(wc=0; wc<WAVES; wc++) { 
      if(EegB[wc] + EegE[wc] <= 0) wave[wc] = 0; 
      else for(wave[wc]=0, c=EegB[wc]; c<=EegE[wc]; c++) 
             if(State[c] == 0) wave[wc]++; 
      if (wave[wc] > tRUNCATE) wave[wc] = tRUNCATE; 
      } 
   for(c=0; c<WAVES; c++) { 
      GrLine(TimePos *2,   eeg[TimePos][c],        //erase old lines 
             TimePos *2+2, eeg[TimePos+1][c], 
             BLACK); 
      eeg[TimePos][c] = wave_pos[c] - (wave[c] * 2); //compute new values 
      GrLine(TimePos *2,  eeg[TimePos][c],//draw new lines 
             TimePos *2-2,eeg[TimePos-1][c], 
             NtCol[Type[EegB[c]]]);       //use color of first cell 
      } 
}//plot_waves 
 
//************************************************ 
void plot_nei(int what) { 
   const double sCALE = 4.0; 
   int c,c2, 
       syn_size; 
 
   if(what==1) { 
      GrFilledBox(0,WO_PO_Y,(N_C*2)-1,WO_PO_Y+(N_C*2)-1,BLACK); 
      for(c=0; c<N_C; c++) //plot synaptic position & type 
         for(c2=0; c2<SynNum[c]; c2++) 
            if( (SynType[c][c2] >= 0) && 
                (SynType[c][c2] <= MIO) && 
                (SynPos[c][c2] >= 0) ) 
               plot_4(SynPos[c][c2]*2, 
                      c*2+WO_PO_Y, 
                      NtCol[SynType[c][c2]]); 
            else 
               if(SynPos[c][c2] >= 0) 
                  plot_4(SynPos[c][c2]*2,c*2+WO_PO_Y,WHITE); 
      } 
   if(what==2) { 
      GrFilledBox(0,WO_PO_Y,(N_C*2)-1,WO_PO_Y+(N_C*2)-1,DARKGRAY); 
      for(c=0; c<N_C; c++) //plot weights 
         for(c2=0; c2<SynNum[c]; c2++){ 
            syn_size = (int) (SynWei[c][c2] * sCALE); 
            if( (syn_size<MAXRBOWCOLORS) && 
                (SynType[c][c2] >= 0) && 
                (SynType[c][c2] <= MIO) && 
                (SynPos[c][c2] >= 0) ) 
               plot_4(SynPos[c][c2]*2, 
                      c*2+WO_PO_Y, 
                      RBOW[MAXRBOWCOLORS-syn_size-1]); 
            else 
               if(SynPos[c][c2] >= 0) 
                  plot_4(SynPos[c][c2]*2,c*2+WO_PO_Y,WHITE); 
         } 
      } 
}//plot_nei 
 
//************************************************ 
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void plot_wei(void) { 
const int tOP    =   0, 
          dEFA   = 100, //position of default SynWei[][] (1.0) 
          bOTTOM = 400, 
          S      =   6; //s-1 = spacing pixels between cells 
const double tRESHOLD = 0.5; //show syns over this weight 
 
char dumline[81] = "X"; 
//"XXXXXXXXX1XXXXXXXXX2XXXXXXXXX3XXXXXXXXX4XXXXXXXXX5XXXXXXXXX6XXXXXXXXX7XXXXXXXXX8"; 
int cell = 0,c,c2; 
   if(VGA) return; 
 
   GrFilledBox(0,0,GrMaxX(),bOTTOM,BLACK); 
   GrLine(0, (int)(log( 1.0)*dEFA+dEFA), N_C*S, (int)(log( 1.0)*dEFA+dEFA),WHITE); 
   GrLine(0, (int)(log( 2.0)*dEFA+dEFA), N_C*S, (int)(log( 2.0)*dEFA+dEFA),WHITE); 
   GrLine(0, (int)(log( 4.0)*dEFA+dEFA), N_C*S, (int)(log( 4.0)*dEFA+dEFA),WHITE); 
   GrLine(0, (int)(log( 8.0)*dEFA+dEFA), N_C*S, (int)(log( 8.0)*dEFA+dEFA),WHITE); 
   GrLine(0, (int)(log(16.0)*dEFA+dEFA), N_C*S, (int)(log(16.0)*dEFA+dEFA),WHITE); 
   for(c=0; c<N_C; c++) {  //show all synapses of all cells 
      plot_4(c*S,   tOP,NtCol[Type[c]]); 
      plot_4(c*S,bOTTOM-5,NtCol[Type[c]]); 
      for(c2=0; c2<SynNum[c]; c2++) 
         if(SynPos[c][c2] >= 0) {  //plot every non-free_syn synapse 
            if(SynWei[c][c2] < 16.0) 
               GrPlot(SynPos[c][c2]*S,(int)(log(SynWei[c][c2])*dEFA+dEFA), 
               NtCol[SynType[c][c2]] ); 
            else GrLine(c*S,tOP+3,SynPos[c][c2]*S,bOTTOM-5,WHITE); 
            } 
      } 
//   for(c=0;c<25;c++) 
//      for(c2=0; c2<80; c2++) 
//         GrTextXY(c2*FX,c*FY,dumline , WHITE, BLACK); 
   do { //show a single cell 
      if(cell < 0) cell += N_C; //wrap borders 
      else if(cell >= N_C) cell -= N_C; 
//      gotoxy(76,1); printf("%3d",cell); //show number of cell..?? 
      sprintf(dumline,"cell:%3d",cell); 
      GrTextXY(72*FX,0*FY,dumline , WHITE, BLACK); 
      plot_4(cell*S,   tOP,WHITE);      //..and position 
      plot_4(cell*S,bOTTOM-5,WHITE); 
      for(c=0; c<SynNum[cell]; c++) 
         if(SynPos[cell][c] >= 0) { //plot this cell's synapses 
            plot_4(SynPos[cell][c]*S, bOTTOM-1, NtCol[SynType[cell][c]]); 
            if(SynWei[cell][c] > tRESHOLD) {   //and a line for those grown 
               if(SynWei[cell][c] < 16.0) 
                  GrLine(cell*S, tOP+3,SynPos[cell][c] * S, 
                       (int)(log(SynWei[cell][c]) * dEFA + dEFA),WHITE); 
               else GrLine(cell*S,tOP+3,SynPos[cell][c]*S,bOTTOM-5,WHITE); 
               } 
            } 
      if(getch() == 0) { 
         plot_4(cell*S,   tOP,NtCol[Type[cell]]); 
         plot_4(cell*S,bOTTOM-5,NtCol[Type[cell]]); 
         for(c=0; c<SynNum[cell]; c++) 
            if(SynPos[cell][c] >= 0) { 
               plot_4(SynPos[cell][c]*S, bOTTOM-1, BLACK); //erase !grown syn. 
               if(SynWei[cell][c] > tRESHOLD) { 
                  if(SynWei[cell][c] < MAXRBOWCOLORS) 
                     GrLine(cell*S, 
                            tOP+3, 
                            SynPos[cell][c] * S, 
                            (int)(log(SynWei[cell][c]) * dEFA + dEFA), 
                            RBOW[NtCol[SynType[cell][c]]] ); 
                  else GrLine(cell*S, 
                              tOP+3, 
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                              SynPos[cell][c]*S, 
                              bOTTOM-5, 
                              NtCol[SynType[cell][c]]);//?? 
                  } 
               } 
         switch(getch()) { 
            case 72: cell -= 10; break; 
            case 77: cell++;     break; 
            case 80: cell += 10; break; 
            case 75: cell--;     break; 
            } 
         } 
 
      else break; 
      } 
      while (1); 
   GrFilledBox(0,0,GrMaxX(),bOTTOM,BLACK); 
}//plot_wei 
 
//************************************************ 
void plot_frog(void) { 
int x = WO_PO_X + ((Frog_po_x-2)*WS), 
    y = WO_PO_Y + ((Frog_po_y-2)*WS); 
   GrFilledBox(x, y,x+WS-1,y+WS-1,WHITE); //"body" 
   switch(Direc) {         //"eyes" 
      case 'n':plot_4(   x+1,    y+1, DARKGRAY); 
               plot_4(x+WS-3,    y+1, DARKGRAY); 
               break; 
      case 's':plot_4(   x+1, y+WS-3, DARKGRAY); 
               plot_4(x+WS-3, y+WS-3, DARKGRAY); 
               break; 
      case 'e':plot_4(x+WS-3,    y+1, DARKGRAY); 
               plot_4(x+WS-3, y+WS-3, DARKGRAY); 
               break; 
      case 'w':plot_4(   x+1,    y+1, DARKGRAY); 
               plot_4(   x+1, y+WS-3, DARKGRAY); 
               break; 
      } 
}//plot_frog 
 
//************************************************ 
void plot_World(void) { 
int x,y; 
   for(y=0; y<WO_SZ_Y-4; y++) 
      for(x=0; x<WO_SZ_X-4; x++) 
         GrFilledBox(WO_PO_X+(x*WS), 
                     WO_PO_Y+(y*WS), 
                     WO_PO_X+(x*WS)+WS-1, 
                     WO_PO_Y+(y*WS)+WS-1, 
                     WO_COL[World[y+2][x+2]]); 
   plot_frog(); 
   for(x=0; x<MAXRBOWCOLORS; x++) //show spectrum, 
      plot_n(WO_PO_X+(x*WS),WO_PO_Y+((WO_SZ_Y-3)*WS),WS,RBOW[x]); 
       
   for(x=0; x<MIO; x++) //show NT colors 
      plot_n(WO_PO_X+(x*WS),WO_PO_Y+((WO_SZ_Y-1)*WS),WS,NtCol[x]); 
}//plot_World 
 
 
//************************************************ 
void show_synchro_tableVGA(void) { 
int mAXY = 100; 
char line[20] = "\0"; 
int ypos = mAXY+FY+FY+4, 
    c,c2; 
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   sprintf(line,"ra:%7.3f",rate_accu_synch(0)); 
   GrTextXY(AREAS*60,mAXY+2,line,WHITE,DARKGRAY); 
   mAXY += R_P_SPAN * 5 + 10; 
   for(c=0; c<R_P_SPAN; c++) 
      for(c2=0; c2<R_P_SPAN; c2++) 
         if(His2D[c][c2]<183) 
            GrFilledBox(c2*5+520, 
                        mAXY-c*5, 
                        c2*5+523, 
                        mAXY-c*5+3, 
                        72+(int)(His2D[c][c2]) ); 
//                        RBOW[(int)(His2D[c][c2])]); 
//                        RBOW[(int)((His2D[c][c2] / Accumulated)*R_P_SPAN)]); 
//                        RBOW[(int)(His2D[c][c2] / Accumulated)] ); 
         else 
            GrFilledBox(c2*5+520, 
                        mAXY-c*5, 
                        c2*5+523, 
                        mAXY-c*5+3, 
                        255); 
}//show_synchro_tableVGA 
 
 
//************************************************ 
void show_synchro_table(void) { 
int mAXY = FY + N_C * 3;//GrMaxY(); 
char line[20] = "\0"; 
int ypos = mAXY+FY+FY+4, 
    c,c2; 
   if(VGA) {show_synchro_tableVGA(); return;} 
   sprintf(line,"ra:%7.3f",rate_accu_synch(0)); 
   GrTextXY(AREAS*60,mAXY+2,line,WHITE,DARKGRAY); 
   mAXY += R_P_SPAN * 5 + 10; 
   for(c=0; c<R_P_SPAN; c++) 
      for(c2=0; c2<R_P_SPAN; c2++) 
         if(His2D[c][c2]<183) 
            GrFilledBox(c2*5+720, 
                        mAXY-c*5, 
                        c2*5+723, 
                        mAXY-c*5+3, 
                        72+(int)(His2D[c][c2]) ); 
//                        RBOW[(int)(His2D[c][c2])]); 
//                        RBOW[(int)((His2D[c][c2] / Accumulated)*R_P_SPAN)]); 
//                        RBOW[(int)(His2D[c][c2] / Accumulated)] ); 
         else 
            GrFilledBox(c2*5+720, 
                        mAXY-c*5, 
                        c2*5+723, 
                        mAXY-c*5+3, 
                        255); 
}//show_synchro_table 
 
 
//************************************************ 
void synchro_stats(void) { 
int mAXY = FY + N_C * 3;//GrMaxY(); 
char line[20] = "\0"; 
int his[R_P_SPAN][R_P_SPAN] = {{0,0,0,0,0,0,0,0,0,0,0,0,0}, //?? 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
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                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                               {0,0,0,0,0,0,0,0,0,0,0,0,0}}, 
   big1,big2, 
   ypos = mAXY+FY+FY+4, 
   c,c2; 
 
   if(VGA) {show_synchro_table(); return;} 
    
   GrFilledBox(0,mAXY+2,GrMaxX(),mAXY+80,DARKGRAY); 
   for(c=0; c<256; c++) GrFilledBox(c*3,mAXY-1,c*3+3,mAXY+1,c); 
   for(c=0; c<AREAS; c++) { 
 
      for(c2=AREA_B[c]; c2<AREA_E[c]; c2++) 
         his[c][State[c2]]++; 
      for(c2=0; c2<R_P_SPAN; c2++) { 
         his[c][c2] *= 4;   //show it big... 
         GrLine(c2*4+c*60+2, 
                ypos, 
                c2*4+c*60+2, 
                ypos+his[c][c2], 
                //RBOW[c2]); 
                LIGHTGRAY); 
         GrLine(c2*4+c*60+3, 
                ypos, 
                c2*4+c*60+3, 
                ypos+his[c][c2], 
                //RBOW[c2]); 
                LIGHTGRAY); 
         his[c][c2] /= 4;   //return to original size 
         } 
      his[c][12] = 0; //state 12 is minimum activity, ignore it 
      big1 = 12; big2 = 12; 
      for(c2=0; c2<R_P_SPAN; c2++) //choose biggest two 
         if(his[c][c2] > his[c][big1]) { big2 = big1; big1 = c2; } 
         else if(his[c][c2] > his[c][big2]) big2 = c2; 
      sprintf(line,"%2d %2d",big1,big2); 
      GrTextXY(c*60,mAXY+2,line,WHITE,DARKGRAY); 
      sprintf(line,"%2d %2d",his[c][big1],his[c][big2]); 
      GrTextXY(c*60,mAXY+FY+2,line,WHITE,DARKGRAY); 
      } 
   show_synchro_table(); 
}//synchro_stats 
 
 
//************************************************ 
void histogram(int full) { 
const int mAXY = FY + N_C * 3;//GrMaxY(); 
char line[20] = "\0"; 
int his[AREAS][R_P_SPAN] = {{0,0,0,0,0,0,0,0,0,0,0,0,0}, //?? 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}, 
                            {0,0,0,0,0,0,0,0,0,0,0,0,0}}, 
                             
    c,c2; 
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   if(VGA) return; 
   if(full) { 
      GrFilledBox(0,mAXY-180,GrMaxX(),mAXY,DARKGRAY); 
      for(c=0; c<AREAS; c++) { 
         sprintf(line,"%s",AREA_NAME[c]); 
         GrTextXY(c*60,mAXY-FY,line,WHITE,DARKGRAY); 
         for(c2=AREA_B[c]; c2<AREA_E[c]; c2++) 
            his[c][WaveL[c2]]++; 
         for(c2=0; c2<R_P_SPAN; c2++) { 
            his[c][c2] *= 4; //make it bigger 
            GrLine(c2*4+c*60+2, 
                   mAXY-FY, 
                   c2*4+c*60+2, 
                   mAXY-his[c][c2]-FY, 
                   RBOW[c2]); 
            GrLine(c2*4+c*60+3, 
                   mAXY-FY, 
                   c2*4+c*60+3, 
                   mAXY-his[c][c2]-FY, 
                   RBOW[c2]); 
            } 
         } 
      for(c=0; c<AREAS; c++) his[0][c] = 0; 
      sprintf(line,"total",AREA_NAME[c]); 
      GrTextXY(740,mAXY-FY,line,WHITE,DARKGRAY); 
      } 
 
   for(c=0; c<N_C; c++) 
      his[0][WaveL[c]]++; 
 
   for(c=0; c<R_P_SPAN; c++) { 
      GrLine(c*4+740+2, 
             mAXY-FY, 
             c*4+740+2, 
             mAXY-his[0][c]-FY, 
             RBOW[c]); 
                 
      GrLine(c*4+740+3, 
             mAXY-FY, 
             c*4+740+3, 
             mAXY-his[0][c]-FY, 
             RBOW[c]); 
      } 
   GrFilledBox(796,596,800,600,WHITE); 
}//histogram 
 
 
//************************************************ 
void show_LMRG(void) { //show Left Move Right Generations 
char line[81] = "\0"; 
   sprintf(line,"%6.4lf %6.4lf %6.4lf",Left,Move,Right); 
   GrTextXY(WO_PO_X,WO_PO_Y+(WO_SZ_Y*WS)+FY,line,WHITE,BLACK); 
   sprintf(line,"   %9ld",Gen); 
   GrTextXY(WO_PO_X,WO_PO_Y+(WO_SZ_Y*WS)+(FY*2),line,WHITE,BLACK); 
} //show_LMRG 
 
 
//************************************************ 
void bars(void) { 
   const int y_MARGIN = FY, 
             ySZ = 3;      //Y-space between bars, in pixels 
   const float cAL[4] = {0.7071,1.0,1.4142,2.0},//sqrt(0.5 1.0 2.0 4.0) 
               xSZ = 38.0; //X expansion factor 
   int level[MIO] = {  0, 80,160,240,320,400,480,560}, 
       levelT = 720,   //for TotalIo 
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       y_tot, 
       c,c2; 
 
   GrFilledBox(0,y_MARGIN,GrMaxX(),y_MARGIN+N_C*ySZ,BLACK); 
   for(c=0; c<MIO; c++) { //calibration marks for IO[n] 
      GrLine(level[c]+(int)(cAL[0]*xSZ), y_MARGIN, 
             level[c]+(int)(cAL[0]*xSZ), y_MARGIN+10,WHITE); 
      GrLine(level[c]+(int)(cAL[1]*xSZ), y_MARGIN, 
             level[c]+(int)(cAL[1]*xSZ), y_MARGIN+15,WHITE); 
      GrLine(level[c]+(int)(cAL[2]*xSZ), y_MARGIN, 
             level[c]+(int)(cAL[2]*xSZ), y_MARGIN+10,WHITE); 
      GrLine(level[c]+(int)(cAL[3]*xSZ), y_MARGIN, 
             level[c]+(int)(cAL[3]*xSZ), y_MARGIN+10,WHITE); 
      } 
   GrLine(levelT, y_MARGIN,levelT, y_MARGIN+15,LIGHTMAGENTA);//for totals 
   GrLine(levelT+(int)(cAL[0]*xSZ), y_MARGIN, 
          levelT+(int)(cAL[0]*xSZ), y_MARGIN+10,LIGHTMAGENTA); 
   GrLine(levelT+(int)(cAL[1]*xSZ), y_MARGIN, 
          levelT+(int)(cAL[1]*xSZ), y_MARGIN+15,LIGHTMAGENTA); 
   GrLine(levelT+(int)(cAL[2]*xSZ), y_MARGIN, 
          levelT+(int)(cAL[2]*xSZ), y_MARGIN+10,LIGHTMAGENTA); 
   GrLine(levelT+(int)(cAL[3]*xSZ), y_MARGIN, 
          levelT+(int)(cAL[3]*xSZ), y_MARGIN+10,LIGHTMAGENTA); 
   GrLine(levelT-(int)(cAL[0]*xSZ), y_MARGIN, 
          levelT-(int)(cAL[0]*xSZ), y_MARGIN+10,LIGHTMAGENTA); 
   GrLine(levelT-(int)(cAL[1]*xSZ), y_MARGIN, 
          levelT-(int)(cAL[1]*xSZ), y_MARGIN+15,LIGHTMAGENTA); 
   GrLine(levelT-(int)(cAL[2]*xSZ), y_MARGIN, 
          levelT-(int)(cAL[2]*xSZ), y_MARGIN+10,LIGHTMAGENTA); 
   GrLine(levelT-(int)(cAL[3]*xSZ), y_MARGIN, 
          levelT-(int)(cAL[3]*xSZ), y_MARGIN+10,LIGHTMAGENTA); 
   for(c=0; c<N_C; c++) { 
      for(c2=MIO-1; c2>=0; --c2) 
         GrLine( level[c2], 
            c * ySZ + y_MARGIN, 
            level[c2]+(int)(sqrt(Cell_Io[c][c2]*SynEq[c][c2])*xSZ), 
            c * ySZ + y_MARGIN,NtCol[c2]); 
      y_tot = c * ySZ + y_MARGIN; 
      if(TotalIo[c] >= 0.0) { 
         GrLine( levelT, 
            y_tot, 
            levelT+(int)(sqrt(TotalIo[c])*xSZ), 
            y_tot,LIGHTGRAY); 
         GrPlot(levelT+(int)(sqrt(TotalIo[c]*REF_PER_CELL[State[c]])*xSZ), 
               y_tot+1, 
               WHITE); 
         } 
      else { 
         GrLine( levelT, 
            y_tot, 
            levelT-(int)(sqrt( fabs (TotalIo[c]) )*xSZ), 
            y_tot,LIGHTGRAY); 
         GrPlot(levelT-(int)(sqrt(fabs(TotalIo[c])*REF_PER_CELL[State[c]])*xSZ), 
               y_tot,WHITE); 
         } 
      } 
}//bars 
 
 
void restore_text_mode(void) { 
   closegraph(); 
} 
 
//hires.c last line 
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//gene.c first line 
 
#include "ion.h" 
#include <bios.h> //bioskey() 
//population, number of organisms/genomes 
#define POPU 2000 
 
FILE *gene_output; 
 
struct organism Orga[POPU+1]; //organisms, Orga[POPU] or... 
struct organism Baby;         //...Baby is the newborn 
 
long His2D[R_P_SPAN][R_P_SPAN],  //Histogram 2-dimensional used by hires.c 
     His2Ds[R_P_SPAN][R_P_SPAN]; //idem, only for spikes 
 
int RATE_SYNCH[R_P_SPAN][R_P_SPAN] = { 
//0  1  2  3  4  5  6  7  8  9 10 11 12 Wavelenght 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 0 state 
 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 1 
 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 2 
 
{ 0, 0, 0, 0, 2, 4, 4, 0, 0, 0, 0, 0, 0}, // 3 
 
{ 0, 0, 0, 2, 0, 4, 4, 4, 0, 0, 0, 0, 0}, // 4 
 
{ 0, 0, 0, 4, 4, 0, 4, 4, 4, 0, 0, 0, 0}, // 5 
 
{ 0, 0, 0, 4, 4, 4, 0, 4, 4, 4, 0, 0, 0}, // 6 
 
{ 0, 0, 0, 0, 4, 4, 4, 0, 4, 4, 4, 0, 0}, // 7 
 
{ 0, 0, 0, 0, 0, 4, 4, 4, 0, 4, 4, 4, 0}, // 8 
 
{ 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 4, 4, 0}, // 9 
 
{ 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 2, 0}, //10 
 
{ 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 2, 0, 0}, //11 
 
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0}};//12 
 
int RATESYNCHCAP = N_C * SHOW_GEN; 
      
 
long Accumulated = 0; 
 
//int SEE = 0; //to avoid printf in hires 
 
const int HL_IOG0[15] = {12,18,24,30,36,42,48,54,60,66,72,84,96,108,120}, 
          HL_IOG2[15] = { 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,14,16,18,20}; 
 
const double REF_PER_GEN[25][R_P_SPAN] = 
   {{1.00,1.00,0.98,0.86,0.74,0.62,0.50,0.38,0.26,0.14,0.02,0.00,0.00}, 
    {1.00,1.00,0.94,0.83,0.72,0.61,0.50,0.39,0.28,0.17,0.06,0.00,0.00}, 
    {1.00,1.00,0.90,0.80,0.70,0.60,0.50,0.40,0.30,0.20,0.10,0.00,0.00}, 
    {1.00,0.95,0.86,0.77,0.68,0.59,0.50,0.41,0.32,0.23,0.14,0.05,0.00}, 
    {0.98,0.90,0.82,0.74,0.66,0.58,0.50,0.42,0.34,0.26,0.18,0.10,0.02}, 
    {0.92,0.85,0.78,0.71,0.64,0.57,0.50,0.43,0.36,0.29,0.22,0.15,0.08}, 
    {0.86,0.80,0.74,0.68,0.62,0.56,0.50,0.44,0.38,0.32,0.26,0.20,0.14}, 
    {0.80,0.75,0.70,0.65,0.60,0.55,0.50,0.45,0.40,0.35,0.30,0.25,0.20}, 
    {0.74,0.70,0.66,0.62,0.58,0.54,0.50,0.46,0.42,0.38,0.34,0.30,0.26}, 
    {0.68,0.65,0.62,0.59,0.56,0.53,0.50,0.47,0.44,0.41,0.38,0.35,0.32}, 
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    {0.62,0.60,0.58,0.56,0.54,0.52,0.50,0.48,0.46,0.44,0.42,0.40,0.38}, 
    {0.56,0.55,0.54,0.53,0.52,0.51,0.50,0.49,0.48,0.47,0.46,0.45,0.44}, 
    {0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50}, 
    {0.44,0.45,0.46,0.47,0.48,0.49,0.50,0.51,0.52,0.53,0.54,0.55,0.56}, 
    {0.38,0.40,0.42,0.44,0.46,0.48,0.50,0.52,0.54,0.56,0.58,0.60,0.62}, 
    {0.32,0.35,0.38,0.41,0.44,0.47,0.50,0.53,0.56,0.59,0.62,0.65,0.68}, 
    {0.26,0.30,0.34,0.38,0.42,0.46,0.50,0.54,0.58,0.62,0.66,0.70,0.74}, 
    {0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80}, 
    {0.14,0.20,0.26,0.32,0.38,0.44,0.50,0.56,0.62,0.68,0.74,0.80,0.86}, 
    {0.08,0.15,0.22,0.29,0.36,0.43,0.50,0.57,0.64,0.71,0.78,0.85,0.92}, 
    {0.02,0.10,0.18,0.26,0.34,0.42,0.50,0.58,0.66,0.74,0.82,0.90,0.98}, 
    {0.00,0.05,0.14,0.23,0.32,0.41,0.50,0.59,0.68,0.77,0.86,0.95,1.00}, 
    {0.00,0.00,0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90,1.00,1.00}, 
    {0.00,0.00,0.06,0.17,0.28,0.39,0.50,0.61,0.72,0.83,0.94,1.00,1.00}, 
    {0.00,0.00,0.02,0.14,0.26,0.38,0.50,0.62,0.74,0.86,0.98,1.00,1.00}}; 
 
const double REF_PER_CELL_GEN[63][R_P_SPAN] = { 
{0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.125,0.250,0.375,0.500,0.625,0.750,0.875,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.111,0.222,0.333,0.444,0.556,0.667,0.778,0.889,1.000,1.000,1.000,1.0}, 
{0.000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.000,1.000,1.0}, 
 
{0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.125,0.250,0.375,0.500,0.625,0.750,0.875,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.111,0.222,0.333,0.444,0.556,0.667,0.778,0.889,1.000,1.000,1.0}, 
{0.000,0.000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.000,1.0}, 
 
{0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.125,0.250,0.375,0.500,0.625,0.750,0.875,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.111,0.222,0.333,0.444,0.556,0.667,0.778,0.889,1.000,1.0}, 
{0.000,0.000,0.000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.0}, 
 
{0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.125,0.250,0.375,0.500,0.625,0.750,0.875,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.111,0.222,0.333,0.444,0.556,0.667,0.778,0.889,1.0}, 
 
{0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.125,0.250,0.375,0.500,0.625,0.750,0.875,1.0}, 
 
{0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.0}, 
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{0.000,0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.0}, 
 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.0}, 
 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.0}, 
 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.0}, 
 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.0}, 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.0}, 
 
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.0}}; 
 
// 0.163507991, 0.179858790, 0.197844669, 0.217629136, 0.239392049, 
// 0.263331254, 0.289664380, 0.318630818, 0.350493899, 0.385543289, 
// 0.424097618, 0.466507380, 0.513158118, 0.564473930, 0.620921323, 
// 0.683013455, 0.751314801, 0.826446281, 0.909090909, 1.000000000, 
// 1.100000000, 1.210000000, 1.331000000, 1.464100000, 1.610510000, 
// 1.771561000, 1.948717100, 2.143588810, 2.357947691, 2.593742460, 
// 2.853116706, 3.138428377, 3.452271214, 3.797498336, 4.177248169, 
// 4.594972986, 5.054470285, 5.559917313, 6.115909045,    *= 1.1 
 
#define LOG_RANGE 95 
 
const double LOG_05[LOG_RANGE] = { 
0.01019074,0.01070028,0.01123530,0.01179706,0.01238691, 
0.01300626,0.01365657,0.01433940,0.01505637,0.01580919, 
0.01659965,0.01742963,0.01830111,0.01921617,0.02017698, 
0.02118582,0.02224512,0.02335737,0.02452524,0.02575150, 
0.02703908,0.02839103,0.02981058,0.03130111,0.03286617, 
0.03450948,0.03623495,0.03804670,0.03994903,0.04194648, 
0.04404381,0.04624600,0.04855830,0.05098621,0.05353552, 
0.05621230,0.05902291,0.06197406,0.06507276,0.06832640, 
0.07174272,0.07532986,0.07909635,0.08305117,0.08720373, 
0.09156391,0.09614211,0.10094921,0.10599668,0.11129651, 
0.11686133,0.12270440,0.12883962,0.13528160,0.14204568, 
0.14914797,0.15660536,0.16443563,0.17265741,0.18129029, 
0.19035480,0.19987254,0.20986617,0.22035947,0.23137745, 
0.24294632,0.25509364,0.26784832,0.28124073,0.29530277, 
0.31006791,0.32557131,0.34184987,0.35894236,0.37688948, 
0.39573396,0.41552065,0.43629669,0.45811152,0.48101710, 
0.50506795,0.53032135,0.55683742,0.58467929,0.61391325, 
0.64460892,0.67683936,0.71068133,0.74621540,0.78352617, 
0.82270247,0.86383760,0.90702948,0.95238095,1.00000000}; 
 
//*********************** variables global to gene.c ******************* 
 
void init_orga(void) { 
int c; 
   for(c=0; c<=POPU; c++) { //include newborn one 
      Orga[c].hl_iog0     = 0; 
      Orga[c].hl_iog2     = 0; 
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      Orga[c].fixdec00    = 0; 
      Orga[c].fixdec0rest = 0; 
      Orga[c].fixdec2all  = 0; 
      Orga[c].nt_po0      = 0; 
      Orga[c].nt_po2      = 0; 
      Orga[c].refper0     = 0; 
      Orga[c].refper2     = 0; 
      Orga[c].refpercell  = 0; 
      Orga[c].delay2      = 0; 
      Orga[c].fitness = 1.0; 
      strcpy(Orga[c].name,"0123456789012345678\0"); 
      } 
}//init_orga 
 
 
void baptice(struct organism *doe) { 
//must be longer than range of parameters 
const char *cODE = 
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ\ 
!#$&'()*+,-./:;<=>?@[]^_`{|}~�€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž�\0"; 
   doe->name[ 0] = cODE[doe->hl_iog0]; 
   doe->name[ 1] = cODE[doe->hl_iog2]; 
   doe->name[ 2] = cODE[doe->fixdec00]; 
   doe->name[ 3] = cODE[doe->fixdec0rest]; 
   doe->name[ 4] = cODE[doe->fixdec2all]; 
   doe->name[ 5] = cODE[doe->nt_po0]; 
   doe->name[ 6] = cODE[doe->nt_po2]; 
   doe->name[ 7] = cODE[doe->refper0]; 
   doe->name[ 8] = cODE[doe->refper2]; 
   doe->name[ 9] = cODE[doe->refpercell]; 
   doe->name[10] = cODE[doe->delay2]; 
   doe->name[11] = '\0'; 
}//baptice 
 
 
void set_params(struct organism *doe) { 
int c; 
   HL_IOG[0] = HL_IOG0[doe->hl_iog0]; 
   HL_IOG[2] = HL_IOG2[doe->hl_iog2]; 
   FIXDECAY[0][0] = LOG_05[doe->fixdec00] * -1.0; 
   for(c=1; c<R_P_SPAN; c++) 
      FIXDECAY[0][c] = LOG_05[doe->fixdec0rest]; 
   for(c=0; c<R_P_SPAN; c++) 
      FIXDECAY[2][c] = LOG_05[doe->fixdec2all]; 
   IO_PO[0]  = LOG_05[doe->nt_po0]; 
   IO_PO[2]  = LOG_05[doe->nt_po2]; 
    
   for(c=0; c<R_P_SPAN; c++) 
      REF_PER[0][c] = REF_PER_GEN[doe->refper0][c]; 
       
   for(c=0; c<R_P_SPAN; c++) 
      REF_PER[2][c] = REF_PER_GEN[doe->refper2][c]; 
       
   for(c=0; c<R_P_SPAN; c++) 
      REF_PER_CELL[c] = REF_PER_CELL_GEN[doe->refpercell][c]; 
       
   DELAY[2]  = doe->delay2; 
   doe->fitness = 1.0; 
}//set_params 
 
 
void copy_orga(int target, int source) { 
   Orga[target].hl_iog0 = Orga[source].hl_iog0; 
   Orga[target].hl_iog2 = Orga[source].hl_iog2; 
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   Orga[target].fixdec00 = Orga[source].fixdec00; 
   Orga[target].fixdec0rest = Orga[source].fixdec0rest; 
   Orga[target].fixdec2all = Orga[source].fixdec2all; 
    
   Orga[target].nt_po0  = Orga[source].nt_po0; 
   Orga[target].nt_po2  = Orga[source].nt_po2; 
    
   Orga[target].refper0 = Orga[source].refper0; 
   Orga[target].refper2 = Orga[source].refper2; 
   Orga[target].refpercell = Orga[source].refpercell; 
    
   Orga[target].delay2  = Orga[source].delay2; 
    
   Orga[target].fitness = Orga[source].fitness; 
   strcpy(Orga[target].name,Orga[source].name); 
}//copy_orga 
 
 
void dump_orga(struct organism which_orga, int orga_num) { 
char line[256] = 
"---------1---------2---------3---------4---------5---------6---------7\0"; 
 
   sprintf(line,"\n%4d:%2d %2d %2d %2d %2d %2d %2d %2d %2d %2d %2d %7.4f %s", 
           orga_num, 
           which_orga.hl_iog0, 
           which_orga.hl_iog2, 
           which_orga.fixdec00, 
           which_orga.fixdec0rest, 
           which_orga.fixdec2all, 
           which_orga.nt_po0, 
           which_orga.nt_po2, 
           which_orga.refper0, 
           which_orga.refper2, 
           which_orga.refpercell, 
           which_orga.delay2, 
           which_orga.fitness, 
           which_orga.name); 
   fprintf(gene_output,line); 
   if(!SEE) printf("%s",line); 
}//dump_orga 
 
 
void dump_popu(void) { 
int c; 
   for(c=0; c<POPU; c++) 
      dump_orga(Orga[c],c); 
   fprintf(gene_output,"\n\n"); 
   if(!SEE) printf("\n"); 
}//dump_popu 
 
 
int clone_test(struct organism *doe) { 
int c; 
   for(c=0; c<POPU; c++) 
      if(strcmp(Orga[c].name,doe->name) == 0) 
         return(1); 
   return(0); 
}//clone_test 
 
 
void mutate(struct organism *doe) { 
   switch(random() % 11) { 
      case  0: doe->hl_iog0 = random() % 15; break; 
      case  1: doe->hl_iog2 = random() % 15; break; 
      case  2: doe->fixdec00 = random() % LOG_RANGE; break; 
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      case  3: doe->fixdec0rest = random() % (doe->fixdec00 +1); break; //*** 
      case  4: doe->fixdec2all = random() % LOG_RANGE; break; 
      case  5: doe->nt_po0  = random() % LOG_RANGE; break; 
      case  6: doe->nt_po2  = random() %  LOG_RANGE; break; 
      case  7: doe->refper0 = random() % 25; break; 
      case  8: doe->refper2 = random() % 25; break; 
      case  9: doe->refpercell = random() % 63; break; 
      case 10: doe->delay2  = (random() % (R_P_SPAN-1)) + 1; break; 
      } 
   switch(random() % 11) { 

      case  4: doe->fixdec2all = random() % LOG_RANGE; break; 

      if(random()%2) { Baby.hl_iog2 = Orga[woman].hl_iog2; 

      case  0: doe->hl_iog0 = random() % 15; break; 
      case  1: doe->hl_iog2 = random() % 15; break; 
      case  2: doe->fixdec00 = random() % LOG_RANGE; break; 
      case  3: doe->fixdec0rest = random() % (doe->fixdec00 +1); break; //*** 

      case  5: doe->nt_po0  = random() % LOG_RANGE; break; 
      case  6: doe->nt_po2  = random() %  LOG_RANGE; break; 
      case  7: doe->refper0 = random() % 25; break; 
      case  8: doe->refper2 = random() % 25; break; 
      case  9: doe->refpercell = random() % 63; break; 
      case 10: doe->delay2  = (random() % (R_P_SPAN-1)) + 1; break; 
      } 
}//mutate 
 
 
void seed_popu(void) { 
int c; 
   for(c=0; c<POPU; c++) { 
      Orga[c].hl_iog0 = random() % 15; 
      Orga[c].hl_iog2 = random() % 15; 
      Orga[c].fixdec00 = random() % LOG_RANGE; 
      Orga[c].fixdec0rest = random() % (Orga[c].fixdec00+1); //*** 
      Orga[c].fixdec2all = random() % LOG_RANGE; 
      Orga[c].nt_po0  = random() % LOG_RANGE; 
      Orga[c].nt_po2  = random() % LOG_RANGE; 
      Orga[c].refper0 = random() % 25; 
      Orga[c].refper2 = random() % 25; 
      Orga[c].refpercell = random() % 63; 
      Orga[c].delay2  = (random() % (R_P_SPAN-1)) + 1; 
      Orga[c].fitness = 1.0; 
      baptice(&Orga[c]); 
      } 
}//seed_popu 
 
 
char * sex(int woman, int man) { 
//positive==looks like mami, neg.like papi 0==perfect mix 
char *mix = "???????????????????????\0"; 
int looks_like = 42; 
   while((looks_like < -3) || (looks_like > 3)) { //force 2 swaps 
      looks_like = 0; 
      if(random()%2) { Baby.hl_iog0 = Orga[woman].hl_iog0; 
         mix[0]='+'; ++looks_like; } 
      else {           Baby.hl_iog0 = Orga[  man].hl_iog0; 
         mix[0]='-'; --looks_like; } 
          

         mix[1]='+'; ++looks_like; } 
      else {           Baby.hl_iog2 = Orga[  man].hl_iog2; 
         mix[1]='-'; --looks_like; } 
          
      if(random()%2) { Baby.fixdec00 = Orga[woman].fixdec00; 
         mix[2]='+'; ++looks_like; } 
      else {           Baby.fixdec00 = Orga[  man].fixdec00; 
         mix[2]='-'; --looks_like; } 
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      if(random()%2) { Baby.fixdec0rest = Orga[woman].fixdec0rest; 
         mix[3]='+'; ++looks_like; } 
      else {           Baby.fixdec0rest = Orga[  man].fixdec0rest; 
         mix[3]='-'; --looks_like; } 
 
      if(random()%2) { Baby.fixdec2all = Orga[woman].fixdec2all; 
         mix[4]='+'; ++looks_like; } 
      else {           Baby.fixdec2all = Orga[  man].fixdec2all; 
         mix[4]='-'; --looks_like; } 
       
      if(random()%2) { Baby.nt_po0 = Orga[woman].nt_po0; 
         mix[5]='+'; ++looks_like; } 
      else {           Baby.nt_po0 = Orga[  man].nt_po0; 
         mix[5]='-'; --looks_like; } 
 
      if(random()%2) { Baby.nt_po2 = Orga[woman].nt_po2; 
         mix[6]='+'; ++looks_like; } 

   mix[11]='\0'; 

      else {           Baby.nt_po2 = Orga[  man].nt_po2; 
         mix[6]='-'; --looks_like; } 
 
      if(random()%2) { Baby.refper0 = Orga[woman].refper0; 
         mix[7]='+'; ++looks_like; } 
      else {           Baby.refper0 = Orga[  man].refper0; 
         mix[7]='-'; --looks_like; } 
 
      if(random()%2) { Baby.refper2 = Orga[woman].refper2; 
         mix[8]='+'; ++looks_like; } 
      else {           Baby.refper2 = Orga[  man].refper2; 
         mix[8]='-'; --looks_like; } 
 
      if(random()%2) { Baby.refpercell = Orga[woman].refpercell; 
         mix[9]='+'; ++looks_like; } 
      else {           Baby.refpercell = Orga[  man].refpercell; 
         mix[9]='-'; --looks_like; } 
    
      if(random()%2) { Baby.delay2 = Orga[woman].delay2; 
         mix[10]='+'; ++looks_like; } 
      else { Baby.delay2 = Orga[  man].delay2; 
         mix[10]='-'; --looks_like; } 
      } 

 
   Baby.fitness = 1.0; //There's no future, no future for you. 
 
   baptice(&Baby); 
 
   return(mix); 
    
}//sex 
 
 
void roulette_selection(long count) { 
long acfi[POPU], //accumulated fitness array 
     accufit = 0, 
     ball = 0, 
     mutations = 0; 
int mother = 0, 
    father = 0, 
    c; 
   if(count >= 1234567891) { 
      printf("\nstuck after 1234567891 babys, press any key"); 
      getch(); 
      } 
   for(c=0; c<POPU; c++) { 
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      accufit += (long) (Orga[c].fitness*100.0); 
      acfi[c] = accufit; 
      } 
   //choose father and mother with different genomes 
   while(strcmp(Orga[father].name,Orga[mother].name) == 0) { 
      ball = random() % accufit; 
      for(c=0; c<POPU; c++) 
         if(ball <= acfi[c]) { 
            mother = c; 
            break; 
            } 
      ball = random() % accufit; 
      for(c=0; c<POPU; c++) 
         if(ball <= acfi[c]) { 
            father = c; 
            break; 
            } 
      } 
/* 
   fprintf(gene_output,"\nmami"); 
   dump_orga(Orga[mother],mother); 
   fprintf(gene_output,"\npapi"); 
   dump_orga(Orga[father],father); 
   fprintf(gene_output, 
      "\n                                        %s mix",sex(mother,father)); 
*/ 
   sex(mother,father); 
   while(clone_test(&Baby)) { 
      mutate(&Baby); 
      baptice(&Baby); 
      mutations+=2; 
      } 
 
   reset(1); 
   set_params(&Baby); 
   Baby.fitness = 1.0 + run1screen(); 
 
   dump_orga(Baby,-1); 
   fprintf(gene_output," mut%2d",mutations); 
   if(!SEE) printf(" mut%2d",mutations); 
 
   c=POPU-1; 
   while(c>0) { //sort baby in population 
      if(Baby.fitness < Orga[c-1].fitness) break; 
      Orga[c]=Orga[c-1]; 
      --c; 
      } 
   if(Baby.fitness >= Orga[c].fitness) { 
      Orga[c]=Baby; 

      } 

}//roulette_selection 

      fprintf(gene_output," :)"); 
      if(!SEE) printf(" :)"); 

   else { 
      fprintf(gene_output," X("); 
      if(!SEE) printf(" X("); 
      } 
 

 
 
void bubble_sort(void) { //?? what a shame 
struct organism orgacopy[POPU]; 
int order[POPU]; 
int swaped = 1,temp,c; 
   for(c=0; c<POPU; c++) order[c] = c; 
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   while(swaped) { 
      swaped = 0; 
      for(c=0; c<POPU-1; c++) 
         if(Orga[order[c]].fitness < Orga[order[c+1]].fitness) { 
           temp = order[c]; 
           order[c] = order[c+1]; 
           order[c+1] = temp; 
           swaped = 1; 
           } 
      } 
   for(c=0; c<POPU; c++) 
      orgacopy[c] = Orga[order[c]]; 
   for(c=0; c<POPU; c++) 
      Orga[c] = orgacopy[c]; 
}//bubble_sort 
 
 
void accu_synch(int mode) { //accumulated synchronization measure 
int c,c2,c3;               //mode:0 clean mode:1accumulate 
   if(mode == 0) { 
      for(c=0; c<R_P_SPAN; c++) 
         for(c2=0; c2<R_P_SPAN; c2++) { 
            His2D[c][c2] = 0; 
            His2Ds[c][c2] = 0; 
            } 
      Accumulated = 0; 
      } 
   else { 
      for(c=0; c<N_C; c++) { //His2D is read by show_synchro_table in hires.c 
         His2D[State[c]][WaveL[c]]++; 
         if(!State[c]) 
            His2Ds[WaveL[c]][WaveL1[c]]++; 
         } 
      Accumulated++; 
      } 
}//accu_synch 
 
 
double rate_accu_synch(void) { 
double rate = 0.0; 
int c,c2,c3; 
     
   for(c=0; c<R_P_SPAN-1; c++) 
      for(c2=0; c2<R_P_SPAN-1; c2++) { 
         if(His2Ds[c][c2] > RATESYNCHCAP) 
            rate += RATESYNCHCAP * RATE_SYNCH[c][c2]; //*** 
         else 
            rate += His2Ds[c][c2] * RATE_SYNCH[c][c2]; //*** 
         } 
   //roulette needs positive numbers /0error 
   if(rate <= 0) rate = 0.01; 
   return(rate / Accumulated); 
}//rate_accu_synch 
 
 
double run1screen(void) { 
double run = 0.0; 
int c; 
   reset(1); 
   hl_factors();                 //transform half-lifes to factors 
   if(EQUA) setEqu(); 
   if(SEE) plot_World();                 //show frog's world 
   if(SEE) show_LMRG(); 
 
   accu_synch(0); 
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   for(c=0; c<SHOW_GEN; c++) { //first screen 
      retina(); 
      compass(); 
      compute(); 
      if(check_cells() != -1) return(0.0); 
      accu_synch(1); 
      Gen++; 
//      motor_navigation(' ');  //unused return 
      ++TimePos; 
      if(SEE) plot_depo(); 
      } 
   run = rate_accu_synch(); 
 
   if(SEE) { 
      if(DispUp == 'B') bars(); 
      if(DispUp == 'H') {histogram(1); synchro_stats(); } 
      } 
 
   return(run); 
}//run1screen 
 
 
void batch(long loops) { //if SEE==1:show depo,etc. 0:run blind, print text 
long c; 
char *babycount = "01234567890123456789"; 
int c2; 
   reset(1); 
   if( (gene_output = fopen("geneout.txt","w+")) == NULL) { 
         clean_line(1,1); 
         printf("can't save file geneout.txt"); 
         delay(2000); 
         exit(1); 
         } 
   if(SEE) if(start_graphics()) exit(1); 
 
   init_orga(); 
    
   seed_popu(); 
    
   for(c=0; c<POPU; c++) { 
      reset(1); 
      set_params(&Orga[c]); 
      Orga[c].fitness = 1.0 + run1screen(); 
      if(!SEE) printf("%6D \n",c); 
      } 
 
   bubble_sort(); 
 
   dump_popu(); 
 
   srand48(1234567891L);//limits.h: #define LONG_MAX 2147483647L 
   for(c=0; c<loops; c++) { 
      roulette_selection(c); 
      fprintf(gene_output," babys:%6D",c); 
      if(!SEE) printf(" babys:%6D",c); 
      if(SEE) { 
         sprintf(babycount," babys:%6D",c); 
         GrTextXY(500,214,babycount,WHITE,DARKGRAY); 
         } 
//      if(!SEE) if(c % 100 == 0) dump_popu(); 
      if(bioskey(1)) { 
         getch(); 
         break; 
         } 
      } 
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   fprintf(gene_output,"\n\n after %D babys\n\n",c); 
   dump_popu(); 
    
   fclose(gene_output); 
   reset(1); 
   hl_factors(); 
   if(EQUA) setEqu(); 
   set_params(&Orga[0]); 
   save_params(0,"param00.txt"); 
   fclose(gene_output); 
   exit(0); 
}//batch 
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