

Neural Network Models of
Cognitive Conflict Paradigms

Dissertation

Zur Erlangung der Würde eines Doktors der Philosophie des Fachbereiches
Pädagogik der Universität der Bundeswehr Hamburg

Vorgelegt von

Aquiles Luna-Rodriguez

Aus Hamburg

Hamburg, 2008

 1

This thesis is dedicated to all those indispensable helpers
who make a thesis possible,

but have no thesis dedicated to them.

 2

Neural Network Models of Cognitive Conflict Paradigms

Abstract

In recent years, some areas of cognitive psychology have proposed formal models in
the form of computer simulations, using Back-Propagation Artificial Neural Networks
(BP-ANNs). Such models represent an improvement in plausibility, and they allow
quantitative results to be compared with empirical data.

After learning, BP-ANN's cells exhibit a fixed input/output behavior. Using the black
box method, this is shown to be a fundamental problem. Cells without an internal state
to represent short-time memory cannot account for the sequence of stimuli, nor for the
time elapsed between stimuli. As a consequence, BP-ANNs -as well as other neural
networks without state-dependant input/output- are inadequate as models of some
important cognitive processes. These include classical conditioning, operant
conditioning, and sequence effects in cognitive control.

Another major methodological problem is the use of free parameters. BP-ANNs
cognitive models frequently use arbitrary amounts of cells, amounts of layers,
connection structure, learning parameter value and other characteristics, without giving
a theoretical justification.

Three methods are proposed here to solve these problems: first, the black box method is
used to produce a cell's input/output behavior more similar to that of neurons. Second,
the reverse engineering method is used to simulate as many neural features as possible.
And, third, a genetic algorithm is used to eliminate arbitrary free parameters.

The use of these methods is illustrated through a series of spiking neural network
models, implementing state-dependant input/output, spikes, refractory period, temporal
summation, axon delay and synchronization of neuron groups. A genetic algorithm is
used to choose the parameter values in another series of models.

Finally, the feasibility of following this research strategy using parallel computer
hardware is discussed.

 3

CONTENTS page

Preface -an informal history of how this work actually began

1.1 Goals and hypothesis of this work...11

1.2 Structure of this work...11

2 THEORY...13

2.1 The black box method in psychology..13

2.2 What is a Model?...17

2.3 Evaluation of models in psychology..18

2.3.1 The problem of free parameters...19

2.4 A case example: astronomical models...20

2.5 Basic features of neural behavior..23

2.5.1 Neural input/output...24

2.5.2 The binding problem and neural synchronization.......................25

2.5.3 New research on spike timing...26

2.6 Neural models in neuroscience..27

2.7 A conventional ANN...29

2.7.1 Typical model's assumptions..32

2.8 BP-ANNs and models of cognitive conflict.......................................35

2.8.1 Validity of BP-ANN models of cognitive conflict..........................42

2.9 The reverse-engineering method...44

3 METHOD...46

3.1 Description of the BCK neural simulation program.......................46

3.1.1 Cells and connections..46

 4

3.1.2 Connection structure...49

3.1.3 Metabolism parameters...51

3.1.4 Computing one time step...53

3.1.5 Sample screen...56

3.2 Parallel computers..57

4 SIMULATIONS I...59

4.1 The laboratory method...59

4.2 Animal model...60

4.3 Method..62

4.5 Results..64

4.5.1 Constant refractory period..64

4.5.2 Decreasing refractory period...65

4.5.3 Coincidence detector..66

4.5.4 Increasing refractory period...67

4.5.5 Comb-jellyfish connections...68

4.5.6 Wavelength adjustment...69

4.5.7 Axonal delay...69

4.6 Discussion of simulations I...70

5 SIMULATIONS II...72

5.1 Genetic algorithms and free parameters..72

5.2 From neurotransmitters to ions..73

5.3 Program modifications...74

5.3.1 Cell’s structure and main algorithm..76

5.3.2 Reference model...79

 5

5.4 Combinatorial Explosions..80

5.5 Search space and local maxima...80

5.6 Heuristics...81

5.7 Genetic algorithms..81

5.8 An hypothetical example..82

5.9 Fitness proportionate selection..83

5.10 Measuring synchronization..84

5.11 Fitness measurement as theory embodiment..................................86

5.12 The accumulated synchronicity table..86

5.13 Simulation procedure..87

5.14 Results..88

5.14.1 Preliminary runs..88

5.14.2 run 0124...89

5.14.3 run 0128...91

5.14.4 run 0130...92

5.14.5 run 0218...93

5.15 Discussion of simulations II..95

6 Simulations III..96

6.1 Changes in the genetic algorithm..97

6.2 run 0909...98

6.3 run 0923..100

7 General discussion..102

8 Bibliography...104

Appendix A.1 ION0218 source code: ION.H..108

 6

Appendix A.2 ION0218 source code: COMPUTE.C............................115

Appendix A.3 ION0218 source code: GENE.C.....................................117

Appendix A.4 ION0218 source code: ION_MAIN.C............................127

Appendix A.5 ION0218 source code: FILES.C....................................137

Appendix A.6 ION0218 source code: MENUS.C.................................150

Appendix A.7 ION0218 source code: HIRES.C...................................160

Appendix B ION0923 source code: GENE.C..169

Appendix simulation programs, model, documentation..........CD-ROM

 7

Preface -an informal history of how this work actually began

Many scientific works use the order of theory, method, results and discussion. This
gives the impression of first having a theoretical question, then choosing a method to
answer it, then collecting empirical data, and finally reaching a conclusion about the
theory. Of course, in real life this rarely happens. Most experiments are never
published, and the ones which are -specially the surprising ones- were sometimes
performed before finding a theory which could explain the results. Since the preface is
not formally a part of a scientific work, and I shall take here the opportunity to write in
first person about how this work came to be.

During the season's vacation in 1983/84, I was working as assistant in the behavior
laboratory in the Universidad de Costa Rica, training rats in standard classical and
operant conditioning. It was clear that while the theory is straightforward, real rats
behave in sometimes unpredictable ways, and expert conditioning is almost an art. I
was worried that my students would have trouble (they did) and decided to write
software to let the students practice with a computer-simulated rat first. Programming a
rat in a Skinner box, using Burroughs-mainframe BASIC, rapidly proved unfeasible.
But it was too late: my interest in behavior modeling was awaken, and persists to this
day.

Early in 1984, I read an article in the mathematical games column in Scientific
American (Hayes, 1984). It presented a promising theoretical framework that can be
used to simulate neural systems. Nothing could be further away from the intentions of
the author, for the column's subject were Cellular Automata. These are little-known
systems, used mainly for entertainment by mathematicians and programmers, though
they would eventually play a pivotal role in chaos research.

The normal use of the word "chaos" implies a disorderly, random behavior.
Mathematicians mean rather a fully deterministic process without random components,
where the behavior is complex but not necessarily disorderly. Many non-
mathematicians have heard from the "butterfly effect", and tend to believe that chaotic
behavior is always due to the exponential grow of very small differences in the initial
state. This is not the case in cellular automata, where the initial state is absolutely
precise, and all calculations are performed with integer numbers, avoiding the inherent
inaccuracy of floating-point arithmetic.

The canonical Cellular Automaton is John Horton Conway's Game of Life. It consists
of a two-dimensional array of identical cells, much like a chess board. The cells may
have one of two possible states, alive or dead. To begin the game, a pattern (random or
not) of living cells is placed in the array. Each cell has 8 neighbors around, like the
squares a chess' king may reach in one move. The rules ("formula") are: if a cell is dead
and exactly three neighbors are alive, the cell will be alive the next time step
("generation"). If a cell is alive, and two or three of its neighbors are alive, the cell stays
alive on the next generation. In all other cases, a cell is dead on the next generation.

 8

Despite being an extremely simple, discrete and fully deterministic system, the game of
life develops an extremely complex behavior, and there is a mathematical proof
(technically: Turing's halting problem) that it is ultimately unpredictable. In this
paradoxical combination of determinism and unpredictability lies the interest for chaos
research. For the rest of us, it is just fun to watch. It looks like a myriad of microbes
moving under a microscope, that is why it is called game of life.

More seriously, Cellular Automata offer a close analogy of the brain: the cells are
neurons, the neighbors are other neurons connected through synapses, and living cells
are neurons firing. The behavior of Cellular Automata is defined by their formula, a
simple table which combines the activity of the neighbors and the cell's own state. This
is similar to a neuron combining pre-synaptic excitatory and inhibitory input with its
own state (e.g., refractory period and calcium concentration) to determine whether to
produce a spike or not. There are other similarities: Cellular Automata are not serial
systems like a normal (Von Neumann architecture) computer, but parallel systems like
the brain. Alas, the fact that neurons come in a confusing variety of forms and
neurotransmitters, seems to contradict the complete uniformity of Cellular Automata.

Then, Scientific American came to the rescue again (Goodman & Bastiani, 1984). Their
article explained how grasshopper embryonic neurons differentiate, depending on the
neighbors around and their own state of development. After all, a human brain is only
the ultimate product of a single cell with a single -digital- genetic code. An inhibitory
neuron is like an automaton's cell that becomes trapped in a subset of its formula, with
no combination of input and state producing a new state located outside this subset.
This is fortunate, otherwise inhibitory neurons could begin to produce insulin or
hydrochloric acid, which are also coded in their nucleus.

The ever-more-complex automata I developed following this insight, would be called
by other researchers Artificial Neural Networks, but at the time I was unaware that such
systems existed. One major difference persists when following the cellular-automaton-
as-brain approach. Most conventional neural networks use cells with a single state. In
other words, their output depends exclusively on the input, and lack a memory of what
they were doing a time-step before. This single state is a major computational
disadvantage. The mathematical model of computers, the Turing Machine, can be
redefined in this context as a 1-cell, 0-dimensional cellular automaton, with the tape
substituting the neighbors. To put it in drastic words: if Turing machines had only one
state, they would not be the mathematical model of computers; and if neurons had no
states, then there would not be short term memory nor temporal summation. It is
surprising that cognitive modeling is still usually performed with single-state neural
networks.

Over the years, these automata were coming always closer to the complexity of
neurons, loosing in the process one of the most appealing features of automata: their
simplicity. Stephen Wolfram, a pioneer in this field, published in 2002 an ambitious
book on cellular automata (Wolfram, 2002), proposing them as a tool to understand the
complexity of the universe, as developing from very simple systems. His approach had
a somewhat controversial reception in the scientific community, but nevertheless it
generated a short-lived renaissance in the field. Taking advantage of a fashionable

 9

trend, a paper describing some results was subjected to a cognitive simulation congress
(Luna et al, 2003). It was a bit out of place at the congress, where most of the other
authors presented models developed with traditional Artificial Intelligence tools, like
ACT-R. Besides, the paper described jellyfish's locomotion, hardly a relevant subject
for cognitive modeling at first sight. Maybe it was accepted simply because of curiosity
about an exotic method. Hopefully, readers of the present work will share that curiosity.

When I started my doctoral work, the original goal was to develop more elegant models
than the ones dominating the cognitive control field, trying to simulate various effects
simultaneously within a single model. The more I studied these models, the more
unsatisfied I became with them. For a long time I could not put in words the reason for
this, and when I did, the unavoidable conclusion was that conventional BP-ANNs are a
dead-end street for cognitive modeling. I have opted to argue for a paradigm change,
and try to give a glimpse of how future models should look like, and which methods
can be used to develop them. Looking back at the history of neural models, a paradigm
change is a very ambitious goal, and I have been advised more than once how difficult
this approach is. I have chosen to make the effort, because I could not bring myself to
develop easy-but-scientifically-doomed models with a quiet conscience.

 10

1.1 Goals and hypotheses of this work

The general goal of this work is to analyse which neural features should be considered
relevant for models of cognitive conflict, and propose methods to improve the
plausibility and usefulness of such models. The main concern is methodological,
focusing on the research strategies, techniques and assumptions involved in the
development and validation of cognitive models.

The first hypothesis claims that to account for sequence and latency effects, the cells in
neural network (ANN) models of cognition should store information not only in the
form of long-term synaptic weights, but also have a separate, internal, short-term state
that influences their input/output behavior.

The second hypothesis claims that such an internal state can be implemented by
simulating only simple and well understood input/output properties of neurons,
avoiding abstract programming devices.

The third hypothesis claims that a biologically detailed simulation is practical using
modest computer resources, by applying programming techniques from cellular
automata, like look-up tables indexed by state and input.

The fourth hypothesis, concerning not single neurons but rather groups of them, claims
that cognitive contents (perception of input, active task, motor output, etc.) can be
represented in a model by groups of cells spiking in temporal close proximity, i.e.,
synchronized.

1.2 Structure of this work

The models presented in this work belong to the field of cognitive neuroscience. This is
an interdisciplinary field, where research in cognitive psychology, neurobiology,
computer science and other sciences are combined. One of the forms that such research
takes, is the development of formal models, mainly in the form of computer
simulations.

Due to the interdisciplinary character of this work, no optimal order of the different
parts of the theory (see part 2) exists, as it would depend on the particular area of
expertise of the reader. The chosen order is a compromise, it has some abrupt changes
of subject and sometimes it does not follow the conventional order. For example, the
description of the black box method is found at the start of the theory and not in the
method part, otherwise the nature of the problems that this work tries to solve cannot be
easily understood.

The main focus of this work is the methodology used to develop models of cognitive
processes. The goal is to analyse the methods and techniques commonly used, find
flaws in them, and propose new methods for future models. Within this context, the
models presented here should be understood simply as examples of the use of methods,
and not as models of definite cognitive processes. Thought if may seem contradictory,

 11

it can be argued that the proposed methods themselves are the most important results of
this work.

In the following, various versions of computer programs are provided. Most of the
parameters that define a specific model are not part of the program itself, instead they
are defined by the user in the form of two human-readable data files, loaded at the start
of each simulation. Within this context, the term "program" refers to the simulation
software, i.e., an executable program with the extension .EXE. A "model" consists of
the two data files (STRUC.TXT and PARAM.TXT) defining respectively the
connection structure of the network, and the input/output behavior of the cells. To use
in this way the word “model” for a set of parameters, does not necessarily implies that
it is a model of a real-world object, unless explicitly stated. Finally, the term
"simulation" is used here to describe the results of the software running, after it has
loaded the data files. A simulation may consist of results of the program running
several times, when it is run only once it may be called simply a "run".

The programs used to perform the simulations are the result of continuous
development, in principle they are successive versions of a single program that has
been changed mostly in small, incremental steps. Between changes, many models were
built and tested, of which only a small fraction will be presented. The process has been
continuous, alternating phases of program and model development.

The simulations are presented in two series. The first one consists of simulations of the
most simple neural processes. The reasons to choose those processes and the specific
implementation of neural features are explained, followed by the results and a
discussion.

In the second series, the theoretical grounds to simplify the simulation from
neurotransmission to ions-only is explained. Using this model as basis, a genetic
algorithm framework is proposed, its theory and methodological advantages explained.
This is followed by the methods used to produce a prototype program, the selection
procedures used, the statistical problems of measuring synchronization, and the
development of a fitness function. Many of these issues are illustrated by simulations.

Finally, there is a general discussion, bibliography, appendices and a CD-ROM that
includes all versions of the program and all models, which the reader may run
him/herself.

 12

2 THEORY

2.1 The black box method in psychology

The black box is a method used to perform input/output analysis of systems, and it is
most frequently employed in engineering. It is known to psychologists mainly as the
theoretical background used in experimental analysis of behavior (radical behaviorism).
The Turing test is also an example of this method, and a behaviorist may be tempted to
describe it as behavior analysis.

The box is “black” because its inner components are either not available for inspection,
or simply ignored. To build a model -or a copy- of the system being analysed, how the
box actually functions is of no interest, as long as the model can reproduce exactly the
input/output behavior of the original.

This method underlies most of present work, it used to analyse neural network models
of cognitive conflict, and to propose solutions to flaws found in these models. A simple
example of the method, adapted from an argument of philosopher of science John
Searle (1983) follows.

The system to be analysed is a soft-drink vending machine, selling bottles for a price of
one dollar. For an input of one dollar coin, the output is one bottle (ignoring the case of
a sold-out machine), and for this, the machine needs no internal states, it could be a
single-state machine. However, the machine also accepts half-dollar coins, and after an
input of a single one, there is no output. After the second half-dollar, the output is one
bottle. The unavoidable conclusion is that the machine has at least two different states,
one that produces an output after an input of 50 cent, and one that does not. This is
described as state-dependant input/output.

Suppose now that the machine also accepts quarters (25 cent coins). The next input for
the same machine has the sequence half-dollar, quarter, quarter, and the output is a
bottle. The next input/output sequence is quarter, half-dollar, bottle. In this case, there
should be at least four internal states: "empty", "25 cent", "50 cent" and "75 cent", but
the state "25 cent" seems to be missing, and the first coin probably sets the machine to
state "50 cent" even if the coin was a quarter. One may try other sequences to test this
hypothesis, yet the black box method already indicates an error in the design or
functioning of the machine, because the order of the inputs should play no role for the
output of a vending machine. Notice that for this analysis it is completely irrelevant if
the machine is purely mechanical or microprocessor-controlled.

In psychology, the sequence of input stimulus, and the time lapsed between them, often
has a critical influence over the output. The description of classical and operant
learning below, is based on chapter 8 of the textbook from Zimbardo and Gerrig
(2008). In the learning paradigm of classical conditioning (popularly known as Pavlov's
dog) an organism learns a relationship between two inputs, the conditioned stimulus
and the unconditioned stimulus. The canonical example is that of a dog that repeatedly
hears a bell a minute before receiving food. After this is done a number of times, the
dog begins to salivate after hearing the bell, but before receiving the food. Before

 13

conditioning, salivating is the unconditioned response to the food, after learning
salivation is produced by the sound of the bell and is called a conditioned response.

The sequence in which the two stimuli -bell and food- are presented, determines the
magnitude of the conditioned response, and its resistance to extinction (extinction
consists in repeatedly presenting the bell alone without food, and eventually leads
disappearance of the conditioned response). If the bell and food are presented
simultaneously, the conditioning is weak at best and is rapidly extinguished. If the bell
is presented one minute after the food, no conditioning occurs. If the bell sounds one
hour before food is presented, no conditioning occurs. Obviously, classical conditioning
is highly dependant both on the sequence of inputs and the latency (time elapsed
between the two stimuli). It follows that a neural network model of classical
conditioning needs to account for input sequence and time. In other words, besides the
long-term memory represented as the changes in the connection weights, it also needs
some form of short-term memory. This point will be discussed in detail later, within the
description of BP-ANNs.

The other learning paradigm in experimental analysis of behavior, is operant
conditioning. The main difference is that in classical conditioning one stimulus is
followed by a response (bell -> salivation), while in operant conditioning a behavior is
followed by a consequence. The canonical example here, is a rat that learns to press a
lever to operate a mechanism which provides the rat with a small portion of food. The
food is in this case a "positive reinforcer", because it increases the probability of the rat
to show a given behavior (pressing the lever). Critical for this conditioning is the
latency, defined in this case as the time lapse between a behavior and its consequence.
Short latencies need few trials to condition a behavior, medium latencies need more
trials, and too long latencies produce no conditioning.

The behavior required for a reinforcement can be manipulated with different
reinforcement schedules. Pressing the lever once, followed by food, is a reinforcement
schedule named "fixed ratio one". If the rat must press the lever ten times, it is called
"fixed ratio ten". If the rat receives a reinforcement after pressing the lever ten times on
average, it is on a "variable rate ten" schedule. Another class are "period" schedules,
where a single behavior is reinforced only after a given period of time following the last
reinforcement, and no behavior is reinforced before. If this period is one minute, the
schedule's name is fixed period one minute. If the period is varies from trial to trial,
with an average of one minute, the schedule's name is variable period one minute. The
four basic reinforcement schedules, fixed ratio, variable ratio, fixed period and variable
period, produce different rates of behaviors by unit of time. They also show
characteristic patterns of behavior, which are virtually undistinguishable over a wide
variety of organisms that includes humans, rats an pigeons.

 14

Fig. 1 Above: schema of a cumulative recorder, used to record behavior units (usually
lever presses) in behavioral laboratories.
Below: Schedules of reinforcement. VR: variable ratio. FR: fixed ratio. FI: fixed
interval. VI: variable interval. The short diagonal lines mark reinforcements. The step-
like horizontal lines in FR are periods without activity. Taken from:
http://www.schouppe.net/wpl/psychologie/persoonlijkheid/theorie/gedragstheorie/operante.htm

From the viewpoint of the organism, the world is a black box where the sequence of
inputs (lever presses) and outputs (food portions) are dependant on both sequence and
timing. Analysing the organism itself as a black box, the input sequence and timing
(reinforcement schedule), and reinforcement latency, play a critical role to determine
the output (the organism's behavior). A very interesting example of this is superstitious
behavior (Skinner, 1947), where the organism is given food at fixed time intervals,
regardless of the organism's behavior. If the timing is right (around 15 seconds for
pigeons) one particular behavior will increase in probability of appearance despite
having no connection whatsoever with a consequence, and this behavior differs widely
for different individuals (pecking in one corner, twisting the head, wing flapping ,etc.).

It is obvious that a reasonable model of operant behavior, should account for sequence
and timing of both input and output. However, despite the existence of a class of neural
networks using an unsupervised learn algorithm named "reinforcement learning", no
neural network known to the author is able to reproduce the characteristic patterns of

 15

behavior for the various reinforcement schedules or superstitious behavior.
Reinforcement schedules can be mixed, and virtually unlimited combinations of
sequences and timings could be used to test the validity of a model. Yet, to put it
bluntly, from the viewpoint of black box analysis there is simply no model of operant
conditioning.

Learning is a subject of great interest both for psychology and neural networks, but is
not the subject of this work, which is constrained to cognitive conflict. Within this field
there is usually no new learning involved beyond the initial phase of practice, which is
almost never analysed in the results. To use an hypothetical example, in an experiment
the subject is instructed to press a given key on the computer keyboard when he/she
sees a green letter, and a different key when a red letter is shown. A practice phase is
started, until the experimental subject has reached a given average reaction time and/or
a given maximum error rate. Only after this phase of practice, the proper experiment
starts.

One task frequently used in the study of cognitive conflict, is the Stroop task, named
after a classical experiment (Stroop, 1935). In this task, the experimental subject must
name the color in which a word is printed, but the word itself is the name of a different
color. Because reading is a highly trained task, the word interferes with the task of
naming the color in which the word is printed, and produces slower reaction times
compared with naming the color of geometrical figures. One of the possible causes of
this and other types of cognitive conflict, is the simultaneous activation of incompatible
responses. Additional variations can be used, like compatible, incompatible and neutral
conditions, respectively “RED” in red color, “RED” in blue color, and “DOG” in red
color. In the normal configuration of this task, the word used as irrelevant stimulus in
one item is never used as the color to be named in following item.

Another way to study cognitive conflict is to use the negative priming effect. In this
experimental configuration, two stimuli are combined, one relevant and one irrelevant
to the task, as it is done in the Stroop task. The irrelevant stimulus in item n-1 is used as
target for stimulus n. This is a sequential effect that slows down the reaction time to the
target, and can be used likewise in compatible, incompatible and neutral conditions.
Combining the Stroop and the negative priming effects, a series of items could be:
“BLUE” in red color, “GREEN” in blue color, “YELLOW” in green color, “GREEN”
in yellow color, and so on.

Most cognitive psychologists treat these two effects as separate ones, and try to develop
theories or models for each one separately, following a general strategy informally
known as “divide and conquer”. Human cognition is deemed to be so complex, that to
eventually understand it we should try to understand first all the different processes
individually. It may be the case that the Stroop effect and the negative priming effect
are due to unrelated cognitive subsystems, but sooner or later cognitive psychology will
be forced to merge all the subsystems if we expect to produce a comprehensive theory
or model of cognition. In any case, for a black box analysis it is evident that the
negative priming effect alone is evidence of state-dependant input/output, and requires
multiple internal states of the box. Again, when the Stroop and the negative priming
effects are combined, it makes no sense to treat them as separate boxes, since both

 16

stimuli and task are the same. A proper model of cognitive conflict should account for
the actual input/output of the system, regardless of which input sequence is used.

2.2 What is a model?

It is very difficult to give a general definition of the concept "model" because it is used
with very different meanings in different fields or even within a given field. It may
designate a physical object, a set of mathematical formulas, a common language
description of a process, or a computer program. The characterization and taxonomy of
models is a task not for a particular scientific discipline, but rather for epistemology or
the philosophy of science in general.

According to Stachowiak (1973), a model is always an image, example or
representation of something (the "original"), that has the following attributes:

1) The representation attribute. Models are images, representations of a natural or
artificial original, that itself may be a model (another way to refer to this attribute is
isomorphism - "equal form", or homophormism -"same form").

2) The reduction attribute. Models do not have all properties of the original, but only
those considered to be relevant for a restricted purpose.

3)The pragmatical attribute. Models are not uniquely assigned to an original. They
substitute an original for a specific subject, in a specific time, for specific mental or
material operations. (pp. 131 - 133). In the case of scientific models, this attribute
means that the usefulness of a given model depends on the purpose of the researcher,
usually understanding or predicting some behavior of the original.

Within theoretical psychology, Dörner (1994) proposed two additional distinctions.
First, when a model is not static but represents a process, it is called "simulation" and is
usually performed with a computer. Second, he points out that in the social sciences the
word model is used with confusingly diverse meanings, and without a clear distinction
between theory and model. Referring to Braithwaite (1963 pp. 224-341), Dörner
suggests that the word "model" is used when:

"1) A theory is so small and special, that the word "theory" sounds too ambitious.

2) Half or completely formalized theories are very rare in the social sciences. One calls
such theories "models", in order to distinguish them from not formalized theories.

3) A theory is not complete but rather is only a precursor form with missing parts."
(Dörner 1994 p. 368)

Of particular interest for the computer models presented in this work, is the second
point. Within this context, formalized means an unambiguous description, accurate
enough to produce quantitative results. It requires an artificial language, like the ones
used in mathematics, logic or computer programming.

 17

A good example for the crucial formal/informal distinction is Hebb's rule, one of the
most frequently used concepts in neural networks: "When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such that A's
efficiency, as one of the cells firing B, is increased." (Hebb, 1949 p. 62). This rule is
neither a theory nor a model, it is only a non-formal hypothesis -that neurophysiology
has proven to be true (Koch, 1997 p.207)- described using common language. Most
psychologists may think that Hebb is clear enough and his rule is easy to understand,
but for the purpose of making a formal model, this is not true.

There are many computer simulations that claim to use Hebb's rule, but they are
implemented in different ways and deliver different quantitative results. This happens
because the computer enforces a complete formalization of the rule. A computer is
unable to accept a description like "near enough", "some growth process" or "one or
both cells". The programmer is forced to disambiguate all such descriptions, and must
choose exact values for all variables (e.g., "increased": by how much?) and constants.
Since Hebb did not explained in detail how to do this, programmers end up with formal
models that disagree with each other.

In the context of this work only formal models will be proposed, because the validation
of a model is easier to perform when a model produces quantitative results, that can be
fitted to data from experiments with humans. Before discussing which attributes should
be represented in cognitive models, the methodological question of how to validate
models is addressed below.

2.3 Evaluation of models in psychology

According to Ueckert (1983 p.587), for computer-simulated models "The question of
the validity of simulation models and their applicability is basically nothing else than
the question about the relationship between theory and empirical reality, the same that
applies generally for sciences as a methodological problem". Atkinson (1961 p. 46)
puts it in a more blunt way: "At this point it would be nice if we could refer to a list of
criteria and a decision rule which would evaluate the model and tell us whether this
specific development or similar mathematical models are of genuine value in analysing
the phenomena of interest to psychologists. Of course, such decision procedures do not
exist."

 While it is true that computer models carry no lower burden of proof than other forms
of theory, the objects studied -models- are not part of the empirical reality but artificial
ones. Herzog (1984, p. 94-96) argues on this ground that a model cannot be empirically
proven or unproven, the relevant judgement is: useful or not. This is ultimately dictated
by the pragmatic attribute of models, i.e., a model is useful (or not) only in relation with
its purpose, which in Herzog's case (p.84-85) is theoretical insight
(Erkenntnistheoretische Funktion).

Perhaps, instead of trying to find criteria to determine if a model is valid, it is more
practical to look for criteria to declare a model invalid. Simon & Newell (1963), in
analogy to inferential statistics' errors of type I and type II, propose two types of

 18

modelling error. Error of omission designates a relevant feature of the original, that is
missing in the model. Error of commission designates a model's feature that is not
present in the original. These errors are failures of the isomorphism attribute, an make
model and original different. At the same time, omission and commission errors break
the reduction attribute, by missing an original's relevant feature or including a non-
existent feature.

There is no way to know in advance which features of the original are actually relevant.
In the case of cognitive neuroscience models, this is an extremely difficult problem.
Neurobiology has delivered an enormous amount of facts, to the point that a detailed
model of a single neuron is a major challenge. Cognitive psychology has also produced
scores of empirical data and effects, frequently without comprehensive theories to
relate the many empirical facts. Finally, computer science faces the problems of the
vast computer power required for the simulations, and also the non-trivial task of
writing complex software without programming errors.

The result of this almost unmanageable complexity, is that models have to be extremely
simplified representations of very constrained originals, and there is a difficult trade-off
between the isomorphism and reduction attributes. Which of the original's features are
deemed relevant has remained a problem without a definitive answer, and this work
concentrates in identifying -and correcting- errors of omission in BP-ANN models. The
original being modelled in this work is described in 2.5, how this model is formalized is
described in section 3.1.

2.3.1 The problem of free parameters

Computer programs are a way to formalize a model, but they tend to be much more
complex than mathematical formulas. Programs have many variables, and if arbitrary
values are used to define them, the resulting model has many free parameters.

"Quantitative theories with free parameters often gain credence when they closely fit
data. This is a mistake. A good fit reveals nothing about the flexibility of the theory
(how much it cannot fit), the variability of the data (how firmly the data rule out what
the theory cannot fit), or the likelihood of other outcomes (perhaps the theory could fit
any plausible results), and a reader needs all 3 pieces of information to decide how
much the fit should increase belief in the theory. ... A better way to test a theory with
free parameters is to determine how the theory constrains possible outcomes" (Roberts
& Pashler, 2000, p. 358).

While this criticism applies in general to psychological theories, it is particularly
important for computer models, and indeed the authors use a BP-ANN model as an
example. If a model has many free parameters, one may fine-tune their values until they
fit the empirical data of a particular experiment. With another data set, the parameters
may be fine-tuned again with different parameter values, and fit the data. However, the
model has not predicted the results of two experiments. It has only produced two ex-
post-facto explanations, and the explanations are different for both cases. Programmers
have a saying for this criticism: "you can simulate anything", which does not mean that
you have found a way to solve a general problem.

 19

Roberts and Pashler (2000) propose that the models should show not only that a given
configuration fits the data, i.e., make a prediction that is empirically tested. They
demand an explicit range of behavior predicted, as well as behavior ruled out by the
model. This demand can be fulfilled only if a range of values for each parameter are
simulated separately, and a reason to choose the range's bounds is given. Besides the
fact that for most BP-ANNs this would mean thousands of simulations, it can be
expected that most of the model's behavior does not fit data.

The logical consequence of this argument is that there must be no free parameters, but
rather each parameter value should have a explicit reason to be chosen, and this reason
cannot be that it "fits the data".

The simulations performed in this work are implemented using a construction-set
program, that by necessity has many more free parameters than usual ANNs. Two
methods will be proposed later to respond to the many-free-parameters criticism. First,
the laboratory approach of keeping all variables constant -however artificial they may
be- except two or more values of a single independent variable. The second strategy is
to use a genetic algorithm, that starts with random values for all free parameters, and
changes this values according to an explicit fitness function.

2.4 A case example: astronomical models

One way to understand how models are developed, and which criteria are used to
evaluate them, is to study a series of different models that represent the same original. It
is also important that the purposes of these models, and the original's features
represented, are the same or at least comparable.

Such requisites are difficult to fulfil in psychology, so first some examples from
astronomy, the oldest science, will be used here before examining an example from
cognitive psychology. One big advantage in solar system models, is that the features to
be represented are clear from the beginning, i.e., the position and movements of
celestial bodies. The purpose of the models is to calculate the positions in the future
(like calendars or eclipse prediction) or the past (e.g., horoscopes). Another goal in
some cases, is a deeper understanding of the universe in general.

The criteria used to judge models are not absolute, and each model is a compromise in
this respect. Of the various criteria generally accepted in astronomy -and shared by
psychology- four had been arbitrarily chosen, to illustrate the fact that each one of them
has been ignored by an accepted astronomical model:

1) Plausibility, another word for the representation attribute, i.e., how isomorph is the
model with respect to the original. This is unfortunately an inherently subjective
judgement, and tends to change with the scientific zeitgeist.

2) Simplicity. This criterion corresponds to the reduction attribute, but is used here with
an additional epistemological meaning. Following Occam's razor, it means that if two
models describe a system with equal accuracy, the most simple one is to be preferred.

 20

3)Explanatory power, i.e. how many of a system's observed behaviours are accounted
by the model. This is equivalent to the pragmatical attribute, and in the case of
astronomical models it has grown from celestial bodies' positions to include the fall of
apples on the earth, and eventually the nature of space-time.

4)Prediction accuracy. This is a test used for scientific theories in general, and applies
to models in the sense that if a model's predictions do not fit the observation data from
the original, the isomorphism requirement is broken.

The first formal model of the solar system (actually of the whole universe, at the time),
is due to Eudoxus of Cnidus, motivated by his teacher Plato. He described the universe
as a series of transparent, concentric spheres, with the various objects attached to them.
The spheres revolve within each other on axes pointing in various directions. Eudoxus'
formal model is usually considered as the first one in astronomy, but its predictions
were only approximations. Unfortunately, the details of this models were lost to history,
and what survived was the improved version of Aristoteles.

The next breakthrough is due to Claudius Ptolemaeus. He refined the spheres model
letting some of them revolve not around the earth, but around points in other spheres.
The plausibility suffers, since no explanation is given why the spheres go trough each
other without breaking. Moreover, despite its name, his system is not geocentric at all:

Fig. 2 The geocentric model. The big interrupted line is the main component of the
orbit, called deferent. The small interrupted line is the epicycle, in this case a single
one. The deferent revolves around the marked with an X, halfway between the earth
and the equant (black dot). Taken from: http://en.wikipedia.org/wiki/Geocentric

Notice that the deferent is not centred on the earth as in Eudoxus' model, it is an
eccentric orbit. Ptolemaeus admitted that making planets revolve around an empty,
arbitrary point in space was implausible. He defended his model only on the grounds
that it allows accurate predictions. In this case, prediction is more important than
plausibility.

 21

One very important aspect of the geocentric model, is that its accuracy can be improved
by adding more epicycles. As the model becomes more accurate, its complexity grows
until it becomes impractical to calculate. "Adding epicycles" has become the pejorative
way to describe repairing a faulty model, it corresponds exactly to the problem of
having too many free parameters, as discussed above.

Nicolaus Copernicus published his heliocentric model in 1543. However, Copernicus
model was deemed by many of his contemporaries as implausible, since it required the
assumption that the earth revolves around itself and around the sun. Moreover, though
Copernicus created a new paradigm, his model was no better at fitting the data than
Ptolomaeus. Its main effect was rather to unleash new research by other astronomers.

Galileo Galilei, in his book Dialogue Concerning the Two Chief World Systems,
argued in favor of the Copernicus model (at least in public) because the calculations it
requires for practical purposes are more simple, though geocentrism remains more
accurate, if enough epicycles are used. In this case, simplicity is more important than
plausibility or prediction accuracy.

It was Johannes Kepler who improved the predictive accuracy of the heliocentric
model. Kepler tried for years to improve on Copernicus, using eccentric orbits. His
model fit Tycho Brahe's observation data very well, with the exception of three
observations of the planet Mars.

Kepler decided to trust Brahe's data, and disposed of simple assumptions about
planetary orbits. Instead of circular orbits, he proposed elliptical ones. More "un-
simple" and implausible yet, he proposed changing speeds for the planets. Kepler's
model fitted the data better than the geocentric model, uses formulas easy to compute
and has fewer parameters. In this case, prediction and simplicity are more important
than plausibility, but the purposes of the model have been expanded. Now, the issue is
not simply how to calculate planet positions, but what the solar system actually looks
like, i.e., improve scientific understanding. More important from the methodological
point of view, Kepler's model drastically reduced the number of free parameters.

Kepler's model rapidly became the accepted one, but it was Isaac Newton who reduced
the number of assumptions to universal gravitation and the laws of motion. Newton's
model was as accurate as Kepler's, and more simple. It has a single free parameter, the
gravitational constant. Maybe more important however, was its extraordinary
explanatory power, for it applied to apples as well as planets.

Newton's laws predict with absolute accuracy the orbits of two bodies, but has
fundamental problems with more than two. This is known in physics as the "three body
problem". Despite a number of exact solutions (notably Lagrange's points) there is no
way to predict the positions of more than two bodies for arbitrary times in the future.
The amount of feedback loops grows very fast as the number of bodies modelled
increases, and makes the system behavior chaotic and ultimately unpredictable. The
same problem is found in neural simulation.

 22

After Uranus was discovered, small anomalies in its orbit were detected that
contradicted Newton's laws. Urbain Le Verrier assumed that there must be another
planet beyond Uranus, and he predicted the position of Neptune, which was soon
confirmed by observation. This is considered as a triumph in astronomy's history. Less
well known, is that Le Verrier also tried to explain by the same method another
observation that contradicted Newton: Mercury's perihelion precession. But planet
"Vulcan" could not be found. This illustrates that models are not abandoned despite
isomorphism failures, unless a better model is available.

Mercury's anomaly remained the only challenge to Newton's model, and not until
Einstein's general relativity theory could it be explained. However, relativity made such
implausible assumptions, and was so complex to calculate, that most astronomers
refused to adopt it. Einstein himself did not expected that his model would be validated
in his lifetime. Only after a relativity's implausible prediction (that the apparent
positions of stars would be affected by gravitation during a solar eclipse) was
confirmed, the relativity model was accepted. This is a good example of the difference
between explaining and predicting, when it comes to the subjective judgement of
plausibility.

Beyond scientific understanding, practical models must be easy to use. This is the
reason why NASA still uses Newton's model to calculate the vast majority of spacecraft
trajectories.

The solar system is not easy to model, but at least it is clear what the original is,
(positions of celestial objects) and what is irrelevant. For example, an astronomer does
not need to know anything about the geology of the moon to calculate its orbit. In other
systems, it is not clear in advance what features of the original are relevant, even when
the dependant variable(s) are clear enough. Compare, for example, solar system models
to the task of developing a computer simulation to predict climate change. There are
more dependant variables, like temperature, precipitation, sea level, etc. But in this
case, so many independent variables are known to influence weather, that the
researcher is forced to choose which ones can be represented, and can only rely on a-
priory plausibility to choose those. Additionally, trade-offs are forced between spatial
and temporal resolution on one hand, and computer resources on the other. Finally,
there is not enough accurate data from the past to validate the model by running it
backwards, and of course no data at all from the future.

Neural simulations face a problem more similar to climate change than to the solar
system. There are computer resources limits for how many neurons and synapses can
be simulated. Thousands of facts about neural systems are known, and is not clear in
advance which ones are the most relevant. And finally, only a very incomplete
description of neural behavior is available for systems bigger than a sea-slug.

2.5 Basic features of neural behavior

Neural-based models of cognitive behavior must start by choosing which characteristics
of the original should be represented. Given the many facts known about nervous
systems, judging in advance which features are most relevant and should be

 23

implemented, is a very difficult task. As it will be shown later, this is probably one of
the main problems in the design of ANNs. In the following, some of the most basic
neural features will be shortly described, and these will define the original that this
work's simulations represent. There are two reasons why these particular features have
been chosen. First, they all are important for the input/output of neurons. And, second,
they are well understood since decades, and are discussed in introductory
biopsychology textbooks. The short description bellow is based on parts II and III of
Kandel et al (2000).

2.5.1 Neural input/output

The most important form of input/output in neurons is the action potential, a discrete
electrochemical pulse that varies very little in duration or amplitude. Because of its
appearance in a record of electrical activity, it is also called "spike".

Human neurons have a resting potential of around -70 mV. When presynaptic
excitatory synapses fire, neurotransmitter-gated ion channels open in the postsynaptic
membrane. Once enough Na+ gets inside a neuron, the firing threshold (about -65 mV)
is reached, and a series of voltage-gated ion channels open and close in a precise
sequence in which is called an action potential or spike. First, channels open that let
Na+ ions in, making the neuron more positive until a peak of around +50 mV is
reached. At this point, Na channels close, K channels open and the neuron becomes
more negative, overshooting the resting potential at around -75 mV. This process takes
about a millisecond, and is followed by the refractory period (ref. per.). The first part
of it, some 2-3 ms., is called the absolute ref. per.. No spike will be produced when the
neuron is stimulated using an electrode during this period, even if the stimulation is
considerably greater than the normal amount that would produce a spike otherwise. The
following is called partial refractory period, during which electrode stimulation is
greater than normal in order to produce a spike, until the neuron returns to its original
resting potential around 10-20 ms afterwards (depending on neuron type and previous
activity among other things).

The precise values of the resting potential, threshold, negative overshoot, duration of
absolute and partial refractory periods, as well as ion concentrations, vary across the
different animal species and neuron types within an organism, but the mechanism is
essentially the same and is found also in many other cells like, e.g., heart cells. The
research that described these processes was performed in the early 1950s using mainly
electrodes, and has lead computer simulations to make a number of assumptions about
which are the relevant features that should be represented in a model, and which ones
not.

When probed with electrodes, one of the results is that the absolute ref. per. determines
the maximum spike rate. Different values of the constant electrode stimulation below
this level, result in frequency modulation (FM, like in radio). Strong values trigger
spikes earlier in the partial ref. per. and lead to hi-frequency spiking. Weak stimulation
produces spikes at later points in the ref. per., when the neuron is more sensitive, and
produces a low-frequency spike rate. Individual neurons are "noisy", meaning that
individual spikes are equally strong (no AM, amplitude modulation) but the stimulation

 24

required to produce a single spike is not constant, it varies from one spike to the next,
sometimes by a considerable amount. This has led most researchers outside biology to
consider the average frequency, and not the timing of individual spikes, to be the
relevant feature to be accounted for.

Another basic input/output neural behavior is the so-called temporal summation. A
neuron integrates its input by adding (maybe multiplying, see Koch, 1997) all
presynaptic excitatory spikes multiplied by their respective synaptic weights,
subtracting all presynaptic inhibitory spikes (again, multiplied by their respective
synaptic weights) and finally triggering a spike when the integration reaches the
threshold at the axon's hillock. Crucially, the electrical effect of incoming spikes lasts
for some milliseconds before returning to the resting membrane potential. A given
neuron that would fire if ten of its neighbours spike simultaneously, will also fire if
only five neighbours spike twice each within a couple of milliseconds. A neuron
integrates how many spikes it receives, and also how temporally close those spikes are.
This means that neural integration is affected by a short-term internal state, and the
output of neurons is not a fixed function of its input, it depends also on its recent
history. This fact is one of the oldest known about neural integration, and its
mechanism is well understood, perhaps that is the reason why it is so easily overlooked.

Another input/output behavior that changes depending on recent activity is the so-called
long-term potentiation (LTP) in hippocampus' neurons, a process known to be crucial
for memory. After a period of intense stimulation, some neurons remain much more
active for minutes or even hours. A similar phenomenon is found on most cortical
neurons. After above-average stimulation, neurons become more sensitive to input for a
short period of some seconds. Again, the output of neurons depends on a combination
of the input and the internal state.

2.5.2 The binding problem and neural synchronization

Gray et al. (1989) showed that synchronization of individual neurons plays a decisive
role in an old cognitive problem. The binding problem poses the question of how
perception is able to bind together different parts of an object, while keeping it separate
from its background. The original paper is written in a language too technical to quote
it here, instead an explanation of the discovery, written later by one of the authors will
be used:

"How does the brain bind all these individual characteristics together into a single
impression of a green grasshopper?

Twenty years ago Christoph von der Malsburg, a computer scientist and brain theorist,
now at the Ruhr University in Bochum, Germany, suggested a solution. By
synchronizing their activities, nerve cells could join into effectively cooperating units--
so-called assemblies. Subsequently, a number of research teams, among them the group
at Wolf Singer's laboratory at the Max Planck Institute for Brain Research in
Frankfurt, have demonstrated that this "ballet of neurons" in fact exists. Peter Koenig,
Singer and one of us (Engel) carried out an especially decisive experiment at the end of
the 1980s. We presented a cat with various targets to observe. When we showed it a

 25

single object, neurons in its visual system responsible for analysing characteristics
synchronized their activities in a pronounced way. When we gave the animal two
separate objects to look at, however, the common rhythm broke down. The
synchronization changed to a pattern of rapid oscillatory fluctuations at characteristic
frequencies between 30 and 100 hertz, a region that brain researchers call the gamma
band." (Engel et al., 2006)

Although the study of neural synchronization has meanwhile become a major field of
research in neuroscience, it has had little effect in cognitive simulation. Neural
networks using binary output, and non-supervised hebbian learning rules, date as far
back as the Boltzmann Machine (Hinton and Sejnowski, 1983). Yet it was the
discovery of the role of neural synchronization in perception, that inspired a new type
of ANN called Spiking Neural Networks, the type used in the present work. Though
these networks have attained a modest expansion, they are mostly restricted to
engineering applications like pattern recognition. This is not surprising since the
original studies concerned sensor visual systems, and tracking synchronization in
association cortex is much more difficult.

2.5.3 New research on spike timing

ANNs rarely represent neuron's spikes, and opt for a so-called "firing rate", i.e., an
average of the neuron's firing rate over many spikes. This is odd, given that the binary
and discrete nature of spikes is one of the oldest know input-output features of neurons.
We will examine later the reasons why traditional ANN models have chosen not to
represent spikes, but first let us examine some of the facts that have been discovered
recently.

There is now plenty of literature in neuroscience indicating that information processing
at the neuron level is quite sophisticated. A good overview article is Beardsly (1997).
From one of its original sources, itself a widely quoted review article (Koch, 1997):

“Over the past decades, neural networks have provided the dominant framework for
understanding how the brain implements the computations necessary for its survival. At
the heart of these networks, are simplified and static models of nerve cells. But
neuroscience is undergoing a revolution, and one consequence is that the picture of
how neurons go about their business has altered.” (p.207)

"Experimentally, the best-studied aspect of increasing connection strength is long-term
potentiation, which can be conceptualized as an increase in synaptic weight lasting for
days or even weeks. It is induced by simultaneous activity at the pre- and postsynaptic
terminals (Fig. 1), in agreement with Hebb's rule. [...] These neural-network models
assumed that, to cope with the apparent lack of reliability of single cells, the brain
makes use of 'firing-rate' code. Here, only the average number of spikes within some
suitable time window, say a fraction of a second, matters. The detailed pattern of spikes
was thought to be largely irrelevant " (p. 207)

The author reviews other research, that has shown that the timing of individual spikes
indeed carries about 10-40 per cent of the theoretical information maximum, only the

 26

rest being actual noise (p. 209). If this is the case, the coding used for the output of
neurons is not Frequency Modulation (FM) as most neural networks assume, but rather
Ultra Wide Band (UWB), where the timing of discrete pulses is used to carry
information. Interestingly, UWB is a descendant of a forgotten technique used in the
oldest radio transmissions, which used electrical sparks -not unlike neural spikes (the
German word for radio comes from Funke, "spark").

Not only the timing is important, but also the order in which presynaptic spikes are
received with respect to the postsynaptic ones. These facts contradict the view that
individual spikes are an unreliable way to carry information, the main reason why they
are not represented in ANNs (Koch, 1997 p.209). The author concludes:

“Only very little of this complexity is reflected in today's neural-network literature.
Indeed, we sorely require theoretical tools that deal with signal and information
processing in cascades of such hybrid, analog-digital computational elements. ” (p.
210)

Taking together basic neural input/output, the role of synchronization in neural binding,
and the way information is carried by individual spikes, the black box method suggests
that neural networks require an implementation of the actual input/output of neurons, at
least for cognitive simulation purposes. This implementation must be much more
detailed than the ones currently used by BP-ANNs.

2.6 Neural models in cognitive science

Modern digital computers first became widely know to the general public at the early
1950’s, most notably as a result of their use in the 1952 USA presidential election. The
most widely used analogy to describe them at the time was “electronic brain”. Perhaps,
this comparison was the result of a weak form of the Turing test: if computers can do
arithmetic and play chess, and humans can too, they must be similar in some way. This
analogy is far from perfect, as John Von Neumann -one of the most important computer
pioneers- pointed out in his last book (Von Neumann, 1958). The conceptual
framework eventually adopted in cognitive sciences, was a more abstract view of
nervous systems as “information processing” systems. This concept is still widely used
in symbolic Artificial Intelligence and cognitive psychology.

The first attempt to formally analyse the similarity between brains and computers was
performed by McCulloch and Pitts (1943), who used simplified neuron-like
components to implement logic gates, the building blocks of computer hardware. They
are almost always mentioned in texts about the development of cognition models. This
is a misunderstanding, and many cognitive researchers fail to realize that while
McCulloch and Pitts showed how to build computers out of neurons, they did not show
how to build brains out of transistors.

The first real attempt to model cognition -at its most primitive level- was Rosenblatt's
"perceptron" (1957), a simplified retina model constructed with electronic hardware.
The perceptron did not use the serial processing (Von Neumann architecture) of digital
computers, it copied the parallel structure of retinas and the brain's cortex, using cells

 27

and synapses. This first type of artificial neural network, became the subject of
extensive research, mainly in the field of pattern recognition.

Eventually a book by Minsky and Papert (1969) proved that a perceptron cannot
recognize some very simple patterns (e.g., the XOR problem). Their analysis took the
form of a formal mathematical proof, this probably led most psychologists to view
perceptrons as a dead-end paradigm, and research in this field came almost to a halt for
many years. However, a mathematical proof does not necessarily has this ultimate
meaning. It is true only within the constrains of the assumptions that underlay the
proof. In Minsky and Papert’s case, one crucial assumption was that neural networks
have only two layers, one for input and one for output. Instead of simply describing a
fundamental problem, they could have also have proposed the solution (three or more
layers; even mammalian retinas have three layers). To their credit, this seems obvious
only in retrospective, and it took the cognitive modelling community a long time to
understand this.

In the 1980's three independent teams discovered the three-layer Back-Propagation
Artificial Neural Networks, made popular by what may be the most influential book on
cognitive modelling, Parallel Distributed Processing (1986) usually abbreviated as
PDP. By the simple device of using three layers, BP-ANNs had abandoned Minsky and
Papert's (1969) implicit assumption of only two layers, and could solve, among others,
the XOR problem. This type of ANNs -and their variations- are still today the most
commonly used, and are also widely used outside cognitive research. ANNs brought a
paradigm shift in the original sense of Thomas Kuhn (1962), changing the basic
assumptions about the way to develop cognitive models, reinterpreting the empirical
facts, and promoting a wave of research in the subject.

Though still embedded in the information processing concept, the main difference of
the PDP approach is to abandon the serial nature of standard computers. It uses instead
structures and processes similar to the ones studied in neurobiology, like cells
(neurons), weighted connections (synapses), activation functions (neural integration)
and parallel processing of information.

PDP has delivered models that are biologically more plausible, but the analogy implicit
in the name "neural network" is often not very close. The massive amount of facts
known about neurons and nervous systems, and the vast body of research in cognition,
have forced ANN models to make extreme simplifications.

It is difficult to put a date to the point when neural networks became an accepted way to
model cognitive processes, but without doubt one of the early successes was the paper
From rote learning to system building (Plunkett & Marchman; 1993). Using a BP-ANN
with 18 input units, 30 hidden units and 20 output units, they achieved a very good fit
to the data produced by children when learning the past tense of English verbs. The
model not only fitted the data, but made a prediction about the evolution of error rates
that was inconsistent with the theory of the day, and the prediction proved correct. The
model was a good one when it comes to represent the distributed storage of cognitive
contents in a distributed way, following the Hebb's rule. Strikingly, with less than
hundred cells a neural network can model some cognitive processes that take 100

 28

billion neurons in humans.

One would expect that such a success in modelling learning would be rapidly followed
by models of much more basic behavior, like classical and operant conditioning, but
this did not happend. A BP-ANN can represent the number of words recognized and
error rates as a function of the number of loops of the learning algorithm, but it lacks a
representation of timing and order of events. Both classical (i.e., like Pavlovs's dog) and
operant learning (e.g., like a rat in a Skinner box), are very sensitive to the order of
stimulus and behavior, and the time between them (latency). A BP-ANN can
adequately represent the synaptic changes of long-term memory, but not the short-term
effects of working memory. To put it in other words, when the dependent variable has a
time component, BP-ANNs lack a mechanism to represent it due to the non-changing
nature of the cell's input/output function.

A rarely mentioned attempt to model simple cognition, are Braintenberg's vehicles
(1993). These are gedankenexperiments, simple robots using only a few computing
elements like Grey Walter's robotic turtles (Walter, 1950). While Walter used analogue
electronic valves, Breitenberg proposed "neurodes", hypothetical devices that produced
spikes. Neurodes produce more spikes per second when a sensor input (e.g., photocell)
is strong than when it is weak. The stepping motors of the vehicles move when more
than one spike is received at the same time from the neurodes. The vehicles thus
simulate neural integration based on semi-random spikes, and are capable of
autonomous behavior and even simple forms of social behavior. While such
simulations are relatively well known by robot researchers, stochastic-spiking systems
are mostly ignored by the cognitive research community (see 2.7.1 and
SIMULATIONS II-Measuring synchronization).

2.7 A conventional ANN

At this point, it is necessary to explain what an ANN is, and how it works, even before
the reasons why they are designed this way are analysed. There are many different
types of ANNs, and explaining even the most common ones would be beyond the scope
of this work. The reader should be aware that for almost every feature in the following
example, there is an ANN type that does not implement it. Fortunately, there is a family
of networks that dominates research and makes up most of the models used in cognitive
psychology.

The canonical three-layer Back-Propagation Artificial Neural Network (BP-ANN) has
the following structure:

 29

Fig. 3 Three layer feed-forward network. Taken from:
http://www.seattlerobotics.org/encoder/nov98/neural.html

At the left is the input layer, that receives activation from the outside world, e.g., a
pattern to be recognized. The middle layer is called "hidden" since it has neither input
nor output connections outside. There may be more than one hidden layer. Finally, to
the right, the output layer expresses the output of the network in the form of the
activation of its cells. The cells may have connections (synapses) within their own
layer, or output connections with the next one. Information flows only from left to
right, this is called "feed-forward". It lacks feedback connections (recurrent) between
the layers.

Fig. 4 Processing in a single cell. Taken from
http://www.seattlerobotics.org/encoder/nov98/neural.html

Each cell's input has a "weight", a number representing the functional effect of the
connection, much like Hebb's rule (1949). The connections may have positive values
(excitatory) or negative (inhibitory). They are added together, which represents neural
integration. This value is then transformed using a sigmoid function, to simulate the
non-linear behavior of neurons. Finally, the output is fed to the next cell(s).

The BP learn algorithm data consists of one set of stimulation patterns, and a
corresponding set of expected output patterns. At start, the weights of the cells'

 30

connections are set to random values. The input and resulting cells' activation proceeds
then from the input to the hidden to the output layer. The output layer's activity pattern
is then compared with the expected pattern, and an error measure is computed out of
their difference. This error signal is used to change a fraction of the weight of the
hidden-to-output connections, in order to diminish the error the next time. The changed
weights themselves, are used to compute the error on the hidden layer, and change
accordingly the weights between the input and the hidden layers. In this way, the
weights' changes propagate backwards through the network, giving its name to the
learn algorithm, and the first loop (iteration) is complete.

The network is "trained" using one pair of input-output patterns after another, changing
the weights slowly and mixing them. After the whole set of input-outputs has been run,
it starts again, usually with a different order of the training input/output pairs. The order
of the pairs is changed to eliminate sequence effects. The effect of the previous pair on
the present one, behaves as noise and averages to 0 -on the long term- when successive
pairs do not share similarities. And if similarities exist, those should be learned. The
whole set is run many times, until the mean error for the input-output pairs has reached
a barely changing value.

Once the network has been trained, typically for some thousands of iterations, the
weights are fixed. To test it, new, previously unused input-output pairs are presented,
and if successful, the network delivers the expected output in what is called
"generalization" i.e., learning.

It is important to note that the network does not simulate reaction times -the dependent
variable of many cognitive experiments. Each test pattern is run only once -in three
steps- from input to hidden to output layer. It is an instant result, that does not require
iterations and takes exactly the same time -with no time variation whatsoever- for every
input-output pair once the training phase is complete. The output shows likewise no
quantitative variation at all for a given input, unless random noise is added.

The back-propagation learn algorithm is one example the "supervised" type, which are
known to be biologically implausible. Each connection needs additional information to
change its weight, that is not available to either the presynaptic nor the postsynaptic
cell. In biological terms, this would require that each synapse has an additional synapse
under the control of an homunculus, who tells the synapse when and how much it
should change.

Another problem concerning learning, is the question if the neural network actually
learns anything not already known to the program as a whole. It can be argued that
what is to be learned is already stored in the training pairs, though not in a explicit
form. The learning process can be viewed as simply storing this implicit knowledge in a
distributed way, using the connection weights. The advantage of a BP-ANN when
compared to e.g., an expert system (a type of symbolic Artificial Intelligence program)
is that the developer does not need to make the knowledge available in the form of
explicit if-then rules. Indeed, the developer does not even need to understand how the
problem can be solved, as long as the training pairs can still be generated, and a small
fraction of wrong training pairs can be tolerated by the algorithm.

 31

2.7.1 Typical model's assumptions

Some of the assumptions about nervous systems on which BP-ANNs are grounded,
were reasonable at the time when they were first created, before the role of spikes in
neural processing was better understood. The assumptions have not yet been updated
according to the results of neurobiological research. Some of these will be examined in
the following.

McLeod et al. (1998), in their cognitive modelling textbook, explicitly name five
assumptions on which connectionist (PDP) models are based:

"1) Neurons integrate information. [...]

2) Neurons pass information about the level of their input. [...] In the classical neuron,
information about the level of stimulation of the sending neuron is coded by the rate at
which it fires. [...]

3) Brain structure is layered. [...]

4) The influence of one neuron on another depends on the strengths of the connections
between neurons. [...]

5) Learning is achieved by changing the strengths of connections between neurons."
(pp. 11-15).

Assumption 1 is correct, but as shown in 2.5.1, temporal summation requires a short-
term internal state, representing the recent input. The standard "integrate and fire" cells
used in ANNs do not implement neural integration.

Assumption 2 is flawed, as research in neural synchronization and the information
carrying ability of individual spikes has shown. Besides disregarding actual neuron's
input/output, another reason may play a role in the decision to implement output in the
form of frequency modulation. The fire rate expressed as a floating-point variable
represents the average number of spikes of a number of neurons over a period of time.
Given the assumption that neurons are noisy (more about this below), the period
represented should be long enough for the noise to be averaged to a small proportion of
the signal. How long the averaging period is, or how many neurons are being simulated
by a cell, is not specified in the models. One is forced to speculate in this case, probably
the period is between 100 to 200 milliseconds and 1 to 2 seconds, and the neurons
simulated may be those of a cortical column (10000), or, to be conservative, at least
100. It follows that implementing spikes instead of fire rate, not only would make the
model much more complex, it would also slow down the simulation by several orders
of magnitude.

Assumption 3 is partly true, but misleading. There are some layered structures in the
central nervous system that feed information forward only, like the retina. Mammalian
cortex also shows a cytoarchitecture of six layers, and in general information flows

 32

from the primary sensory areas, to the secondary sensory areas, then the association
areas, and finally to the motor areas. But information does not flows in the cortex only
forward. There are an enormous amount of feedback connections, not only between
cortex areas but also among the various cortex layers, basal nuclei, cerebellum, etc.
Feed-forward connections are neither the only structure nor -probably- the most
important connection feature of brains. The reason why feed-forward layered structures
are standard in models, is because the back-propagation learning algorithm works only
in feed-forward networks. This is an implementation issue in computer models, but
lacks plausible anatomical grounds.

Assumptions 4 and 5 are well supported by neurobiological research.

The successor to the standard reference book in cognitive simulation, Parallel
Distributed Processing (McClelland and Rumelhart, 1988), is arguably Computational
explorations in cognitive neuroscience (O'Reilly and Munakata, 2000). The last one is
the main reference book used for this work, and it provides an unusually detailed
description of neural physiology. To illustrate the effects of assumptions made about
the decision to represent individual spikes vs. mean spiking rate, and related issues,
some quotes of the last source follow.

"A neuron integrates information from many different sources (input) into a single real-
valued number that reflects how well this information matches what the neuron has
become specialized to detect, and then sends an output that reflects the results of this
evaluation. This is the well-known integrate-and-fire model of neural function."
(O'Reilly and Munakata, 2000 pp. 23, 24)

Notice that "integrate-and-fire" refers to a 1-bit discrete output, the spike. However, the
output has been previously described as a "real-valued number" i.e., the mean spiking
rate. The authors appear oblivious to this contradiction.

"However, most of our models use a rate code approximation to discrete spiking. Here
the output of the neuron is a continuous, real-valued number that reflects the
instantaneous rate at which an otherwise equivalent spiking neuron would produce
spikes. [...] The principal computational advantage of the rate code output is that it
smoothes over the noise that is otherwise present in discrete spiking. [...] This kind of
noise would tend to be averaged out with thousands of neurons, but not in the smaller-
scale models that we often use." (O'Reilly and Munakata, 2000 p.42)

Here the authors interpret the varying timing of individual spikes simply as noise, not
information. The use of a rate code is proposed to simulate the assumed noise-reduction
effect of actual brains, which have many more neurons that the model can simulate in a
reasonable time. As previously mentioned in 2.5.2 and 2.5.3, while neurons are indeed
noisy, not all of the spike variation is noise. For a computer programmer is easier to
add the noise with a random number generator if desired, because the randomness can
be kept under control at the desired level. If the noise is due to intrinsic properties of
the system, chaotic behavior may ensue, specially in systems with many feedback loops
(this is the case on this work's simulations).

 33

"Time averaging is also important when discrete spiking is used for having a window of
temporal summation, where spiking inputs that arrive around the same time period will
produce a larger excitatory effect than if those same inputs were distributed across
time." (O'Reilly and Munakata, 2000 p.43)

Interestingly, the authors are aware that individual spiking plays an important role in a
neuron's temporal summation, but fail to implement it. Again, they appear to dismiss
this property as irrelevant.

O'Reilly and Munakata (2000 p. 47) claim that a rate code can simulate regularly
spiking -simulated- neurons, and that rate code plus noise simulates noisy neurons. This
is true only in the case that the irregular spiking of neurons is noise and not
information. This may be impossible to prove, since one of the results of information
theory (Shannon's information entropy) is that perfectly non-redundant information has
exactly the same statistical properties as white noise. Besides, thermal noise is known
to play a role in spontaneous spiking of input-less neurons, so the authors are making a
plausible assumption here, one that recent research shows to be probably false after all.

The main problem with rate code, is that it accounts for the spiking frequency of
neurons, but not for the phase. Consider the following example: two groups of cells are
firing at the same frequency, say, 10 ms wavelength. The first group fires at times 10,
20, 30, 40 ms. and so on. The second fires at times 5, 15, 25, 35 ms. and so on. Each
group is synchronized by itself, but out of synchrony with respect to the other group by
half a wavelength. The two groups' activity is may be unrelated and represent different
cognitive contents, but for a rate code there is no measurable distinction at all.

One simulation showing the relevance of phase effects was performed by Raffone and
Wolters (2001). They implemented an (artificial) spiking neural network that simulated
the electrical effects of Potassium ions only. The network could maintain up to four
different subgroups of cells synchronized within themselves, all having the same main
frequency but four different phases. They published this result as a proposed
mechanism to account for the fact that visual short-time memory can handle at most
four chunks (a chunk is a unit of information in short time memory, itself composed of
various details. For example, to keep a telephone number in short-time memory, one
may "chunk" two digits into one unit). The simulated cells produced discrete output, i.e.
spikes. Despite the stable frequency of all subgroups, individual cells had continuously
changing wavelengths. If one of the cells spiked too late, it would be affected by the
too-early spiking cells of the following subgroup of cells, and would "jump wave"
backwards, i.e., synchronize with the following subgroup's phase. The same can also
happen forwards. So the limiting factor for how many visual chunks can be maintained,
probably depends on the frequency and the variation of cells' wavelengths around that
frequency, which together determine how many different phases can coexist without
interference. This result was a surprise for the researchers themselves (Wolters 2006,
personal communication).

Finally, another critical assumption, is the lack of relevance of the ref. per.:

"This refractory period effectively results in a fixed maximum rate at which a neuron

 34

can fire spikes (more on this later)." (O'Reilly and Munakata 2000, p. 29. the same
point is also made on page 48, and on page 70).

The ref. per. is not described in detail, and no clear distinction is made between the
absolute and relative phases of it. In the whole book it is mentioned only these three
times, of which only the first appears in the subject index. For the simulation, it is only
relevant as an upper saturation limit that justifies the use of a sigmoid (S-shaped)
activation function. This is surprising, since the relative ref. per. is the cause of
nonlinearity of the input-output behavior of neurons, which shows also an S-shaped
(unsymmetrical) form. Nonlinearity is frequently used in hidden layers of artificial
neural networks because of mathematical considerations (a series of linear equations
can be reduced to a single one, nonlinear ones cannot), but rarely is the ref. per.
mentioned at all.

One can only speculate about the reason why the ref. per. is not given as justification
for sigmoid functions. Either it has been overlooked, or implementing the ref. per.
would force simulating individual neurons, spikes, internal states, and a much higher
time resolution of the simulation. This all requires of course more computer and
programming resources, and make the models more complex.

To resume the role of neural assumptions in the design of neural networks, many of
them are based on oversimplifications of neural input/output, and some of them are
simply false. For a technical application this is not necessarily a problem. A BP-ANN
may not represent the effects of input sequence, but this makes it inmune to the slow-
down of response time in case of negative priming. A software engineer can hardly
justify developing complex and slow neural networks, with the purpose of making the
response time even slower after negative priming input.

In cognitive modelling however, the goal is not to deliver an optimal and easy solution
to a given problem, but rather to faithfully replicate the way cognitive systems function,
including the case when they fail to function in an optimal way. It follows that
cognitive simulations should abandon the extremely simplified BP-ANNs, and start to
include more neural features to produce a more realistic input/output of the cells.

2.8 BP-ANNs and models of cognitive conflict

Formal models are rare in cognitive psychology, and even more rare are series of
different models of the same original, like it was the case with solar system models in
astronomy. Fortunately, one specific series of models has produced a good example,
though the differences between models are relatively small (within the series). The
origins of this chain of models can be directly traced back to the ANN paradigm shift,
as can be seen by the authors' names. The authors of the PDP book were McClelland
and Rumelhart. The first model of the Stroop effect was realized by Cohen, Dunbar and
McClelland (1990). It was followed by another model proposed for the same subject,
(Cohen and Huston, 1994). Finally, a series of more comprehensive models covering in
addition other cognitive conflict effects, were presented by Botvinick, Braver,
Barch,Carter, and Cohen.(2001).

 35

These models were incrementally improved, using a conservative approach. The
authors take a model, and change it as little as necessary to improve performance or
adapt it to represent other cognitive phenomena. Here, only the last models (Botvinick
et al., 2001) will be examined, since they are the most advanced.

One of the cognitive effects modelled is the so-called Gratton Effect. This effect shows
itself on the Eriksen task (Eriksen & Eriksen, 1974). In an often used version of this
task, one central letter (H or S) is presented to the experimental subject, who presses
one of two keys accordingly. The central target letter is shown surrounded by other
letters, which may be the same (HHHHH or SSSSS in the compatible case, no conflict)
or the other one (SSHSS or HHSHH, incompatible case, conflict).

Cognitive conflict, or more specifically the compatibility effect, is measured as the
difference in reaction time between the compatible and incompatible cases. Gratton et
al (1992) found that the cognitive conflict varied depending on whether the previous
item had been compatible or not.

Fig. 5 from Gratton et al, 1992.

The original experiment was interpreted by the authors as evidence that cognitive
control processes had adjusted the attention after each trial. According to this
interpretation, after an incompatible trial, attention would be more focused in the target
and mask out the flankers, after compatible trials the flankers would be taken into
account more strongly -despite irrelevance- and speed up the answer for compatible
item (or slow down the answer of incompatible ones). This cognitive control instance
would then constantly monitor conflict, and adjust processing selectivity constantly.
Earlier, in part due to functional magnetic resonance studies, it had been suggested that
this control instance is anatomically located in the Anterior Cingulate Cortex.

 36

New research (Wendt et al 2006, Hommel et al 2004) strongly suggests that this
"control hypothesis" -a short-hand name for lack of an accepted one- is premature, and
more simple memory effects are at least partly responsible for a great part of the
Gratton Effect. To put it in blunt words, the apparent adjustment of attention may not
be an effect at all, but an artifact produced by sequence effects. When the number of
targets is increased from two to four, the Gratton effect is usually much smaller or
disappears completely. No literature is available that directly compares two vs. four
stimulus while eliminating from the analysis item repetitions, this would be a good
opportunity to test the predictions of the model. However, lacking a representation of
input sequences, the model will fail to show differences between two and four stimulus
runs.

The theory that describes better the Gratton's effect is Bernhard Hommel's feature
integration (2004). A short description of it, is that all features of a trial -relevant or
not- are bound together in memory as a chunk. When the next item is identical,
response is speeded-up. If the next item shares no features with the previous one,
response time is unaffected (note that this is seldom the case; even if both target and
irrelevant features change, the expected response may be the same). If only some of the
features repeat, this recalls a chunk in memory, and because the given response is part
of the chunk, it may slow-down the present response. Hommel's own diagram:

 37

Fig. 6 The effect of trial to trial features' change or repetition. Taken from Hommel et al
(2004).

Meanwhile, the control hypothesis has produced formal models not only of the Gratton
effect, but also of the Stroop effect and others (Botvinick et al, 2001). Though these
effects come from different experimental paradigms, in most of them reaction time is
slowed down due to the presence of incompatible stimuli-irrelevant to the task, (or
speed up in compatible case). The models used previously developed BP-ANNs, so no
new learning was needed and the connections' weights remained fixed. The only
change in the connection structure was to add a "conflict monitoring unit".

The first model to be consider, is the model for the Stroop task (1935). This is based in

 38

the Stroop test, where words for various colors are printed in an ink of a different color
(e.g., "RED" written in blue ink). When subjects are asked to name aloud the colors in
which the words are printed, they do so slower than when asked to name the colors of
bars. The long training in reading seems to produce an interference with color-naming,
this is the source of cognitive conflict in this case. Let's examine the model of this
effect:

Fig 6. Structure of the Stroop task model R: red G: green N: neutral C: color naming
W: word reading. The cells are circles, groups are ellipses, and the curves a the side of
the ellipses -with a dot in the lower part- are lateral inhibition connections. Taken from:
Botvinick et al., 2001, p. 631.

The network proposed by Botvinick et al. (2001) has a three-cell input for each task, a
two-cell input to determine the task, a two cell output layer, no hidden layer, and a
conflict-monitoring unit. The conflict is measured through the Hopfield energy of the
response layer. This means in this case (RxG)+(GxR). Its value is zero if one or both
cells are inactive, and maximum if both show maximum activity.

"The procedure used in simulating a trial is detailed in Cohen and Huston (1994).
Briefly, one of the task units is activated during an initial priming interval, during
which the output units are inhibited to prevent premature responses. The input pattern
is then applied and the response-layer inhibition removed." (Botvinick et al, 2001 p.
631).

The procedure used to model human response times, is not described but simply
quoted. In the Cohen and Huston (1994) model, the trials were not run in the usual way.
Instead of computing only once the activation of the cells in a single pass trough the
layers, the activation in the input layer was fed forward as a fraction, and the response
units computed a running-average of their input. Gaussian-distributed noise was also
added to the response units. After a number of iterations of this procedure, the
difference in activation of the two response-layer units reaches a threshold, and a
response is recorded. The number of iterations needed to reach the threshold is taken as

 39

equivalent to response time. The variability in the number of iterations is produced not
by the network itself, but by adding noise from a pseudo-random number generator.
This explains the somewhat cryptic caption under the results figure:

Fig. 7 "Energy as measured in the response layer of the Cohen and Huston (1994)
model during simulation of congruent, neutral, and incongruent trial in the Stroop task.
Arrows indicate average response times. Energy was recorded for each cycle of
processing, and the data shown are means based on 100 trials in each condition.".
Congruent is used as synonym of compatible. Taken from: Botvinick et al., 2001, p.
631.

The method used to simulate the "Gratton Effect" is very similar, with the important
exception that the control monitoring unit is not a passive measurement device, but
provides feedback to the network. Let us examine it:

 40

Fig. 8 Taken from: Botvinick et al., 2001, p.640.

"… control is implemented as a spatial attention layer. Unlike the earlier simulation,
the input to this layer is now adjusted from trial to trial on the basis of the output of
conflict monitoring, so that high levels of conflict lead to a concentration of input to the
center attention unit, and low levels of conflict lead to a more even distribution of input
to the attention layer" (Botvinick et al., 2001, p.639)

The simulation produces results virtually identical to experiments with humans
(Gratton et al 1992, experiment 1). The critical words here are "adjusted from trial to
trial" and are easy to overlook. It means that since on a given trial units have no
memory of the previous one, some device must transport this information. This is done
by storing a fraction of the activation value of the conflict monitoring unit, and using it
in the next trial as additional input for the attention units. Another crucial detail, is that
the activity of the control monitoring unit is not simply given as input to the attention
units, for this would produce no differentiated attention to the central as compared to
the lateral letters. The simulation program computes each trial a different distribution of
input for the attention units, depending on the measured conflict. The higher the
conflict, the higher the input of the central attention unit, as compared to the left and
right attention units. In other words, both the conflict and its effect on attention are
managed by an homunculus in the program, not by any feature of the neural network
itself.

 41

It would have been interesting to run simulations without a conflict monitoring unit,
and storing the activation value of the input and/or response units, but this was never
tried (Botvinick, personal communication, 2007). No theoretical reason is given why
only the conflict monitoring unit should have a short-term memory (an internal state)
but not the others. If all cells had been treated equally, similar results might have been
produced, and the conflict monitoring could be eliminated from the model. It seems that
though the dependent variables to be fit are response times, the real interest of
Botvinick et. al. is Anterior Cingulate Cortex activity.

Similarly, for the Stroop model, another effect could have been tested. In so-called
negative priming, the stimulus feature that should be ignored in item n-1 becomes the
target in item n. This sequence effect increases response times in humans, but the
model could only account for it if the cells had a short-term memory.

2.8.1 Validity of BP-ANN models of cognitive conflict

The cognitive models described above dominate the field of cognitive control
modelling, and influence research in other fields. Jonathan D. Cohen, one of the authors
of the models above, writes in his web page:

"Theoretical work. Neural network models are developed as a way of articulating
precise hypotheses [...]this work has led to novel hypotheses about system level
function, such as the response of anterior cinglulate[sic] cortex to conflict in
processing and its influence on adaptive changes in cognitive control. This work has
also predicted, and led to the discovery of new anatomic relationships, such as
projections from the anterior cingulate cortex to locus coeruleus." (Cohen, 2008)

It is important that the models are proposed to explain the data from human behavior
experiments, where reaction times are the dependent variables. The "predictions"
mentioned in the previous quote do not refer to as-yet undiscovered behavior effects,
but rather to neuroanatomical or neurophysiological issues.

To make a preliminary criticism, a review of some points follows:

1) BP-ANNs lack any mechanism equivalent to short-time memory, no trial-sequence
effects may be modelled with them without modification, and in this case the
modifications were performed on the simulation program, not in the neural network.
This modifications applied to a single cell, or in a single set of connections, instead of
becoming a standard feature of all cells.

2) The models are ex-post-facto, they fit known data but do not actually predict.

3) Reaction time is basically constant. Reaction times simulated through fractional
output, running averages and iterations reflect only the weights of the connections; they
are an unnecessary complication.

4) Differences in reaction time do not reflect a chaotic or stochastic nature of the

 42

networks, they are simply artificially added.

4) We have a model of the "Gratton Effect" that drives research over the anterior
cingulate cortex, yet the effect may be an artifact and the simulations did not try
simpler methods, like developing a short-time memory (more about this in the
following).

More fundamentally, there is no model of cognitive conflict, but models, in plural.
Different connection structures, weights and special devices, e.g., response time
measurement, are used depending on the task being simulated. Ideally, since BP-ANNs
are capable of learning, a single network should be able to learn and perform all the
tasks. It can be argued that it is possible to do so, but the model would have to be overly
complex and it would be difficult to clearly understand how it works. On the other
hand, lack of a general model makes incremental improvement of theory difficult or
impossible.

To make a comparison with astronomical models, suppose that Kepler had written "my
model predicts perfectly the position of Mars using an elliptic orbit, and the position of
Venus using an eccentric circular orbit, but it is inaccurate for all other planets".

It must be noted, that although the many-models situation is unsatisfactory, modellers
take great pains to make the differences as small as possible, e.g. adding a single cell to
a previous model. Indeed, one of the difficulties trying to understand a given model, is
that it has frequently been used in a chain of simulations for different purposes, and
details of its implementation are buried in a quote from a quote from a quote.

A major problem is the presence of many free parameters. The first model on the chain
of models examined here, is used by Roberts and Pashler (2000, p.358) as an example
of this problem:

"1. Cohen, Dunbar and McCLelland (1990) proposed a parallel distributed processing
model to explain the Stroop effect and related data, The model was meant to embody a
"continuous" view of automaticity, in contrast to an "all-or-none" view (Cohen et al.,
1990, p. 332). The model contained many adjustable parameters, including number of
units per module, ratio of training frequency, learning rate, maximum response time,
initial input weights, indirect pathway strengths, cascade rate, noise, magnitude of
attentional influence (two parameters), and response-mechanism parameters (three).
The model was fit to six data sets. Some parameters (e.g., number of units per module)
were separately adjusted for each data set; other parameters were adjusted on the
basis one data set and were held constant for the rest. The function relating cycle time
(model) to average reaction time was always linear, but its slope and intercept varied
from one data set to the next. [...] they did not try to fit a model based on the all-or-
none view"

In the later models of Botvinick et al., (2001) the authors seem to be aware of this
problem and claim: "Leaving the models' original parameters intact and using the same
simple computation to determine conflict across all three studies reduces the number of
free parameters associated with our simulation to zero" (Botvinick et al., 2001, p.630).

 43

This is obviously not true. Not only has the original free parameters problem remained
unsolved; the final models have even more free parameters, due to the addition of a
procedure to measure conflict in the output units, the conflict monitoring unit plus its
connections and weights, and the fraction of activation preserved for the next item (but
not used for any other unit).

Some of these problems have been noticed in the research generated by the previously
discussed models (Botvinick et al., (2001). One of the proposed solutions (Verguts and
Notebaert, 2008) is running the learning algorithm during the trials, using the conflict
measurement instead of a normal (training-pair generated) error signal. This proposal is
equivalent to giving the cells a short time memory, implemented as small variations
from trial to trial in the connections' weights. However, this also would extend the
known biological implausibility of the back-propagation algorithm to the cells' internal
states.

A more simple and plausible solution, would be to give every cell an additional
variable, that stores a running average of the input. While Botvinick et al. (2001) used
such a device to represent reaction time, instead of resetting the value to zero on every
trial, the running average could be computed continuously, and represent instead the
internal state of each cell. In any case, some modification of the neural network models
is required to implement the changing input/output behavior implicit in the Gratton
effect and negative priming. This implementation should be part of the network itself,
not an external device under the control of the simulation program. Otherwise, it is
questionable to claim that the model as a whole is a neural network.

Despite what may seem to be a hard criticism of these models, BP-ANNs represent an
improvement in modelling, for various reasons. First, they are formal and their results
can be compared with empirical data. While the comparison may expose an inaccurate
or little useful model, the alternative are non-formal models, where it is difficult to
make a comparison at all. Informal models tend to be difficult to disprove because of
their very ambiguity, some are even unfalsifiable in the sense of Karl Popper. Second,
including neural features increases the isomorphism, and makes the models more
plausible. Third, the PDP paradigm is relatively new, maybe the models should be
judged as work of pioneers. It is unfair to criticize the use of BP-ANNs without
mentioning that there are still no better alternatives.

To resume, the problem is not that BP-ANNs are a step in the wrong direction, it is that
they do not go far enough when trying to use neural features to model cognition. So to
speak, the bridge between cognition and neurobiology has still to reach the river's
banks.

2.9 The reverse-engineering method

Up to this point, we have discussed the concept of model, some attributes of formal
models, the criteria used to evaluate a model's usefulness and how this all applies to
examples of neural network models in the field of cognitive psychology. For the
analysis of both the original and the models, the black box method has been used. In the

 44

following, a method that expands this approach will be presented.

Fig. 9 "What I cannot create, I do not understand" Richard Feynman's last blackboard
(undated). Taken form URL: http://duartes.org/gustavo/blog/post/2008/02/20/Richard-
Feynman-Challenger-Disaster-Software-Engineering.aspx

The reverse engineering method is used in computer science and engineering in
different ways, usually not to create simplified models but rather identical copies of the
functions of complex systems, like an operating system or an aircraft.

The general idea, is that in order to understand a very complex system, one has to start
by making a copy as accurate as possible of it. If the black-box method has produced
boxes whose behavior is still too complex to reproduce in an efficient way, there is no
choice but to apply the input-output analysis to smaller boxes, and to reproduce the
internal workings of the subsystems. In the process of copying, insight might be gained.
In the worst case, once the copy is complete -i.e., behavior of model and original are
equal- one may try to understand the system by making changes in the components, and
observing how its behavior is changed.

Reverse-engineering has been adopted by some leading psychologists (Pinker, 2008).
Another example, closer related to this work, is the research project Blue Brain
(Markram, 2006). Its stated goal is: "The Blue Brain project is the first comprehensive
attempt to reverse-engineer the mammalian brain, in order to understand brain
function and dysfunction through detailed simulations." (Blue Brain web page, URL:
http://bluebrain.epfl.ch/) To this date, the project is capable of simulating a complete
cortical column of a mouse, i.e., 10000 neurons including each local synapse, and the
detailed neurophysiology of neurons down to the molecular level, including ion
channels. Of course, such an ambitious goal can only be realized with the help of a
large team of scientists, and using a parallel supercomputer donated by IBM.

In this work, the black-box method is combined with reverse engineering to reach a
more detailed simulation than BP-ANNs do, in some cases even representing ions. Due
to resource constrains, the size of the models is restricted to hypothetical systems of a
maximum 100 cells. To give an idea of this constrain, the smallest multicellular model
animal used in biology, the 1 mm. nematode worm Caenorhabditis elegans, has 302
neurons. Reverse engineering is used based on the assumption that neurons are too
complex to be understood without the possibility of manipulating their subsystems one
by one, and observing the effect on the whole system's input/output. An additional
constrain dictated by reverse engineering is to avoid -whenever possible- abstract
devices (e.g., BP-error measurement) without known counterpart in neurons.

 45

3 METHOD

3.1 Description of the BCK neural simulation program

The version of the simulation software used as basis for the first series of simulations,
was slightly modified from a program originally written as neural simulation
construction set. This version is provided in the CD-ROM and described here,
exclusively to allow running models developed later, and should not -by itself- be
considered part of this work (after extensive modifications, the resulting program is
called ION and was used for the next series of simulations). The program was designed
to provide as much flexibility as possible to develop cognitive models, without having
to learn computer programming. By itself, the program alone does not represent a
specific model, it is a tool used to build models. Similar examples of the construction
set design, are SNNS (Stuttgart Neural Network Simulator) -in the field of ANNs- and
Mirek's Cellebration in the field of Cellular Automata.

Many of the basic input-output behavior of real neurons were implemented, as well as
metabolic processes and synaptic weight modification. One of the main expected uses
was to model learning at the cellular or synaptic level. Since learning is not a subject
here, some parts of the software will not be described in the following text (see
Appendix A).

The program was a modified Cellular Automaton. It would be classified now as a
Spiking Neural Network.

"Networks of spiking neurons are more powerful than their non-spiking predecessors
as they can encode temporal information in their signals, but therefore [they] do also
need [a] different and biologically more plausible [learning] rule." (Vreeken, 2002)

The program has been for years in continuous development, the version described here
is named BCK08.EXE , and reached this state on Apr 20, 2001. The program has been
modified and recompiled to produce the graphics of this work, so the dates of the
various files do not reflect the original ones.

3.1.1 Cells and connections

The BCK08 program simulates the behavior of a maximum of 100 neurons, each with a
maximum of 40 synapses (connections). The main difference with most ANNs, is that
each cell has a variable called "State", with 13 possible values. The output is binary,
state 0 represents a spike, states 1 through 12 produce no output. This is the most
important variable used to manage a cell's internal state. Besides producing spikes,
State is used as an index to choose user-defined parameters that modify the input/output
behavior of the cell.

The communication between cells is realized by a maximum of six simulated
neurotransmitters (NT). More precisely, NTs represent the effect of neurotransmitters
docking on neuroreceptors, and the resulting change in the postsynaptic concentration
of ions. Each NT has a "power", a real number that represents how much it will

 46

influence the neural integration. Excitatory NTs have a positive-valued power,
inhibitory ones a negative value. Independent of the intrinsic NT power, the amounts
crossing the synapse are controlled by a synaptic weight, as it does in conventional
neural networks. On a pre-synaptic spike, the NTs are added to storage variables, both
locally for each individual synapse and globally for the cell as a whole. The NT stores
represent the cell's electric/osmotic internal state and can be used to implement
temporal summation (see metabolism parameter HL_PRI, 3.1.3). The individual
synaptic stores allow to differentiate them according to their recent activity (e.g., for
learning). The global stores represent the electric state of the axon's hillock, where the
neural integration is performed.

Another important feature is the cell's energy management. One substance, called ATP
(in analogy to adenosine triphosphate, the neuron's energy-transport molecule) is stored
in the variable NT[0] and represents the energy available to the cell to produce spikes.
The other substance is called LAC (in analogy to lactic acid, which causes fatigue in
muscles) and stored in variable NT[1]. These variables do not represent
neurotransmitters despite their name, while the others (NT[2] to NT[7]) do. Though
probably confusing for the reader, this is done to simplify the internal data structures of
the program, and improves the simulation speed. The parameters used to produce,
destroy, and measure the effect on neural integration and other functions, are used in
exactly the same way for all NT-variables.

To avoid confusion, it is important to note that although the variable State is the most
important variable to manage the internal state, it does not represents the internal
state. The mechanism that transports information over previous events to the present, is
the storage and decay of NTs, which perform a role similar to a running average of the
input. The variable State is the cell's clock. Only when other variables have different
values for a given time of the clock (like varying cell's sensitivity to input during the
refractory period), is the input/output modified.

Users of the program define their own model with the help of two text files. The file
struc.txt defines the connection structure (topology) of the cells' network, i.e. the
synapses. The file param.txt is used to set a series of parameters that represent the cells'
metabolism and input/output behavior, these parameters may be changed also while the
simulation runs, and stored whenever the changes seem promising.

The program also implements many other features of no relevance for the purposes of
this work, and are only shortly described here. The neural network represents the brain
of a "frog", who lives in a chessboard-like "world". The program implements sensor
systems, like a retina and a "compass" sense. Depending on the position and orientation
of the frog in its world, input is delivered to the sensor areas. Likewise, through the
activity of the "motor areas" of the network, the frog is capable of three behaviors,
turning left, turning right, and jumping to the square in its front. Also implemented, is
automatic reinforcement or punishment, which are delivered as input to the "pleasure
center" and the "pain center" of the network. Other features are implemented to allow
users to develop a NT-based learning algorithm. The general idea, is that if the
algorithm is successful, the frog will avoid punishment and receive reinforcements; if
unsuccessful, the frog will simply perform what mathematicians call a random walk.

 47

A tutorial and the program itself can be found in the attached CD-ROM. In order not to
overburden the reader, a brief description of the relevant features follows, it should be
enough to understand the specific models afterwards.

A single cell is defined by the following set of variables:

//cell's components
int *Type, //cell's default neurotransmitter
 *State, //cell's "clock" (0==depolarization)
 *Axon, //delay in transmission ??
 *LastTir, //last wavelength
 *SynNum; //number of synapses declared
float *AuxInp, //"electrode" for external stimulation
 (*NtInpP) [MNT], //total store of primary NTs
 (*NtInpS) [MNT], //idem secondary
 (*SynEq) [MNT]; //equalizes number of syn. by NT
int (*SynType)[MAX_SYN]; //types of declared synapses
int *(*Syn) [MAX_SYN]; //points to neighbor's State or Axon
float (*SynWei) [MAX_SYN], //weights of synapses
 (*SyNtP) [MAX_SYN], //amount of primary NT
 (*SyNtS) [MAX_SYN]; //amount of secondary NT

(int means integer number, float is a real number.
Taken from the source-code file BCKMAIN.CPP)

Type: the specific NT send to the postsynaptic neighbors.

State: the most important variable of the cell. State 0 represents a spike, and is
incremented by one afterwards on each following time step, until reaching a maximum
value of 12. Whenever the integrated input reaches a threshold, the cell is reset to state
0. This variable is used as index in 1-dimensional arrays (vectors) and 2-dimensional
arrays (tables) of parameters. This can be used to implement e.g., the refractory period
by changing the effective threshold of the cell.

Axon: a simple counter variable to implement axonal delay depending on the cell's
Type.

LastTir: whenever cells spike, the last state reached is stored in this variable. It so
represents the wavelength between the last two spikes. It is used to color-code the
graphic display, and plays an important role when evaluating synchronicity of cell
groups.

Synnum: how many synapses the cell has, maximum is 40. These are input synapses,
the maximum of output synapses is 100-1.

AuxInp: input patterns stimulate cells through this variable, it can be described as an
electrode or input from sensor cells.

NtInpP: a one-dimensional array of values, stores the cell-wide amount of each NT. It

 48

is used to integrate all excitatory and inhibitory inputs, a biological analogy would be
the axon's hillock.

NtInpS: a similar array, stores the "secondary NTs" which are no real NTs, but rather
postsynaptic ions or secondary messenger molecules. Each time step, a given
proportion of the normal, "primary" NT is transformed in secondary NT. This is used to
represent a complex and only partly understood chain of chemical processes in the
postsynaptic membrane. The purpose is to provide a chemical, longer-time indicator of
the cells' previous activity history like it has been proposed, e.g., for calcium ions and
secondary transmitters. It is irrelevant for this work, and will be not further mentioned.

SynEq: a normalization parameter. If specified in the structure file of a given model,
the amount of each NT is divided by the number of synapses defined for that NT. This
allows to change the number of synapses without having to adjust the threshold of the
cell.

Each synapse is defined by the following variable arrays:

SynType: the presynaptic neurotransmitter type, usually. The user may define an
arbitrary type if desired. This mechanism allows to declare all cells of the same type but
still use more than one type of NT. It can be used, for example, to implement lateral
inhibition. It can also represent the different effect of various neuroreceptor ion-
channels that are triggered by the same NT.

Syn: this variable defines which cell is the presynaptic neighbor, and determines the
connection structure of the network. It is implemented as a pointer to the neighbor's
axon, and guarantees a constant addressing time (important if ported to parallel
hardware).

SynWei: the effect of a synapse varies not only depending on the NT/neuroreceptor
type, but also on its size and the density of NT-gated ion channels. Following a
convention in neural networks, it is called the "synaptic weight".

SyNtP: the amount of received neurotransmitter/ions for an individual synapse.

SyNtS: the same for the "secondary" NT.

3.1.2 Connection structure

The default human-readable file used to define the connection structure is named
"STRUC.TXT" and is found in each model's directory. Some of the commands have no
theoretical relevance, including, e.g., which colors are used to represent
neurotransmitters or the world. This file is loaded only once at the start of the
simulation, the structure cannot be changed while the simulation runs. Explained
bellow, are the most important commands only.

>Type--------- 0 99 2 //excitatory 70

 49

all cells are declared of having NT-type 2

who-begin who-end how-many type whom-begin whom-end
loc_nei------ 0 99 2 -2 -1 1 2

A regular neighborhood, as a normal cellular automaton would use. In this case, all
cells have four neighbors of type 2, the pairs immediately adjacent to the cell at both
sides. This command binds the line of cells in a circle, so cell number 1 would have as
neighbors 99, 0, 2 and 3.

>rnd_nei------ 0 99 8 2 0 99
>rnd_nei------ 0 99 8 3 0 99
>rnd_nei------ 0 99 8 4 0 99
>rnd_nei------ 0 99 8 5 0 99
>rnd_nei------ 0 99 8 6 0 99

This commands produce a series of random neighborhoods. All cells choose 8
neighbors of the types 2, 3, 4, 5 and 6 each, among all cells. This is done to use
different NTs with the same stochastic topology. By setting on run time the Power of
one NT to a desired value and all others to 0, one may compare different NTs without
having to load a new structure file.

>rnd_nei------ 10 19 4 2 0 9
This command (only an example, not actually used) would produce a one-way
connection, with cells 0 thru 9 each sending four outputs of type 2, to cells numbered
10 to 19. In this way layers may be defined if desired.

 50

>World--------
....................
....................
..*-***-***-***-**..
..+++-+++-+++-+++-..
..-***-***-***-***..
..++-+++-+++-+++-+..
..*-***-***-***-**..
..+++-+++-+++-+++-..
..-***-***-***-***..
..++-+++-F++-+++-+..
..*-***-***-***-**..
..+++-+++-+++-+++-..
..-***-***-***-***..
..++-+++-+++-+++-+..
..*-***-***-***-**..
..+++-+++-+++-+++-..
..-***-***-***-***..
..++-+++-+++-+++-+..
....................
....................

The world, in which the "Frog" (marked as F) lives. The signs '.', '-', '+' and '*' represent
sensor input: none, red, green and blue. Originally this was implemented to test
learning in a maze, but it can be used to apply stimulation to the input zones of
network.

3.1.3 Metabolism parameters

A parameters that define the "metabolism" are contained in a human-readable file
whose default name is "PARAM.TXT", found like before in each simulation's
directory. It is read at the simulation start, the parameters can be changed interactively,
and stored in a new file if desired. Only the parameters relevant for the present work are
explained bellow.

The program simulates a maximum of eight NeuroTransmitter (NT) substances which
may have different properties. They are named NT[0] to NT[7]. There are two
exceptions to this, the first is NT[0] which is not delivered through an axon when the
presynaptic neighbor spikes. It represents instead the amount of energy produced by the
cell.

>ATP----------
 0.0120
Each time step, the cell increases its amount of NT[0] according to the value of ATP.

 51

>LAC----------
 0.1000
Every time a cell produces a spike, a part of the NT[0] is transformed in NT[1]. This is
the second substance that is not delivered thru synapses, it can be used to represent
"fatigue". The amount transformed is determined through the value of LAC.

>STI----------
 0.0000
The force of electrode-like stimulation applied to the input cells. If its value is 0, the
networkis effectively isolated of the outside world.

>HL_PRI-------
 999 12 12 12 12 12 12 12
This is a very important variable array. It defines the half-life time of the energy
substance, fatigue substance, and NTs 2 to 7. Real NTs increase fast their effect on the
postsynaptic cell due to diffusion, and decrease slowly afterward as e.g., enzymes break
them and the rests are recycled. To simulate this, a fraction is subtracted on each time
step. The HL_PRI variables define how many time steps are needed to left half of the
original amount, in a way similar to the half-life of radioactive elements.

>NT_TH--------
 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Threshold to fire a spike, depending on the cell's type. Since NT[0] and NT[1] are
reserved for energy management, no cells can be declared of this type, and need no
threshold. Setting a value of 0.0 would make cells of a given type spike continuously,
and signal an error in the structure.

>NT_PO--------
 1.0000 0.0000 0.4000 0.0000 -0.4000 0.0000 0.0000 0.5000
The power, or effect of each NT. Inhibitory NTs are assigned negative values, the same
may apply to the fatigue substance NT[1].

>HL_AUX-------
 1
Half-life of the stimulation applied to the sensor input cells

>MASTER_DELAY-
 1
>DELAY--------
 1 1 1 1 1 1 1 1
The delay between the spike production and its reception by the post-synaptic neighbor
is a minimum of one time-step. It can be declared for all cell types (master) or
separately for each type.

>REF_PER_CELL-
 0.00 0.10 0.20 0.40 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00
This array contains values indexed by the cell's state. The amount of each NT cell-wide
store is first multiplied with their corresponding power, added, and finally multiplied

 52

with the value of this array. In this case shown, the values increase in a S-shaped curve
similar to the logistic function used in BP_ANNs. The middle part (0.40, 0.50, 0.60,
0.70) is linear, however. This illustrates one of the main advantages of using arrays of
predefined values instead of a equation. Not only would it be very difficult to find a
non-linear function with sigmoid ends and a flat middle part, computing it would be
orders of magnitude slower that using a look-up array. This form of ref. per. was
originally part of the simulation program itself, in newer versions is user-defined and is
found in the PARAM.TXT file.

>REF_PER------
 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.00
 1.00 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.00
 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 0.00 0.00 0.10 0.20 0.40 0.80 1.00 0.80 0.40 0.20 0.10 0.00 0.00
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This table shows some of the most important variables to explore the ref. per.. In the X-
axis, it is indexed from 0 to 12 by the cell's own State variable. In the Y-axis, with 0 at
the top and 7 at the bottom, the NT type is specified. The cross points define the
fraction of a given NT, at a given State, that the cell will absorb from the input. In this
example, the top line has a constant value of 1.0, so the energy production (NT[0]) is
independent of the state. In the second line, fatigue substance (NT[1])is only produced
during a spike. The third line, shows how the absorption of NT[2] increases during
time. The fourth line shows decreasing absorption for NT[3]. The next line shows
constant absorption. The sixth line, shows how NT[5] is only absorbed when both the
cell and the presynaptic axon are spiking together. Notice the difference with the
second line, fatigue substance. NT[0] is produced when the cell itself spikes, NT[5] is
received when the presynaptic cell spikes.

3.1.4 Computing one time step

All calculations needed to compute the state of the cells for the next time step, are
performed by the function "void compute(void)" in the source file COMPUTE.CPP.
This is the hearth of the program, and uses most of the computer time while the
program runs. It has been kept as compact as possible (112 lines) to improve
performance.

Another main reason for its small size, is debugging (finding and correcting
programming errors) ease. When writing a program, it is recommended to run step-by-
step every line of code, checking that all variables have the expected values. Normally,
the expected values are easy to find "by hand" or with a pocket calculator, but with 100
cells and over 100 variables by cell, this is almost impossible. In theory, if a program is
extremely short, it is possible to simply read the code and determine if there is a bug
(error). Another alternative, is to include additional lines of code that check
automatically for errors, e.g., a 0 value in a divisor. After debugging, the extra lines are
eliminated, and the program runs faster. Both the "keep it simple" and the debugging

 53

code have been used in this case, as well as step-by-step tracing.

The computation (in pseudocode) is performed as follows:

For each cell:
 For each synapse in this cell:
 check if the presynaptic axon is spiking, if so,
 add to the synaptic store an amount of NT
 determined by the synaptic weight multiplied by
 the refractory-period-table parameter as indexed
 by the synapse's NT-type and the cell's state

 add the same amount to the corresponding NT
 store of the cell

 add to the synapse's secondary NT store the
 fraction of the primary NT determined by
 transformation parameter for that NT-type

 add to the cell's NT[0] store the amount determined
 by ATP multiplied by the refractory-period-table
 indexed by 0 and the LastTir (wavelength) of the
 cell

 substract from the cell's NT[0] store the amount
 determined by the refractory-period-table indexed
 by 1 and the cell's state

 add to the cell's secondary NT[0] the amount
 determined by the NT[0] multiplied by the
 transformation parameter[0]

 add to the cell's NT[1] store the amount determined
 by LAC multiplied by the refractory-period-table
 indexed by 1 and the state of the cell

 add to the cell's secondary NT[1] the amount
 determined by the NT[1] multiplied by the
 transformation parameter[1]

 the total input for the cell is calculated by
 adding all the cell's primary and secondary NTs
 (including NT[0] and NT[1]), each multiplied by
 its corresponding power parameter

 the total input is multiplied by the cell's
 refractory period parameter, indexed by the cell's
 state.
 If the result is bigger than the cell's
 NT-type threshold, and the amount of NT[0] is
 bigger than LAC, the cell's next state is 0,
 the LastTir is updated, and the next axon value
 is set to the cell's NT-type delay.
 If not, the next state is one more than the
 present state (maximum 12), and the axon is
 decremented by one (minimum -1)

 54

(the state and axon are not updated at once, to
prevent the already computed cells to be one-step
before in time than the not yet computed cells.
The next part of the compute() function concerns
the learning algorithm, and is skipped here)

 the auxiliary input (electrode) is multiplied
 by its half-life parameter.

(all half-life parameters are smaller than 1.0,
this represents decay or catabolic processes)

 all the cell's primary and secondary NT stores
 are multiplied by their corresponding half-life
 parameters

(the learning algorithm is skipped here)

 for each synapse in this cell:
 multiply the synapse's primary and secondary
 NT stores by their corresponding half-life
 parameters

for all cells:
 update the cell's state
 update the axon's value

 55

3.1.5 Sample screen

Fig. 10 a sample full screen of the simulation program, in graphic-interactive mode

This is how the simulation looks like when run interactively by the user, when changes
in parameters are desired. The top line is the menu, in this case the NT-ref. per. table is
active (in green). There are many other menus, some of them not documented (the last
ones mainly for program debugging). The most important part is the spike display, the
part in the middle full of colored points. The time runs from left to right, and each
vertical column shows the spiking cells, cell 0 at the top and cell 99 at the bottom
(many variables start with 0 instead of 1, this is a convention used in language C). The
cells are only shown when spiking (State 0), and are color-coded depending on their
last wavelength. At the right, the red, green and blue-checkered square shows the
"world", where the "frog" (little white square with eyes close to the middle) lives. The
color-coding of the spikes' wavelength is the bar directly under the frog's world, 0 is at
left (white) and 12 or more is at right (magenta). The red lines at the bottom, show an
EEG-like track that simply displays how many cells are spiking at a given time-step.
Finally, in the lower-right corner, an histogram of the actual wavelengths of all spikes
is shown. The color coding is important when it comes to judge synchronization. In this
case, the EEG line may suggest some synchronization, and the histogram is unclear, but

 56

the spike display shows no discernible pattern at all. Human vision is subjective, but
frequently better able to perceive patterns and computers are.

3.2 Parallel computers

A fundamental design philosophy of the simulation program, is that is was written
almost from the beginning to be easy to port to parallel computer hardware. This is
partly due to the parallel nature of the cellular automata in which the program is based,
and partly due to the expected growth on computer resources if the simulation should
use a genetic algorithm.

Most PCs have a single processor using the serial Von Neumann architecture. This is
the reason for the race to provide more megahertz or gigahertz clock speeds in typical
computers. Only recently have multiple-processor ("cores") appeared in the market.
However, since commercial software is written still only for serial computers, efforts to
provide transparent parallelization at the hardware level result mostly in a waste of
resources an little improvement in execution time (the same applies to 64-bit hardware,
because the software is rarely re-compiled for such systems).

The theoretical limit for acceleration of execution time by using multiple processors, is
given by Amdahl's law. Suppose that one has a program where 80% of the code is
parallelizable (able to run independently in various processors) and the other 20% can
only be executed in a serial way. If two processors are used, the run-time is 60% of the
single-processor time. With four processors is 40%, with eight is 30%, with 16 is 25%,
with 32 is 22.5% and so on. No matter how many processors are used, the serial part of
the program will always take the same 20% of the original time, limits the maximum
speed and makes adding processors wasteful.

Another problem of parallel software, is how much communication is needed between
the different processors. Each unit running in its own processor, eventually needs input
from other units, and needs to send its own output to other units. The communication
between processing units must be synchronized, so the program usually cannot run
faster than the slowest unit on each cycle. To complicate matters, the amount of data
that has to be transferred usually grows much faster than the number of processors, to
the point where a program spends most of the time transporting data and synchronizing
units, and not actually computing.

These problems allow the use of parallel hardware only in problems that can be broken
in many similar units, that take a similar time to process, and whose units need to
communicate at best only with a few neighbors close to them. Examples of such
problems are meteorological forecasts, aerodynamics/hydrodynamics, and some atomic
particles' simulations.

From the viewpoint of cellular automata, these problems are not a fundamental
constrain. Each cell can be run in its own processor due to the inherent parallel nature
of the system. All cells take a similar time to complete a time step, and this time is
identical if they have the same number of neighbors. Finally, communication is reduced
to a single integer number by cell, the state (or, to implement delay, the axon's state). If

 57

the states are copied to a memory area that can be simultaneously accessed by many
processes at the same time (some parallel computers have such special hardware), and
there are as many processors as cells, the communication time does not grows at all
with the number of cells.

Admittedly, these advantages were originally not foreseen or intended. Using cellular
automata as a basis for neural simulation was almost an accident, and at the time
(1980s) parallel computers were little known outside computer science. However, the
simulation has been written to optimize the runtime of the procedure that computes the
cells' next states. This procedure ("void compute(void)") is less than 200 lines long, can
be fully parallelized, and uses well over 90% of the runtime. It uses an even greater part
when graphics or the genetic algorithm are not used. The communication needs are
extremely low: one byte by cell by iteration. All variables that define the cells, an the
parameters used to define a model, are "global", i.e., accessible program-wide.
Programming textbooks advice to avoid global variables whenever possible, specially
in big programs. The simulation has been kept very compact over the years, so breaking
this rule allows it to run faster, and giving each processor a copy of the parameters
would greatly diminish the communication needs.

Hopefully, once a genetic algorithm is perfected and delivers promising results on a PC,
the program can be ported to a parallel computer. Experience shows that using a new
compiler and new hardware is not a trivial task, and it is difficult to gain access to
parallel computers due to the heavy demand from other users. Whatever the problems
may be found, they will probable not require changes of the essential data structures
and algorithms.

 58

4 SIMULATIONS I

4.1 The laboratory method

To explore the effects of various variables on the simulation's behavior, many
combinations of parameters were run in the simulation program. Typical procedure was
to change online the value of one of the parameters, reset the simulation and let it run
again. When many different values of a parameter were to be systematically explored,
sets of parameter files would be generated and tested in succession. The results were
evaluated simply by looking at the spike display and the neurotransmitter patterns. This
is an unsatisfactory, subjective way of searching for, and evaluating results. From the
methodological point of view, it is subject to the free-parameters problem (2.3). In this
preliminary phase there was no simple way of defining in advance the expected results,
so the intention was simply to find "interesting" results. But, how should one try to
develop an objective way of measuring "interesting" when one of its characteristics is
that it is unexpected?

Each combination of parameters represents a different model. Defining thousands of
them in this more or less random way and running them, delivered a preliminary result.
Unsurprisingly, the simulations are chaotic systems. Big changes in one particular
parameter frequently produce undistinguishable results, in a different configuration a
change of the same parameter of less than one percent, produced extreme differences.
This is a characteristic of chaotic systems, like the three-body-problem in physics.
There is no general way to know in advance what will happen.

Eventually, some interesting and surprising behaviors were found, but due to the many
free parameters used, the usefulness of so developed models is methodologically highly
questionable.

A standard experimental technique used in psychology laboratories may be useful in
this case. A popular, skeptical view of experimental analysis of behavior, is that
"people are not rats, and the world is no Skinner box". This is of course true, but
epistemologically irrelevant. The conditions in a laboratory are artificial and not found
in real life, their purpose is to keep all possible variables constant, except one. If only
the independent variable is manipulated, and this changes the dependent variable
(behavior), a causality relationship has been found. The actual methodological
criticism, is if this causality is also found in the real world, i.e., the generalization
problem. If various individuals and animal species are tested, and finally a similar
experiment with children in a kindergarten is performed, one may conclude that, e.g.,
aversive conditioning is a poor pedagogic practice, even if this was first found out
giving rats electroshocks in a Skinner box.

In this context, the approach of systematically manipulating a single independent
variable, and measuring the effects in the dependent variable(s), will be called here the
"laboratory method". It is used widely in the natural sciences, and it is an integral part
of the scientific method and the black box method.

Laboratory experiments are usually done before field research, because it is much

 59

easier to keep all variables constant than it is in the real world, but even then no perfect
control can be achieved. Not two rats show identical behavior, since it is impossible to
use genetically identical rats that have grown-up in identical environments an have the
same history. This does not apply to computer simulations, in which the researcher has
absolute control of every variable. With laboratory rats, experiments are performed
only once with each animal, because they must be experimentally naïve. In a computer
simulation, the variables can be easily reset to the same starting values (if these are
random, the pseudo-random number generator is also reset). The simulation is then run
again with another value of the independent variable, under guaranteed identical
conditions for everything else.

Precisely this possibility of resetting the system is what makes an apparently trivial,
standard scientific practice more important than in other contexts. The black box
method can be impractical when the box has many different states, but if the system
analysed can be reset to the initial state, the laboratory method can be applied. If the
sequence of inputs affects the internal state and modifies the input/output, testing all
possible input sequences after a reset can still provide a useful description of how the
system functions. This combination of the black box and the laboratory methods, is
simply another way to describe what a computer programmer frequently does during
reverse engineering or debugging.

Another methodological aspect, is that the laboratory method is useful to address the
problem of free parameters. Instead of changing many parameters from model to
model, the results of changing a single parameter are examined within a single model.
It may be the case that the other parameters, the ones kept constant, represent a
completely unrealistic model. The point is that this does not prevent a better
understanding of the parameter being studied. Combining the laboratory method with
reverse engineering, has another advantage in this respect. Many of the model's features
are not free parameters, but rather dictated by empirical evidence. An ANN that
represents output as average firing rate, is freely choosing a parameter, an arbitrary
non-linear function. If spikes are used in the model instead, there is a theoretical ground
for it, namely that this is what neurons actually do.

The laboratory, black-box and reverse engineering methods will be used in the
following to show how they can be used to evaluate the relevance of features in a
spiking neural network. Once the method has been chosen, the next step is to find a
theoretical framework that suggests which behavior should be investigated.

4.2 Animal model

To attain the goal of identifying which are the relevant features that neural-inspired
cognition models should represent (see 1.3), the features of the most simple forms of
nervous systems will be examined. Even if such systems are incapable of any relevant
form of cognition, the neural features sine qua non must be already present, and it is
plausible to expect that they are also important for cognitive processes. It may be the
case that the most primitive features play no direct role in cognition, but even in this
case they will not break the isomorphism between model and original.

 60

When considering the most simple form of neural systems, it can be asked how and
why neural systems evolved in the first place. Examining the fossil record delivers
some tentative answers to this question. The geologists' consensus over the age of the
planet earth is around 4.5 billion years, and the earliest fossil record of microbial life
appears 3.8 billion years ago, maybe even as early as 4 billion years ago. In other
words, life developed quite fast, and has been a feature of this planet for most of its
existence. However, the first multicellular life forms appear in the fossil record much
later, around 700 million years ago in the Vendian period. Most of the oldest preserved
fossils belong to the so-called Ediacara fauna, but paleontologists have not yet agreed
whether such organisms are animals, plants or something else. Ediacara organisms are
extinct since the Cambrium period, so the question whether they had a nervous system
may never be decided.

The only other group of multicellular organisms that predated the Cambrian period are
the Cnidaria (Cartwright et al. 2007), a group that today includes coral polyps,
jellyfishes and sweet-water hydras. This can be interpreted as meaning that the
development of multicellular forms may be much more difficult than the development
of life itself, and it is not known which are the critical factors that make such a
development possible.

One of the requisites for the survival of life as we know it, is the ability of cells to
maintain a constant internal equilibrium in the concentration of seawater ions, such as
calcium, chloride, magnesium and others. Organisms across all branches of the
phylogenetic tree, from archaea to humans, share a very similar equilibrium of seawater
ions, at a concentration much lower than today's oceans. Indeed, this is one of the
reasons proposed by biologists to argue that all life forms developed originally in
seawater, at a time billions of years ago when the concentration of salts was different
and lower than today. To maintain the intracellular ionic equilibrium despite a different
and changing concentration in the environment, cells in all life kingdoms use so-called
ion channels, specialized molecules in the membrane that control the exchange of ions
with the exterior. Cells also use energy-driven metabolic mechanisms to overcome
osmotic pressure, one of the best known is the sodium-potassium pump, which is
known to have a decisive role in neurons' resting equilibrium.

The first working hypothesis is that at some point in evolution, organisms began to use
their ion-equilibrium devices to communicate with each other cells, allowing the
development of multicellular organisms. This is true even in the case of today's
sponges, which lack a nervous system.

Communication through diffusion of atoms or molecules is very fast at short range, as
shown by neurotransmitters in the synaptic cleft. However, beyond a given distance
diffusion is too slow to coordinate widely separated parts of the organism. In humans
this is illustrated by the relatively slow endocrine system when compared to the fast-
communicating nervous system, despite the acceleration of hormone distribution due to
our circulatory system. The second working hypothesis is, that in order to coordinate
muscles far away from each other, making locomotion possible in big animals, the ion-
communication devices were further developed to produce neurons.

 61

The animal model used as target for the simulation is the jellyfish. It was chosen for
two main reasons. The preservation of soft-bodied organisms as fossils is rare, yet
probable jellyfish impressions date from the pre-cambrian, making them probably the
oldest multicellular, non-extinct organisms. Recently, jellyfish fossils have been
confirmed as dating as early as the Cambrian at least (Cartwright et al, 2007), and
comb-jellies are probably the oldest animal form, instead of sponges (Dunn et al 2008) .
The second reason, is that jellyfishes have the most primitive nervous system known,
the so-called neural-net. The neurons in such systems are undifferentiated, and have no
distinction between axons and dendrites. They resemble physically the spiny stellate
neurons in mammalian cortex, showing undifferentiated processes extending in all
directions, and relaying impulses in all directions. The neurons are spread over the
whole body, with no concentrations in the form of ganglia or brain. So jellyfishes are
not only probably the oldest animals with a nervous system, they also have the most
simple one. There are classes like cubozoa that show more advanced features, like eyes
and brain-like organs, but it is not surprising that some of them are somewhat more
complex having had more time to evolve than most animals.

The coordination of far-away muscles is essential in order to let the whole animal
contract its body at the same time -or in a wave-like fashion beginning at the center-
otherwise it would not produce the water jet necessary for propulsion. The third
working hypothesis for this simulation, is that coordination is the main task of the
neural net, and a major candidate for the reason why a nervous system constitutes an
evolutionary advantage.

None of the working hypotheses mentioned can be tested directly, this would require
being witness of the transformation of single-cell organisms into multicellular animals,
a process that took place millions of years ago. On one hand, this makes computer
simulation the ideal tool to explore the problem. On the other hand, the purpose of the
following simulations is not to propose a plausible evolutionary hypothesis, which is
better left for biologists. Neither is the purpose to produce a cognitive simulation.
Simulating jellyfish locomotion is simply a case example to address the methodological
goals and hypotheses as stated in 1.2. Specifically, the proposed methods should help to
identify relevant neural features that should be implemented in models of cognition,
and provide insight in the way they function.

The chosen feature for this test, is the refractory period, and how does it influence an
extremely simple nervous system. The production of spikes consumes energy, and sets
a limit for the frequency of neurons. The question here, is what happens when the cell's
own ref. per. influences not only the response to a given input, but also modulates the
magnitude of the effective input itself. Biologically, this is equivalent to ask if the ref.
per. could have had another form than today's. Alternatively, it is conceivable that
nature could have evolved non-correlated ref. per. and input sensibility. In both cases,
today's configuration and effects of the ref. per. could be an evolutionary accident, and
possibly irrelevant for cognitive processes.

4.3 Method

The simulation program -version BCK08- was used, the models were defined using the

 62

STRUC.TXT and PARAM.TXT in the same directory.

The connection structure for the cells used in simulations 4.5.1 to 4.5.4 was simply
random, because this avoids making assumptions about the structure. Each cell has
eight input synapses of NT[2] type, eight of NT[2], eight of NT[3], and eight of NT[4].
Only one type of synapse was active in each simulation, this is decided on run-time by
setting the NT_PO of a single type to 0.1, and the rest to 0.0. This is done to compare
the different types without starting the program each time with different model files.

A reasonable assumption about the structure would be that cells should have the highest
probability of receiving input from their closest neighbors. This assumption was tested
and delivered the same results. Since the structure file is much more complex, it will be
ignored in the following.

The independent variable tested in the simulations, was the effect of various forms of
the function that determines the absorption of NT-gated ions during the ref. per., the
two-dimensional variable array REF_PER.

Before this could be done, values had to be found for all other parameters that would be
kept constant in the simulations. The half-life of all NTs was set to 12 time-steps, which
is probably a little longer than in neurons, but increases the temporal summation. The
only exception to this was the half-life of the energy, NT[0], which was set to infinite
half-life.

The NT power of NT[0], that represents the available energy, was set to 0.5. Because
NT[0] is produced constantly, its amount is reduced only during spikes, and is
unaffected by the ref. per., it constantly accumulates. Giving it a positive power
eventually triggers spikes. This is needed because otherwise no input-less cell would
ever fire. NT[0] simply guarantees in this way an absolute minimum of activity, but the
other NTs are the ones that determine the actual activity modulation and the interaction
between cells. In each simulation, only one of the other NTs influences cells, with an
excitatory power of 0.1. If values for NT powers are bigger than the one of NT[0], the
network's activity becomes very unstable, and a sensitive equilibrium using negative-
powered NT is needed. The simultaneous development of two different
neurotransmitters in jellyfishes, specially if they need a critical equilibrium, seems
implausible.

The production of NT[0], determined by the ATP variable, was set to 0.012. The LAC
variable, that determines of much energy is consumed by a spike, was set to 0.1. LAC
must be greater than ATP, otherwise the amount of NT[0] will grow without limit and
result in continuous tetanic spiking (and variable overflow).

The parameter values were chosen to produce a moderate amount of overall activity
with the control value of the independent variable (4.5.1). All other parameters were set
to default values and are irrelevant for the simulations.

 63

4.5 Results

4.5.1 Constant refractory period

Fig. 11 Refractory period-independent NT influence (constant value)
REF_PER[4]: 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

This model show the results of constant (state-independent) modulation of the input
from presynaptic cells through the ref. per. This is a control value of the parameter
being examined, equivalent to no ref. per. at all. In other words, altough the cell has a
maximum spike frequency limited by the need to regenerate its energy (one of the
assumptions of most neural networks, as shown in 2.7.1), this is not a feature that
causes state-dependant input/output.

It must be remembered that even though this is true for the NTs, the ref. per. still
applies for the cell as a whole, for the activation function used has an S-shape. Looking
at the EEG track alone, it appears to be a binding among the cells, though in the spike
display the waves show a less clear pattern. In fact, some of the apparent
synchronization is due to an artifact. Since the cells start with all NT values at 0, it
takes them about the same time to start spiking. When the initial stores of NTs are
started with random values, and this is repeated with different starting values of the
random number generator, the synchronization is barely perceptible.

 64

4.5.2 Decreasing refractory period

Fig. 12 Effect of decreasing values of NT ref. per.
REF_PER[3]: 1.00 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.00

In this simulation, the ref. per. modulation of presynaptic input produces a maximum
receptivity for input during a spike and inmediatly afterwards, (i.e., in the absolute
refractory period). In the following time, the cells become decreasingly receptive, and
at the end the cell receive effectively no input at all. Following the "laboratory method"
principle of changing only the independent variable, no other changes have been made.
The cell's ref. per. still has the normal form, it is only its effect input that has been
reversed.

When the influence of the NT is greatest just after a spike, and lowest at the end of the
ref. per., a positive feedback ensues. Once the first cells fire, still inactive cells receive
input, and they spike earlier than if no input were present. This is normal and can also
be observed in heart cell in vitro. However, the decreasing effect of NT ref.per. results
in a runaway speeding of the spikes, and the cells fire as soon as the cell-wide rep. per.
allows. Eventually, the cells spend much more energy than they can produce on a given
time, and some of them stop spiking. The decreased input of their neighbors triggers a
another positive feedback, this time in the opposite direction. This behavior can be seen
as a loose analogy to out-of-control fast spiking in tetanus. In this particular case, the
spiking is so extreme that the EEG track has reached the top of the scale and looks flat,
but even if it did hat not, the track would show no waves but noise.

 65

4.5.3 Coincidence detector

Fig. 13 (a part of Fig. 10) Effect of spike-only influence of NT
REF_PER[5]: 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This models shows the case when cells are allowed to receive presynaptic input only
while spiking themselves.

Neuroscientists are very interested in finding the so-called "coincidence detector", a
biochemical mechanism which realizes Hebb’s rule. Such a mechanism should detect
an immediately preceding or simultaneous spike in the presynaptic and postsynaptic
cells. This is implanted in a straightforward way, by making sensitivity to presynaptic
spikes only during the receiving cell’s spike. The color-coded wavelength of the cells
shows more variation then in 4.5.1, but no synchrony. A possible reason for this is
discussed in 4.5.7.

As usual, no other parameters have been changed. Plotting in two dimensions the
ref.per. input modulation, can be compared to a function with discrete values on the X-
axis. This is an extreme case of the many that were tested, a "L-formed" function with
binary results and a threshold, i.e., full reception of input during spikes and none
afterwards. The effect of the refractory period on input needs not to be linear functions.
Also tested were hundreds of other forms, most of them non-linear and non-monotonic
functions, discussing all of them would be beyond of the scope of this work.

 66

4.5.4 Increasing refractory period

Fig. 14 Effect of increase of NT influence that parallels the cells ref. per.
REF_PER[2]: 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.00

In this model, the cell's ref. per. corresponds exactly to its influence on the reception of
presynaptic input, both are 0 during a spike and the next time step, and increase
linearly reaching a maximum eleven time steps after a spike.

This is the most interesting result of the four models. It uses a S-shaped increasing
absorption of the NT. Here, the highest degree of synchronization can be observed,
both in the EEG track and the spike display. The remarkable feature is not the
synchronization of the network as a whole, but rather the fact that the individual cells
are constantly changing their wavelength, as seen by their heterogeneous color coding.
How comes that the network achieves this stable behavior as a whole with such "noisy"
cells? The answer is that the increasing effect of the NT results in a negative feedback.
Assume, for example, that the mean wavelength is 6. Cells that spike one time step
before the wave's peak, would receive a less effective NT store, since they would be in
the absolute refractory period when most other cells spike; in consequence, the will
tend to spike later than the average next time. For cells spiking later than average, the
effect is the opposite. They will have a more effective NT store because of NT -effect
increases with time, and will tend to spike earlier next time.

 67

4.5.5 Comb-Jellyfish connections

Fig. 15 Increasing ref. per. with local neighborhood. The upper side of the screen (not
shown in previous figures) shows the amounts of cell-wide NTs (the only active NT is
the third column from the left). On the center, at left, the connection structure used is
displayed. In the middle a short part of the spike display is visible.

Instead of a random connection structure used to model bell-shaped jellyfish, the
connection structure used in this simulation simulates a comb jellyfish, which use lines
of cilia for propulsion. Comb jellies are known to be the oldest multicellular life forms,
even older than sponges (Cartwright et al, 2007).

For a cell numbered n, the presynaptic connections come from cells n-7, n-5, n-3, n-2,
n+2, n+3, n+5 and n+7. The one-dimensional array of cells is bound to form a circle, so
all cells have the same connection structure irrespective of position. The only active NT
is colored red in the structure display at the center-left of the figure.

The metabolism parameters are the same as in 4.5.4, only the connection structure has
been changed.
In this case, instead of a simultaneous contraction of the whole jellyfish, the simulation
shows a spreading wave. Notice that although the structure is perfectly symmetrical, the

 68

wave runs only in one -random- direction.

4.5.6 Wavelength adjustment

The overall activity of the models is determined by the ATP variable, which increases
the store of NT[0], representing energy. There is a relationship between energy
production (ATP), excitatory power of the energy substance (NT_PO[0]), and energy
consumption (LAC), and the mean spike frequency. This can be examined by setting
the power of all neurotransmitters to 0. In models 4.5.4 and 4.5.5 (assuming that the
ATP production is not dependent on the refractory period, and NT[0] is not self-
destroyed, i.e., NT_HL[0] = infinite), this provides a simple mechanism to regulate the
speed of jellyfish locomotion. Slightly decreasing the value of ATP, the frequency of
waves diminishes. If ATP is too small, only sporadic, unsynchronized spikes are
produced. Conversely, if ATP is bigger the frequency of waves increases, if too big
each wave is mixed with the last one, much like in Raffone & Wolters’ (2001) paper.
Therefore, a jellyfish can move slow, fast or stop, by simply changing the overall
metabolism of muscles and neurons.

4.5.7 Axonal delay

One of the interesting results is that when NT is allowed to influence the postsynaptic
cell only when both are spiking (Fig. 13), one would expect that synchronization is
facilitated, since this is a way to implement the Hebb's rule. Instead, the pattern is more
random even than with constant input. This result was puzzling, so the simulation was
run step-by-step, examining the individual cells' values to understand how this
happened.

The first probable explanation was that the input should be received shortly before, and
not while both pre- and postsynaptic cells spike. But this would be very difficult to
implement. How should a neuron know when the postsynaptic neuron is about to fire?
even if it does know, the presynaptic neuron could be in absolute ref. per. when the
postsynaptic one spikes, and would receive not input. If it were in the partial ref. per., it
would receive less input than the other, and it's improbable that neurons can effectively
synchronize when some of them are receiving more input than others. It could be that
some stochastic negative feedback mechanism is at play here, like in Fig 14.

After pondering this problem, a second explanation suddenly becomes obvious. If two
neurons fire at the same time, the spike has an inevitable delay due to the time it takes
to spread along the axon. Short-axon neurons are not myelinated, long-axon ones are
(in mammals), so the difference between local and far connections does not depend on
axon length, or at least not completely. Still, delay is unavoidable, and it's longer than
the duration of a spike.

Suppose, for example, that two neurons spike at the same time. A minimum delay of
one ms would make them receive no input at all, since both would find themselves in
the absolute ref. per. Suppose now that their wavelength is six ms, and their axonal
delay is five ms. Both would receive the same amount of input, and synchrony would
be maintained. A simple diagram illustrates this mechanism:

 69

Fig. 16 Synchronization due to axon delay. The black lines mark time in ms, cells are
the colored blocks, and the dots represent the spike traveling along the axon. In the
upper side, cells have wavelength of 6ms and an axon delay of 5ms. In the lower part,
wavelength is 10 and delay is 9.

If this analysis is correct, axonal delay is not simply an upper limit for synchronization,
it may also play a more active role. Simulations were run with the model 4.5.3, using
all values of delay, but no synchronization resulted. This may be due to the short NT
sensitivity period of a single time-step.

It is difficult to say which feedback mechanisms could be at work if this were the case.

4.6 Discussion of simulations I

The model fulfills/confirms many of the goals and hypothesis as stated in 1.3.

The third hypothesis claims that it is possible to develop a biologically detailed model
of a neural process, that needs modest computer resources, by using techniques typical
of cellular automata. This has been implemented.

The second hypothesis claims that -one of the most basic characteristics of both
automata and neurons- state-dependant input/output can be implemented using only
simple neural features, i.e., spikes, ref. per., temporal summation, and others. This has
been realized, following the reverse engineering method.

With respect to the goal of identifying relevant neural features for models, the
simulations show how the influence of the refractory period modulates the dependant
variable, synchronization in the jellyfish. They also show how the various factors
interact with each other (ATP production determines the rate of locomotion), and helps
to understand the system as a whole. It is of course questionable if input-modulation
through the refractory period should be included in models of cognitive conflict, simply

 70

because it is a plausible mechanism for jellyfishes. However, the simulations could
have shown that it is not relevant for jellyfishes, and that would make much less
probable that it is relevant for cognitive models.

Synchronized cells as representations of cognitive contents was not a confirmed
hypothesis, if only because it was the dependant and not the independent variable. I. e.,
synchronization shown to be the consequence of the a given form of the ref. per., and
not the cause of a cognitive effect. Obviously, muscle coordination in a jellyfish cannot
be seriously considered a cognitive process. Its importance lies in the fact that
understanding synchronization mechanisms is necessary if they are to be used
eventually to represent reaction times and their variability in human subjects. Strictly
speaking, this is not a hypothesis of this work, but one originally proposed by von der
Malsburg (1983) and confirmed in neurobiology (2.5.2). Unexpectedly, a stochastic
synchronization (4.5.4) and its mechanism were found, apparently not previously
described in neurobiological literature, and certainly unknown to the author. As it will
be discussed later, this may be due to the statistics normally used to measure
synchronization.

Evaluating if the free parameters make the models questionable, is not simple. Building
a model, a researcher has the choice of using various nonlinear output functions, this
would be a free parameter. Using actual neural features like refractory-period-
dependant output is not “free”. However, the specific values used in the REF_PER
table are free parameters. What the simulations show, is that nature had little choice
when it comes to the type of function used (ref. per. Sensitivity increasing, 4.5.4). Many
more forms of this function were tested without results, and the reader is invited to use
the program with his/her own parameters. However, the sheer amount of possibilities
makes an exhaustive test almost impossible. A conservative judgment would be that the
methods used in these simulations have reduced the amount of free parameters as
compared with a conventional BP-ANN. What is needed, is a method that would
severely constrain or eliminate arbitrary choices by the researcher (like the specific
values in REF_PER). This is what will be attempted in the following.

Last, and most important question given the emphasis of this work on methodology, is
if the black-box, reverse engineering and laboratory method have proven to be useful.
This is better left for the general discussion.

 71

5 SIMULATIONS II

5.1 Genetic algorithms and free parameters

As shown in the previous simulations, using features that are actually present in
neurons, instead of abstract programming devices, helps to diminish the danger of
theory-less parameters that make a simulation questionable. One problem when using
neurobiological facts as basis, is that the literature about them tends to focus on
qualitative issues. There are exceptions to this, like the Goldman-Hodgkin-Katz
equation or the Nerst equation, which give a precise numerical description of the
electric and concentration behavior of ions in neurons. When it comes to a question
like, e.g., duration and precise voltages of the ref. per., answers are mostly found only
for specific neuron types, instead of a general description. Neurobiologists tend to
concentrate on problems like the molecular structure of a neuroreceptor (qualitative),
not on the average number of them (quantitative) in synapses. This is of course
legitimate, if the goal is to develop a drug that influences such neuroreceptors, but is
not very helpful in model making.

This lack of numerical data makes the selection of parameters for models a difficult,
sometimes trial-and-error procedure. What is needed, is a way to avoid having the need
to arbitrarily choose the specific values of those parameters.

The solution proposed here, is to use a genetic algorithm that chooses the parameter
values by itself, without human intervention. This method simulates biological
evolution, which is the way neural systems were developed. Using recombination (or
sexual selection) and mutation, it evolves "genomes" (a set of parameter values that
represent a model) and subjects them to selection. This process will be explained in
detail later. At this point, it is important to know that the algorithm starts with many
genomes, their parameter values are chosen at random, recombination and mutation are
random, and the whole process may be run several times with different random values
at start.

In their critic of free parameters in cognitive models, Roberts and Pashler (2000) write:
"A prediction is a statement of what a theory does and does not allow. When a theory
has adjustable parameters, a particular fit is only one example of what it allows. To
know what a theory predicts for a particular measurement, one needs to know all of
what it allows (what else can be fit) and all of what it does not allow (what it cannot
fit)." (2000, p. 359). In the case of cognitive models (2.8), the free parameters are the
different numbers of cells used in the models, their connections, the number of layers,
etc. Basically, the argument is that if such parameters can be chosen in different ways
for different models, all possibilities should be tested and most of them would probably
not fit any empirical data. This means that there is no one model of cognitive conflict,
but many models whose parameters are arbitrarily chosen ex-post-facto to fit a set of
data. Such models make no predictions.

Genetic algorithms are ideally suited to solve this problem, because they use all -
plausible- values for each parameter, and the selection procedure eliminates those that
do not conform to the expected results. It both shows the parameter range that fits the

 72

theory, and those values that do not. This can be established by running the algorithm a
number of times with different random values at the beginning. Each set of values
selected for a given parameter, has a range, average and variability. The "theory" of a
genetic algorithm is found in the selection procedure, specifically in the "fitness"
computed for each particular set of parameters values, more about it in 5.11.

Genetic algorithms can deal with large numbers of parameters, yet tend to be very
computationally intensive. This may seem to be contrary to this work's hypothesis that
detailed models do not need to place a heavy burden on computer resources. The
models themselves should demand modest resources, but this does not apply to the
search for a good model.

The specific goal of the second series of simulations is to develop a prototype program,
that using a genetic algorithm produces a model of neural synchronization. The
prototype should help to evaluate the feasibility of following the genetic algorithm
approach, using much more powerful parallel hardware. The feasibility can be tested in
a normal desktop computer by reducing the number of parameters to be found to a
subset of the total.

In order to attain this goal, a number of preliminary tasks needs be accomplished:
1) Modify the simulation program to run as fast as possible.
2) Finding a "positive case", i.e., a model that comes close to the expected results, i.e.,
synchronization similar or better than model 4.5.4. Its performance should be matched
or exceeded by the genetic algorithm.
3) Selecting a number of parameters and a range of values of these. A portion of the
positive case parameters' will remain constant, for the rest a range should be chosen,
including the values of the positive case.
4) A selection procedure must be chosen.
5) A fitness measure must be chosen, probably the most critical task.

5.2 From neurotransmitters to ions

Beginnig on 2005, and using as starting point the BCK08 program used for the previous
simulations, the program was ported to a more powerful compiler, renamed ION and an
extensive series of modifications were performed. Though the general design
philosophy based on celular automata and many of the data structures were not
changed, the simulation program is quite different today, and is included as part of this
work

The most important single modification of the main algorithm is to simulate ions
instead of neurotransmitters. The main problem with neurotransmitters is that there are
too many of them, and new ones keep being discovered. Even worse, the transmitter
molecule docks in a postsynaptic neuroreceptor molecule, and it is the receptor that
decides if the effect is excitatory or inhibitory, and how long it will last. For example,
dopamine has five types of receptors and variants of these. One family (D1, D5) is
excitatory and the second family (D2, D3, D4) is inhibitory. For the D4 receptor alone,
Wikipedia quotes 18 variants (http://en.wikipedia.org/wiki/Dopamine_receptor, 2008).
Different neuron types and anatomic locations have different dopamine receptors and

 73

variants, each with potentially different temporal characteristics.

Reducing the level of analysis, from ion channels to the ions themselves, the problem is
enormously simplified. Neurotransmitters do not cross the cellular membranes nor
influence the electrical state of neurons, ions do. Even better, there are only four
neurotransmission-relevant ions: sodium, potassium, chloride and calcium (maybe
magnesium should be added to the list, though neurology textbooks usually ignore it).
The ions have a clear, either excitatory or inhibitory effect due to their electrical charge,
and this is expressed in integer numbers: Na+, K+, Cl-, Ca++. How a neuron's resting
potential, action potentials (spikes), temporal integration and many other basic input-
output mechanisms work, is well understood as the effect of ions crossing the
membrane. It can be calculated using standard formulas like the Goldman and the
Nernst equation. There are only three variables accounting for neural electrical state:
how many ion channels (neuroreceptors) are open for every ion type at a given time,
the electrical equilibrium, and the ion concentration (osmotic pressure).

By following this reductionist approach, some components of cognitive systems are
modelled as atoms. It seems implausible that going further to subatomic particles will
be useful, so it's not possible to further reduce the problem. There is of course no
guarantee that taking the black-box and reverse engineering to such a detailed level will
produce useful models, but higher levels of analysis have not fared much better.

In the program BCK08 used in the first series of simulations, the neurotransmission
process is not perfectly represented. In an excitatory postsynaptic potential ("EPSP"),
after a presynaptic spike, the neurotransmitter diffuses through the synaptic cleft, docks
on neuroreceptors and opens the channels for ions. The neurotransmitter is then broken
by enzymes in the cleft. Despite the inactivation of the neurotransmitter, the additional
Na+ ions that have crossed the membrane would remain there, if it were not for the
Na/K pump that forces them out at a more or less constant rate. The net result is that Na
concentration increases fast for around one millisecond, then returns slower to the
resting level over some milliseconds.

The program simulates an incoming spike as a pulse that lasts for a single time-step.
The synaptic store undergoes an exponential decay. A more accurate representation
would require a counter for the maximum duration of NTs in the cleft, ion channels
opening and closing in a non-monotonic, nonlinear fashion, and a Na/Ka pump that
reduces linearly the ions while avoiding negative values. Despite their name, as used,
NT stores actually represent the effect of neurotransmitters in the form of ions.

5.3 Program modifications

Given the relative success that such a simple neurotransmission implementation
delivered in the previous simulations, it was kept relatively intact. To make explicit that
not neurotransmitters are being simulated but rather their effects, the "NT" prefix in
most variables was changed to IO (Input/Output substance or IOns).

The secondary NTs were originally included to simulate learning. These, along all parts
of the main algorithm in COMPUTE.C that were related to learning, were eliminated.

 74

Besides learning, secondary messengers were also used to simulate other long-term
effects of spikes (like post-tetanic potentiation or LPT). However, it is still possible to
define additional synapses for the same presynaptic cell, and define IOs with other time
characteristics to represent C-AMP, G-proteins or calcium ions, for example. The
normal IOs and the additional ones are linked by the fact that they are received during
the spikes of the same presynaptic cell. Even if they are not used for the present
simulations, the program has not lost this functionality in principle.

Another type of input, "virtual synapses" were added. These can be used to define
synapses that receive their input (point to) not to other cell's axons, but to the cell's own
State variable, or a constant value of zero (an always firing spike). Using virtual
synapses, the program needs no special lines of code to account for energy or fatigue
processes. Instead of the dedicated variables ATP, LAC, NT[0] and NT[1], used to
represent energy management, virtual synapses are used. The IO type is chosen by the
user, it can be any allowed type (0 to 7), but for consistency in the following the IO[0]
represents enerby (IO[1] represents fatigue, but is not used in the simulations and its
power is set to 0).

Each cell has one virtual synapse of IO type 0, pointing to 0. Its effect on the cell's
input integration is controlled by its synaptic weight, half-life (HL_IO[0] set to 150
time steps), ref. per. (REF_PER[0], inactive) and power (IO_PO[0], set to 1.0). Given
that the ref. per. is set to 0, energy should have no effect. This is not the case, because a
new parameter table has been added to implement constant decay of IOs. It is read from
the PARAM.TXT file, and in the case of IO[0] it has the values:
 -0.10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
These values are added to the IO store of the appropriate type, indexed by the cell's
State variable, as usual. The first value, corresponding to State 0 is negative, so IO[0]
will be decremented by 0.1 on each spike. The other states produce an increment of
0.01. This means that IO[0] will increase if the cell has a wavelength bigger than 10,
and decrease if smaller than 9.

Virtual synapses are also used to substitute the auxiliary input, which connects the input
areas of the networkwith the "world". The program includes, as before, a retina which
in turn receives its input from the world. The virtual synapses are connected to the
retina, whose values are set to 0 (spike) when input is received. The use of virtual
synapses means that all input to the cell is received exclusively from synapses, and all
of them are processed in exactly the same way. This makes the program's code more
simple and uniform, and gives the user control over parts of the simulation that
otherwise would have to be rewritten and compiled. The price of this, is that now all
such features must be provided by the user trough the structure and parameter files.

The ref. per. for the cell as a whole, previously part of the source code, is now read as a
parameter array from the PARAM.TXT file, under the name >REF_PER_CELL. The
reason for this, is that neurotransmitters are electrically neutral, their diffusion and
docking on neureceptors is not affected by the electrical state of the postsynaptic
membrane. Moreover, the spike itself and the refractory period -both absolute and
relative- are processes that run always in the same fashion, unaffected by NT sitting

 75

outside the membrane. With the possible exception of Calcium, ions -while each on a
different way- always do the same. This means that instead of painstakingly testing
thousands of combinations for the individual IOs in the REF_PER table, all that may be
needed is the right form for the REF_PER_CELL array. One may compute with
neurobiological simulation software the values for the effect of the ref. per. over
individual ions if needed, but the important feature is the response of the cell as a
whole.

5.3.1 Cell’s structure and main algorithm

The cell's data structure has changed little as a consequence of the modifications:

extern int *Type, //cell's default neurotransmiter
 *State, //cell's "clock" (0 == depolarization)
 *Axon, //delay in transmission of spikes
 *WaveL, //last wavelength
 *WaveL1, //last but one wavelength
 *SynNum, //number of synapses declared
 *Posflag; //positive flag, catch negative ion amounts
extern float *TotalIo; //total input*equa.*power*cell ref.per.
extern float (*Cell_Io)[MAXIO], //total cell's store of neurotrans/ions
 (*SynEq) [MAXIO]; //equalizes number of syn. by NT/ion
extern int (*SynType)[MAX_SYN],//types of declared synapses
 (*SynPos) [MAX_SYN];//neighbor' number, negative:free_syn
extern int *(*Syn) [MAX_SYN];//points to neighbor's Axon
extern float (*SynWei) [MAX_SYN],//weights of synapses
 (*SyIo) [MAX_SYN];//Synaptic Input/Output, Neurotrans & Ions

Secondary NTs and AusInp (the last one is now received through virtual synapses) have
been eliminated. A few new variables have been added. Sustituting LastTir, WaveL and
WaveL1, (last-but-one) record the wavelength. Posflag signals negative amounts of
IOs. Cell_Io[] substitutes NtInpP[], and TotalIo is now used instead of a local
COMPUTE.C variable, to store the cell-wide input.

 76

A description in pseudocode of the streamlined main algorithm:

For each cell:
 set all cell's IO stores to 0
 set total input to 0
 For each synapse in this cell:
 multiply each synaptic store by its corresponding half-life
 add/substract the linear decay

 check if the presynaptic axon is spiking, if so,
 add to the synaptic store an amount of IO
 determined by the synaptic weight multiplied by
 the refractory-period-table parameter as indexed
 by the synapse's IO-type and the cell's state

 add the synapse's IO store to the corresponding IO
 store of the cell

 add to the cell's total input each cell's IO store multiplied
 by its corresponding power and equalization parameter.

 if the total input multiplied by the cell's refractory period
 is bigger than the cell's threshold do:
 set the next state to 0
 set the next axon to 0
 set last-but-one wavelength to the last wavelength’s value
 set the last wavelength to the state's value
 if not, do:
 increment by one the state
 increment by the axon

For each cell:
 update the cell's state
 if state is bigger than 12 do:
 set state to 12
 if axon bigger than 24 do:
 set last-but-one wavelength to 24
 set wavelength to 12
 if total input is not negative do:
 set state and next axon to 0 with a probability of 1%
 update the cell's axon

The only problem of this algorithm is, paradoxically, that inactive cells (State>12) take
a little longer to compute than active ones, which must be accounted for in a parallel
computer.

A connection structure was defined, similar to the one used by Botvinick et al (2001)
for the Stroop model (2.8). The purpose of using this connection structure, is not to
produce a model of the Stroop task (although it would make it easier in the future). Its
purpose is to have a connection structure where positive feedback stimulation within
groups, lateral inhibition, and synchronization of cells' groups spreading to the next
layer can be observed and analysed.

 77

The main differences are: instead of single units, groups of 8 cells are used. There are 6
input groups:

cells 0 to 7 color red
cells 8 to 15 color green
cells 16 to 23 task: name color
cells 24 to 31 task: read word
cells 32 to 39 word "red"
cells 40 to 47 word "green"

Each group has four excitatory (type 2) synapses with other cells of the same group,
and four inhibitory (type 4) with the opposite stimulus/task (this is known as lateral
inhibition). The stimulation is received through virtual synapses to the retina, in turn the
retina receives input from the world. The pattern in the world allows to use all
combinations of stimulus (including neutral ones) and tasks.

A middle layer receives input from the input cells. It is divided in 4 groups
corresponding to "name color red", "name color green", "read word red" and "read
word green". Each group's cell has two excitatory synapses with the appropriate
stimulus, two excitatory with the task, two inhibitory ones with the opposite stimulus,
and finally two inhibitory ones with the opposite task.

Finally, there are two motor (i.e., response) groups of cells, using the same structure of
the previous layer and receiving input only from that layer. The connections in detail
can be found in the file STRUC.TXT. All synapses have a weight of 1.0, and all have a
total of four excitatory inputs and four inhibitory ones.

 78

5.3.2 Reference model

After testing only around 50 parameter values combinations, a positive case model was
found, clearly showing synchronization:

Fig. 17 Reference model to test a genetic algorithm

-The model shows fast synchronization of cell groups.
-The synchronization is not totally stable for the individual cells.
-The groups maintain a wave for a while, but within some hundreds of time steps de-
synchronize.
-The wave pattern spreads from input to hidden layer to output layer, though the last
one is barely perceptible.
-The synchronization is remarkable because the ref. per. used is constant (4.5.1), unlike
the one that produced stable synchronization in the first series of simulations
-The synchronization is, in a sense, too stable. If the input is changed, the pattern shown
does not change. Only if the simulation is reset, and the input is changed, other groups
of cells synchronize.

Though the model is far from perfect, it can be a basis on which to test a genetic
algorithm, this is the "positive case" which the algorithm should find, as long as the
way the fitness measurement can grasp its essential properties.

 79

At this point, it is necessary to provide the theory behind genetic algorithms and a
precise description how they work.

5.4 Combinatorial Explosions

The simulation program was originally written to implement a construction kit, it offers
maximum flexibility when it comes to choose which are the relevant variables and the
values of those. This means that there are many more variables than necessary, because
it was not possible in advance to know what the users may consider relevant. The
possible values for most variables are many, in the case of real-number variables (like
half-life values for the effect of ions) they are infinite in theory. Obviously, some way
must be found to limit the number of combinations that have to be tried. The first task
is to determine the range, a minimum and maximum value for every variable. Second,
the resolution of the variable, i.e. how many different values are to be allowed. One
may choose for a real variable, for example, values starting at the minimum and
increasing in 10% steps until they reach the maximum; or one may choose increases of
1% which delivers ten times as many values to be tested. Since combinations of all
variables are being tested, the problem grows extremely fast when variables are added
or their resolution increases. Suppose for example, that there are only six variables,
each with 15 possible values. The number of combinations is 15 to the sixth power, or
11390625 different combinations. Testing all at a rate of one per second, means more
than 131 days of computer time. Such extremely fast-growing problems are common in
computer science, a fact known as "combinatorial explosion". The number of
combinations in this particular problem is actually so big that it is not possible to
calculate it in a pocket calculator, and rapidly overflows the maximum size of numbers
normally used in computers. An actual calculation of the time required for an
exhaustive search is futile, since it almost surely exceeds the age of the universe.

5.5 Search space and local maxima

The number of different values allowed for each variable is also crucial because
choosing too few may prevent finding an optimum solution. To use an analogy,
suppose one were required to find the tallest building in a big city measuring five by
five kilometers. The problem has only two variables, latitude and longitude. The city is
explored defining a grid whose squares measure 200 meters on the side, so there are 26
possible latitudes and as many longitudes. One is allowed to measure the elevation only
at the crossing points on the grid, so changing one’s measurement position means
making leaps of 200 meters north, south, east or west. There are 676 such crossing
points, at which one will find street-level elevations, the top of buildings or even traffic
lights. Using a grid of 200 meter squares, one may find parks, living quarters and
probably the financial district, but instead of the tallest building one may end up with
the position of a neighborhood church. Halving the size of the squares to 100 meters,
the search space grows to 2601 positions, and one may still miss the tallest building if
the building has a narrow top floor and one is not lucky. Using a grid of 10 meter
squares guarantees that one will find the tallest building, but one can still miss the TV
antenna on the top, and the number of positions to search has grown to more than a
quarter of a million.

 80

Many algorithms get trapped in these so-called local maxima, points in which even
searching in arbitrarily small distances around the last point will only deliver worse
solutions that the last one. To follow our analogy, even if one reduces the size of the
leaps from one’s position, it will not help if one is on top of a factory in an industrial
area. At best, one will find a bigger factory, but not the Empire State Building. The
chances of avoiding local maxima depend to a great degree on the characteristics of the
search space, and are better if the rate of change of the solution is slow as one searches
around one’s last position. In our analogy, it means it is easier to find the tallest
mountain in a mountain range than finding the tallest building in a city. In the last case,
the elevation may vary from street-level to the highest point within one meter of
horizontal distance.

What kind of "landscape" can be expected in the search for neural synchronization?
since the simulation is chaotic, there may be great flatlands, soft hills, bottomless pits
and the occasional Eiffel Tower or Matterhorn. All that can be realistically expected is
to find at least some mountain range, without knowing if it's the Alps or the Himalayas.

5.6 Heuristics

When confronted with a search space to big or too complex, programmers may
abandon conventional algorithms that guarantee to find the best solution. They develop
instead what is called a heuristic, the computer version of a –sophisticated- rule of
thumb. Heuristics do not guarantee an optimum solution, but rather a solution "good
enough". This is the strategy of choice in so called NP-hard (non-deterministic
polynomial-time hard) problems. These include problems sometimes apparently trivial,
like choosing the order of a number of cities to be visited (traveling salesman problem),
arranging objects in a container using the least space (knapsack problem) or even
playing Tetris.

Proving that a given problem is actually NP-hard is very difficult, and can be the
subject for a mathematician's doctoral work. Let us simply assume at this point that the
subject of this work has such a big solution search space, that it is justified to use a
heuristic to find it.

5.7 Genetic algorithms

One family of heuristics that has been used for NP-hard problems is called the "genetic
algorithm" class. These algorithms try to imitate the way nature uses to develop life
forms adapted to their environments as described by Darwin and modern biology.
Many of the terms used in genetic algorithms are taken from biology, but should be
understood in this context as a simplistic analogy. Hopefully the reader will manage not
to confuse real biological terms with those of artificial neural networks and genetic
algorithms.

The basic idea is to choose the values ("genes") for a fixed set variables
("chromosomes" or "genomes") at random. Each genome represents an individual
within a large population. Then, each genome is tested against some criteria to find out
how good it at solving the problem in question ("fitness"). Then, some genomes are

 81

chosen ("selection") and some of their genes are changed in a random way
("mutation"), or various genomes exchange some of the values ("crossover" or
"recombination", the equivalent in higher life forms is sexual reproduction). Then the
whole cycle repeats ("generation", not to be confused with a cellular automaton's
generation), until the best solutions stop improving or a given number of cycles is
reached.

A step-by-step description:

1. Choose the genes of each genome in the initial population at random.
2. Evaluate the fitness of each genome in the population
3. Repeat the following steps:
 A) Select best-ranking genomes to reproduce
 B) Breed new generation through crossover and/or mutation and give birth to
 offspring.
 C) Evaluate the individual fitness of the offspring.
 D) Replace the worst ranked part of population with offspring
 E) If the criteria for termination is reached, end. If not, go to A

5.8 An hypothetical example

A practical example of a problem where genetic algorithms are used, is the design of
camera lenses. In this case, the optical engineer would first set the number of genes i.e.,
individual lenses to be used. Each lens may be defined by five genes: the curvatures of
the forward and backward surfaces, their positions in the optical axis, and the refractive
index of the glass. In this specific case, constrains are chosen like maximum curvature
(say +4 to -4 diopters), available types of glass, the position of the back surface must be
behind the frontal one, and so on.

If the gene with the maximum number of values is curvature, say hundred (not
necessarily at regular intervals), The engineer should choose a population number that
makes probable that all possible values are represented several times, say thousand
genomes. If the population is too small, the best value for one curvature may land
together with poor values for the other genes, in a genome with low fitness. The
selection process would wipe it out from the genetic pool before it has a chance of
reproducing.

Then the algorithm judges how good each genome is by calculating its spherical
aberration, pincushion distortion, focal length, etc. and combining all in a single
number. Once each fitness is calculated and the genomes are sorted by fitness, selection
begins. The most simple way is truncation selection. From the fittest two thirds of the
genomes, pairs are chosen at random and the offspring receives at random a gene from
one of the "parents" (constrains may greatly complicate the selection, our engineer must
find a way to prevent the third surface being forward of the second one, for example).
The offspring then substitutes the un-fittest third of the population, their fitness is
calculated, the genomes are sorted again and the next round of selection begins.

Values for the genes are limited by the engineer's imagination and available computer

 82

resources, but the advantage of such algorithms is that genes that the engineer would
have never combined, have a chance because the selection process has no prejudice, it's
simply random. The competence of our engineer is not the inspiration for a new design,
but rather in the judicious way of choosing gene values, fitness evaluation procedure,
and selection method. The results are often enough innovative and counterintuitive
camera lenses, but this process is rarely mentioned in the press.

5.9 Fitness proportionate selection

The truncation selection described above is the most simple one, but in some cases it
delivers poor results. The reason is that the fittest genomes have no higher chance of
reproducing than the ones just above the lower third cut-off. Another reason, is that if
the lower third of the population is eliminated in each generation, many of the "good
genes" risk being eliminated from the genetic pool if they are part of overall poor
genomes.

A more complex method, is the "fitness proportionate selection". It is also known as
roulette-wheel selection, and this analogy is easy to illustrate. As in truncation, the
process begins by sorting the genomes according to their fitness. Now, instead of
producing a whole new generation of genomes that substitutes the lower third of the
population, only one new genome is created every time. The fitness of all sorted
genomes is added, this represents the total of pockets in the roulette. Instead of giving
all genomes equal chances, each is assigned a number of pockets proportionate to its
fitness. Even the un-fittest genomes stand a chance of getting selected, their chances are
simply better (more pockets) if their fitness is higher. The ball (a pseudorandom
number) rolls and falls in a pocket, the "mother" has been selected. Then the ball rolls
again, and falls in the "father's" pocket. Of course, the same genome is not allowed to
be mother and father for the same "baby", if that happens the ball rolls again until it
chooses another father. Once both parents have been chosen, the baby is created by
taking at random for every gene the corresponding one from either the mother or the
father. Once the "baby" genome is tested for fitness, it is compared with the existing
genomes beginning at the bottom of the ranking. If the baby is worse than the lowest-
fitness genome, it dies and a new baby from newly chosen parents is produced like
before. Otherwise, the baby is sorted in the proper place, all lower-fitness genomes are
shifted one place downwards, and the lowest genome dies since there's no place for it in
a constant population.

The roulette selection improves the efficiency of the sorting algorithm, but the more
important advantage is that good genes whose genome has a low fitness have a better
chance of reproduction.

 83

5.10 Measuring synchronization

It is difficult to describe with precision which kind of behavior the models should
produce. There is detailed information available over synchronization of pairs of
neurons, less data over small groups, and none over whole nervous systems. It is of
course impossible to place electrodes on more that a very small proportion of all
neurons of an organism. There is some evidence of a natural neural tendency to
synchronization. For example, neurons in the primary visual cortex of humans show a
big-amplitude alpha wave (8-12 Hz) with closed eyes. In the case of a grand mal
epileptic seizure, most neurons in the cortex spike together at around 3 Hz. It seems
plausible that brains are chaotic systems that must perform a delicate balance between
too little and too much synchronization, and this balance is poorly understood. For the
purposes of the following simulations, it is only expected that active cell groups will
synchronize at high frequency, while inactive groups will either not synchronize or do
it at low frequency. At any rate, a synchrony measurement is needed for the simulation.

A genetic algorithm requires a fast, automatic measurement of the expected
performance of the model. One would expected that standard statistic methods used by
the scientific community would be easy to find. Yet no conventional statistic measure
promises practical results when used with a genetic algorithm.

This problem is far from obvious. After all, synchronization between pairs of neurons
within a group of around hundred, has been measured using a single electrode by
Ahissar et al. (1992) using cross-correlation. This statistic is frequently used by
engineers to perform signal analysis, usually with the help of special hardware due to
the heavy computational resources it requires in real time. Instead of implementing it,
more simple statistics were tried.

It seems simple enough to calculate a Pearson correlation coefficient between the firing
time of two cells, even if the spike themselves have the discrete values "silent" and
"firing". A simulation has the advantage of making accessible more information that is
available to neurobiologists. Instead of correlating spikes, one may take the State
variables of the cells, which should be the same or close, even when they are not firing,
and delivers values from 0 to 12. Such a correlation is fast to compute, though it
increases the memory requirements because a record of the states must be kept over a
minimum of two or more wavelengths. The situation is more complex when groups of
cells have to be accounted. With a group of cells, a general synchronization would
require (n-1)*n Pearson calculations, each using over 24 value pairs. With 100 cells it
means 9900 coefficients. The time it takes to calculate the synchronization may even be
longer than running the simulation itself, partly because of heavy floating-point
arithmetic.

This should not have been be a serious problem, but during the debugging of the
statistic a more fundamental problem was noticed. Some of the cell pairs were showing
strong correlations, yet they belonged to different sensor areas and were out of phase.
They should not show any correlation, because they had no synapses among them.
After an unsuccessful search for a program error, none was found. Whenever two cells
had the same firing rate, the phase would produce a statistic artifact. Out-of-phase by

 84

half a wavelength produces 0 correlation, the closest they are in phase delay the higher
the value, reaching 1 if they fire together. The statistic would be influenced by the
artifact of unrelated cells firing together on the same frequency, after all, that is what
synchronization looks like. Then, another problem was found. The maximum State is
limited to 12, so completely inactive cells also show perfect correlation. It was tried
adding a variable not tied to State of WaveL, that will simply record how many time-
steps had gone since the last spike, even at the cost of eventually overflowing the
variable and getting negative values. But the problem persisted, since inactive cells are
evaluated by Pearson as a perfectly linear correlation, with absolute values differing
only in the constant no matter how big the values are. Pearson correlation is designed to
detect two linear equations of the form ax+b and factor out a and b, it ignores
synchronization altogether.

Using both the State and WaveL variables of the cells was also considered, but Pearson
and non-parametric correlation measures are designed for two variables, not two pairs
of variables. Other alternatives like factor analysis can handle many variables, but
factor analysis relies on a Pearson correlation table anyway, would need a heavy
programming overhead, and would run orders of magnitude slower than an already
computer-intensive simulation.

Cross correlation would have a heavier computing burden to carry, and would fail
partly on the same grounds. There is another important factor to consider. As shown in
4.5.4, in the case of stochastic synchronization it is possible to have a highly stable
wave produced by unstable cells. Since the wavelength of individual cells is constantly
changing, they would show a low cross correlation with the network as a whole. Worse,
correlation between two cells would be closer to 0, despite the fact that both are part of
the same wave. So cross correlation is in this case much more affected by noise than it
would be in other fields, and bias the fitness measurement against stochastic
synchronization. This may even be the reason why such phenomena are not included in
basic neural simulation literature.

An interesting piece of anecdotal evidence for this, is that despite decades of neural
research using electrodes, Singer's team discovery of neural synchronization (Gray et
al.,1989) was not due to statistical analysis, it was simply heard: "One day the
experiment did not work very welly, because some electrodes had no signal. Searching
for an error, we changed the filters, and because the amplifiers were connected to a
loudspeaker, a sound was heard, something like a cat purring. [...] We had an
indicator for a very synchronized signal" (Singer, 2000). It seems that human senses
are better than statistics when it comes to detecting a signal embedded in noise.

Genetic algorithms do not require, however, a commonly accepted way of defining the
fitness of an individual, they simply require a fitness function that produces the
expected results. The fitness function is of no relevance for the model itself, it is simply
a programming tool. Without a background of standard methods for genetic algorithms
in cognitive modeling, there is no choice but to develop synchronization-fitness
measurement from scratch.

 85

5.11 Fitness measurement as theory embodiment

Before examining how the fitness can be measured, it is important to describe how the
theory represented by a model is related to the fitness measure. Similarly to how
models should fit data, genomes "fit" the fitness measure. This measure is the formal
description of what is expected, and is not in principle excluded from the free
parameters criticism. Suppose, for example, that a genetic algorithm would be used to
develop a conventional BP-ANN, and the measurement were how well the genomes
(cells, layers, connections, factor for the running average, etc.) agree with the empirical
data when run. It is possible that the algorithm would deliver, without human
intervention, a model similar to the ones developed by Botvinick et al. (2001). It would
still be a questionable model.

Just like any scientific method can be abused, genetic algorithms can be used the wrong
way. The defense against this, is not asking the algorithm to fit the data directly, but to
deliver genomes that fit a theory (e.g., conflict detection, attentional adjustment, etc.)
and afterwards run the resulting model with inputs similar to the humans experiments,
and see if the data is fitted. In our case, the theory is that cognitive contents are
represented in brains as groups of synchronizing neurons.

It is too early to know how this methodological strategy will be received by the
scientific community, but at least it seems more conservative than choosing parameters
by hand, and the grounds for the parameter selection are made explicit in a formal way.

5.12 The accumulated synchronicity table

The fitness measurement was implemented using an "accumulated synchronicity
table", or, shortened, accu-synch table. It is designed to require very little computer
time, and -in its most simple form- its main data structures are only two, 2-dimensional
arrays (tables) 13 variables wide on each dimension . After every iteration of the
compute function, the data table increments one of its variables for each cell, indexed
by the cell's State and WaveL variables.

For example, suppose that a given cell is in State 3 and its last wavelength was 5. The
data table will increment its content by 1, in the row 3, column 5. This will be done
with every cell and every iteration, accumulating in the table this information until a
fitness needs to be calculated (afterwards the table is erased). When the fitness is
evaluated, every position in the data table is multiplied by its respective position on the
second, "fitness" table. The fitness criteria are defined by writing multiplication values
on them.

Cells having the same State and the same WaveL spiked the last time together, and at
the last-but-one time too. The result is, that without synchronization, some positions of
the table will accumulate bigger numbers than others, but they would do this at random
on a pattern that can predicted from their mean frequency. If synchronized, some
positions in the table will grow much faster, forming a column with the top being close
to their mean wavelength. The column is formed due to the states changing on each
time-step, and the top is the cut-off point because cells do not reach a higher State than

 86

their wavelength. In case the synchronization is stochastic (4.5.4), the columns pattern
will be fuzzy, but is still different than without synchronization.

Suppose, for example, the table is as follows:

const double FIT2[R_P_SPAN][R_P_SPAN] = {
//0 1 2 3 4 5 6 7 8 9 10 11 12 Wavelength
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 0 state
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 2
{ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 3
{ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, // 4
{ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, // 5
{ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, // 6
{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, // 7
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, // 8
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, // 9
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, //10
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, //11
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};//12

If the values of the last State before a Spike and last wavelength are identical for a
given cells, they will be stored in the data table in the diagonal running from top left to
top down. The fitness table shown here, is multiplied by the data and accumulated for
all positions to calculate the fitness measure.

5.13 Simulation procedure

The reference for the range of values of a given parameter to be selected, are taken
from 5.3.2. The parameters subjected to the genetic algorithm, were the following:

HL_IO[0]: 15 values, range 12-120
HL_IO[2]: 15 values, range 2-20
HL_IO[4]: 15 values, range 2-20
IO_PO[0]: 15 values, range 0.513158118 to 1.948717100
IO_PO[2]: 15 values, range 0.263331254 to 1.0
IO_PO[4]: 15 values, range -0.263331254 to -1.0
DELAY[2]: 1 to 12
DELAY[4] 1 to current value of DELAY[2]

The ranges were chosen by placing the reference in the middle of the range, and adding
seven values bigger and seven smaller. In the case of delay, the reference values were 6
for excitatory synapses, and 2 for inhibitory ones. The excitatory DELAY[2] was
chosen at random between 1 and 12. For the inhibitory DELAY[4] the values were
constrained to be no bigger than the excitatory delay.

Each genome is tested by running it two screens (a screen: 300 time-steps), the fitness
is measured at the end of each screen, and the values added to give an overall fitness.
The first screen has input in the cell groups for red and color, the second screen in the
groups for green and word-reading (5.3.1).

 87

There is no termination criteria for the program, it simply runs until the user notices
little or no improvement in the fitness of new genomes. The program was stopped after
fitness stops improving, usually after running a couple of hours. During each run, a text
file was written with the genomes produced, in order to track the evolution of the
population. Additionally, the best genome was stored (named PARAM00.TXT) in the
standard format used by the program.

The rest of the procedure, i.e., which selection method and how the fitness was
measured, is not the same for each program run. Each run is equivalent to an
experiment with unpredictable results, and the changes made are equivalent to
independent variables. This is described separately in the various runs of the algorithm.
Of the many runs performed, only four will be describes in detail for reasons of space.

5.14 Results

5.14.1 Preliminary runs

The first version of the genetic algorithm used a truncation selection (5.8), a fitness
evaluation table with the same values (e.g., 2.0) on all positions of the diagonal, and
zero for the rest of the table. The algorithm converged very rapidly producing a
population of identical genomes. The resulting behavior of the model shows very short
wavelength for all cells, without synchronization i.e., uncontrolled tetanic spiking.

Two problems were found. The first one, is that truncation selection eliminates fast
many genes, namely those that find themselves at the lower third of the fitness ranking.
To make a biological analogy, the variability in the genetic pool is rapidly reduced, and
the end population consists exclusively of clones. Of course, recombination of two
clones produces only another clone, since all genes are identical. In this way, the
algorithm stops producing better genomes, no matter how long it runs.

This problem was compounded by the use of the same values in the fitness evaluation
table. Suppose that half of the cells is in perfect synchrony at wavelength three, and the
other half is synchronized at wavelength nine. The first group’s state reaches the
diagonal one third of the time-steps, while the second one does so only one ninth of the
time steps. When the data table is multiplied by the fitness table, it gives a value to the
fast group three times as big as the one of the slow group. This should be no problem
because the evaluation is designed to give advantage to short-wavelength
synchronization. Suppose now, that none of the cells is actually synchronized, but
simply have very similar wavelengths. The probability that fast cells appear
synchronized is three times as high for cells of wavelength three than for cells of
wavelength nine. This is an artifact that gives an undue high fitness to rapid-spiking
cells. This artifact is more troublesome when many cells are part of the group being
evaluated, and the first simulations computed the fitness value for all 100 cells.

 88

5.14.2 run 0124

To solve the problems mentioned above, the selection procedure was changed to fitness
proportional selection (5.9). The second change, is to use values in the diagonal that are
identical to the State/wavelength index between four and nine, and smaller or zero at
both ends. The fitness table used:

const double FIT2[R_P_SPAN][R_P_SPAN] = {
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 0 state
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 1
{0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 2
{0.0,0.0,0.0,1.5,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 3
{0.0,0.0,0.0,0.0,4.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 4
{0.0,0.0,0.0,0.0,0.0,5.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 5
{0.0,0.0,0.0,0.0,0.0,0.0,6.0,0.0,0.0,0.0,0.0,0.0,0.0}, // 6
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,7.0,0.0,0.0,0.0,0.0,0.0}, // 7
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,8.0,0.0,0.0,0.0,0.0}, // 8
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,9.0,0.0,0.0,0.0}, // 9
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,9.0,0.0,0.0}, //10
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,9.0,0.0}, //11
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};//12

This was expected to decrease (or eliminate) the fitness advantage for
too fast- and too slow-spiking genomes, and give equal chances to the
middle range. The resulting best genome’s behavior:

 89

Fig. 18 run 0124

This run shows almost perfect synchronization for every group of cells, but has two
deficiencies. First, the wavelength is too close to the maximum (10 time-steps). Second,
it is insensitive to changes in stimulation. Once synchronized, it remains essentially
unchanged. The model has landed in a position in the solution space that is simply too
stable. Examining the genomes themselves, after 3165 new genomes the population
consists exclusively of clones, so there is no improvement to be expected by running
longer.

 90

5.14.3 run 0128

It seems that most of the improvement in the previous run is due to the fitness
evaluation, so this was kept unchanged. The selection procedure was inadequate, so for
this run one selection constrain was added. Every time a pair of parent genomes are
selected, they are compared. If found to be identical, a new pair is chosen until the
constrain is fulfilled. It follows that clones are allowed, but they cannot spread fast in
the population.

Fig 19 run 0128

This result is very close to the reference model (5.3.2), though not identical. The main
difference, is that though each group is synchronized, half of its cells do it in one phase,
and the other half does it shifted by a half-wavelength. More important, the
synchronization spreads from one layer to the next more clearly than in the reference
model, so the genetic algorithm can be declared a qualified success.

It is difficult to assess if this model is better than the reference, and if so, by how much.
The reason is that there is no independent way to measure the performance, given that
the fitness measurement itself is causing the difference.

The genomes are not all identical, but various groups of identical genomes are present.
The selection procedure still offers room for improvement.

 91

5.14.4 run 0130

One of the deficiencies of the reference model, is that the synchronization is not
sensitive to input. Cells spike together for a while, then synchronization is broken and
other cell groups take their place. When reset, the input plays a role in deciding which
groups start to synchronize, but afterwards the semi-stability of the model takes over.
Up to this point, the fitness evaluation has been applied to the whole system,
irrespective of input. To explore if the genetic algorithm may improve this situation,
The fitness function was modified to produce two values. The cells that according to
input should be synchronized -including the task and response groups that receive no
input except from previous layers- are added and multiplied by two, the rest is added to
the total. This gives the “right” cells double weight in the fitness measurement.

Fig 20 run 0130

The model seems promising, but only at the beginning. If the simulation is run longer,
the appropriate groups’ activity does not last. It may be simply the case that in order to
generate stable, input-dependant synchronization, the reference model used is
inadequate. It is also possible that the genetic algorithm has not been allowed to affect
variables that are indispensable for this task, e.g. HL_IO[7] and IO_PO[7], which
control the effect of the IO used to deliver input from the world.

 92

5.14.5 run 0218

As stated in 5.11, the way fitness is determined can be viewed as the formalization of a
theory. The fitness table allows some flexibility in this respect, which will be illustrated
here (only for the sake of a fictional example). When cells get “tired of spiking”, their
wavelength becomes longer, in the form of a multiple of their previous frequency.
When this happens, the cells that are still synchronized produce an harmonic resonance
that eventually lets them fire in synchrony with their group. This can be represented by
non-zero values in the fitness table beyond the diagonal. Only bigger state positions can
be used, if not also normal-spiking cells would be affected:

const double FIT2[R_P_SPAN][R_P_SPAN] = {
//0 1 2 3 4 5 6 7 8 9 10 11 12 Wavelength
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 0 state
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 2
{ 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 3
{ 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0}, // 4
{ 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0}, // 5
{ 0, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 0}, // 6
{ 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0}, // 7
{ 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0}, // 8
{ 0, 0, 0, 3, 0, 0, 0, 0, 0, 9, 0, 0, 0}, // 9
{ 0, 0, 0, 0, 0, 5, 0, 0, 0, 0,10, 0, 0}, //10
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,10, 0}, //11
{ 0, 0, 0, 3, 4, 0, 6, 0, 0, 0, 0, 0, 0}};//12

Another change has been made, in order to eliminate identical genomes.
Each time that a new genome is selected, it is compared with all
existing genomes. If duplicated, one of its genes is chosen at random
and changed at random, i.e., mutated.

 93

Fig. 21 run 0218

The model shows no improvement compared with previous ones, except that the
genetic variability is greater. By including mutations there is no way to know if running
the simulation longer will produce better results. It may be the case that more than one
mutation for each individual is needed to measurably increase the fitness.

 94

5.15 Discussion of simulations II

The results of the simulations show that a genetic algorithm can indeed be developed to
find parameter values of the kind used in the first series of simulations. Finding all of
them would require porting the program to parallel hardware, yet a standard desktop
computer is already capable of finding parameters in a much bigger solution space than
it could be systematically explored by a human (not to speak of the methodological
problems this would carry).

Several tasks have to be accomplished before such a program can be run:

1) The groups of cells show good synchronization internally, but frequently at a
different phase. This is inevitable, because many groups have no connections between
them. One simple way to change this, is to define first synapses at random between all
groups. This would be a simple implementation of Hommel’s (2008) principle of
feature integration.

2) The fitness evaluations table should be further analysed. One of the main advantages
of using parallel hardware would be the possibility of testing many different versions of
the table. Choosing a table that delivers interesting results is equivalent to choosing
among theories, and not between free parameters. The table could be removed from the
program, and read from a file in a similar way as the structure and parameters are. In
this way, it would even be possible to generate by software many of them, and let the
final judgment to a human.

One simple idea that may be worth to test, is a synchronization data table that is
incremented only during spikes, and has as indexes the last wavelength and the last-but-
one. This would extend the synchronization measurement to three spikes instead of
two.

3) All parameters should be available to the genetic algorithm, though this is only
possible using much computer resources. The REF_PER table, e.g., was set to constants
mainly because it has so many values. Using look-up tables makes the simulation fast,
but choosing the table’s values would require additional constrains that may prove
difficult to realize. In the case of the REF_PER table, one such constrain could be that
the values from one point of the re. per. to the next can only change by a given amount,
so simply mixing values from different point of the ref. per. would not be possible. One
possible solution for this, would be to use pre-written series of values, and letting the
selection procedure choose among them.

4) Criteria to automatically terminate a given run are necessary, a task relatively easy to
implement.

5) Finally, if the genetic algorithm begins to generate too many unfit new genomes, or
if these are too similar to the already existent, the mutation rate can be increased. There
is always the possibility that the algorithm becomes trapped in a local maximum, the
equivalent of an evolutionary dead-end.

 95

6 SIMULATIONS III

After the development of a genetic algorithm, it is possible to conceive a cycle of
development that includes as steps the various methods. As done in Simulations I,
possibly relevant features can be identified. The models used the reverse engineering
method to reduce the number of free parameters, and the laboratory method to identify
the effect of the ref. per. as a possibly relevant feature. Still, many free parameters
remained. In simulations II, the genetic algorithm was used to eliminate free
parameters. Now, one of the interesting models of the first series (4.5.4) can be used as
"positive case" and run through the genetic algorithm. The interesting features will -
hopefully- be found again, this time with the rest of the parameters not being free ones.

It may be the case that the previously free parameters are found again, and the genetic
variability is low. This would mean that by a extraordinary coincidence, all the right
values of parameters chosen by hand were close to optimal, and the theory is restricted
to a very specific and narrow range of parameters. Much more probable, is the case of
other parameters are found, and/or the genetic variability is high. Statistics can be
performed to identify the most common values of a given parameter, or factor analysis
may be used to find specific combinations that tend to appear together. Finally, specific
models that either unusual (that is, unlike the majority of the population) or typical
representatives of a group of similar models, may be subjected to the laboratory
method. Of special interest are variables that are parameter values that are very frequent
across the population, these may be good candidates for relevant features.

The original "interesting" feature (in our case the form of the ref. per.) should be tested
again by the laboratory method, to add (or subtract) credibility to the claim of
relevance. The same should be done with other features, as suggested by the statistics.
Once this is done, one cycle of development had been completed. Hopefully, new
interesting features have been identified, and probably irrelevant ones may be discarded
making place for other biological features to be included, and the next iteration may
begin.

The next series of simulations should try to come close to completing one cycle of
development, by using the genetic algorithm with the model in 4.5.4 as positive case

The first step, is translating the old STRUC.TXT and PARAM.TXT data files to the
new format required by the many changes in the simulation program. The files are
named STRSTOSY.TXT AND PARSTOSY.TXT. The simulation produced the
following result:

 96

Fig. 22. model 4.5.4 adapted to run under the ION simulation program. The
accumulated synchronicity table (5.12) is shown approximately in the middle the screen
above the spike display. To the right of it is the new synchronicity table, showing only
spiking cells indexed by the present wavelength and the previous wavelength, as
proposed 5.15 (point 2, second paragraph).

The model behaves in a virtually identical way to the model presented in 4.5.4. The
individual spikes are different mainly because the compiler used for this simulation is a
different one, and are not due to the many changes in the structure of the simulation
program itself (technically: a different pseudo-random number generator was used, as
well as floating-point arithmetic of higher precision). The model is still deterministic,
resetting the simulation and running again produces an identical pattern of spikes.

6.1 changes on the genetic algorithm

Beside some minor changes in the graphics, all the changes were performed in the
genetic algorithm on source file GENE.C. In model 4.5.4 there are no distinct areas of
cell, but rather homogeneous random connections. The fitness measurement was
adapted to this change as compared with model 2.18. Two parameters have been added
to the solution space, the ref. per. (the independent variable in Simulations I) and cell-
wide ref. per. In this way, both the output for a given input, and the influence of the ref.
per. in the receptivity to input itself, can interact with each other. This eliminates the
cell's ref. per. as free parameter. The form of the function used for the cell's ref. per. has

 97

as constrain that the values used have average 0.5, and the function is linear, the only
difference being the rate at which the values increase or decrease. If the rate is too high
(or low), non-linear flat sections appear at both extremes. A very similar arrangement
was used the ref. per. input modulation. See appendix A.7, constant tables
REF_PER_CELL_GEN and REF_PER_GEN for details.

6.2 run 0909

The fitness evaluation was simply adapted to results of accumulated synchronicity of
the model 4.5.4 (as shown in the previous figure):

>RATE_SYNCH---
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 9 0 0 0 0 0 0
 0 0 0 0 0 9 9 9 0 0 0 0 0
 0 0 0 0 0 0 9 9 9 0 0 0 0
 0 0 0 0 0 0 0 9 9 9 0 0 0
 0 0 0 0 0 0 0 0 9 9 9 0 0
 0 0 0 0 0 0 0 0 0 9 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0
 -1 0 0 0 0 0 0 0 0 0 0 0 0

A small difference with previous forms of fitness evaluation is the use of a negative
value in the lower right corner of the fitness table. The intention is to diminish the
measured fitness of models whose cells fire continuously.

A final, relatively important change was to limit the value of the synchronicity data to a
maximum of 100. The reason for this, is to force the models to distribute their spikes
over the whole expected area (the digits '9' on the fitness table). If more than 100 spikes
are concentrated in given position, the excess would be wasted for the fitness
measurement.

 98

Running the program produced the following results:

Fig. 23 Run 0909

This result is surprising for two reasons. First, stochastic synchronization is achieved
(and remains stable in the form shown at the right of the screen) but on each wave the
cells spike twice, producing the green/red columns shown. If it were not for this short-
long-short-long wavelength pattern, the model would have shown better stochastic
synchronization than the positive case used.

The second surprise was found while searching for an error in the program that could
have produced this result. The limit of a maximum 100 spikes on a position of the table
had been wrongly implemented. Instead of converting values greater than 100 to 100,
the operation used was modulo 100 (taking as result the rest of an integer division). So
values of e. g., 85, 185, 285 ... 1085, etc were all converted to 85. Despite this defective
implementation, the genetic algorithm achieved the expected stochastic
synchronization. This shows that despite the difficulties that this method carries, it is
actually able to find solutions in parameters combinations that a researcher (the author
in this case) could not have thought about.

 99

6.3 run 0923

Finally, the error was corrected, and the limit was taken out of the program and read as
a model parameter from the data file. A new fitness evaluation was tested:

>RATE_SYNCH---
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 6 6 7 8 9 -1 -1 -1
 -1 -1 -1 -1 -1 6 -1 -1 -1 8 -1 -1 -1
 -1 -1 -1 -1 -1 5 -1 -1 -1 7 -1 -1 -1
 -1 -1 -1 -1 -1 5 -1 -1 -1 7 -1 -1 -1
 -1 -1 -1 -1 -1 5 5 5 6 6 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

>RATESYNCHCAP-
 370

The theory expressed in this fitness evaluation, is that all activity outside the expected
one should decrease the fitness (-1 values). The wanted wavelengths
should oscillate between 5 and 9. The values used are adjusted in inverse proportion to
the expected spikes at a given frequency (5 in diagonal 5, 9 in diagonal 9). Finally, the
cells should oscillate between wavelengths 5 and 9 but do so without having two
consecutive equal wavelengths (the rest of the positive values forming a square. The
limit for the spikes was set rather arbitrarily to 270, and being a single value it cannot
adjust for expected spikes at a given position of the table (it should be in future
versions). The results:

 100

Fig. 24 run 0923

This model synchronizes fast, the individual cells have no stable frequency, and the
wave is much less spread than 4.5.4., it can be considered an improvement over the
positive case model used as reference.

 101

7 GENERAL DISCUSSION

The use of formal models of cognition is certainly an improvement over non-formal
models. The main reason is that the theory implicit in the model, is completely
unambiguous and predictions are precise. As a consequence, the results of models are
quantitative, which makes it possible to compare them with empirical data.

The use of neural networks as formal models, improves the plausibility because it uses
features known to be present in neural systems, like cells and connections with variable
weight. However, in the field of cognitive conflict, BP-ANNs are frequently developed
to model a single effect, and the models differ from each other (free parameters). A
comprehensive theory of cognitive conflict -and the control mechanisms than
counteract it- should be able to model many of these effects at the same time.

This work proposes four hypotheses (1.1) concerning this problem:
1) ANN cells should have a internal state to account for sequence and timing effect.
2) The state-dependant input/output can be implemented using known neural features.
3) It is possible to develop such models efficiently using principles from cellular
automata.
4) Cognitive contents can be represented as synchronized cells.

This work also proposes four methods to develop better models:
A) The black box method
B) The reverse engineering method
C) Genetic algorithms
D) The laboratory method

That hypothesis 1 is probably true, is shown -without simulations- by using the black
box method in 2.1. In short form, the argument claims that sequence and timing must
be represented in models, because they are crucial in classical and operant conditioning,
as well as in the Gratton effect and negative priming. To put it in everyday words: if a
neural network does not recall what happened before, neither the order of events nor
their timing can affect the network's behavior. It follows that additionally to long term
memory (connections weights) cells need a shorter-term memory, i. e., an internal state
that influences their input/output.

Using reverse engineering, the internal state (hypothesis 2) is implemented in
Simulations I in the form of synaptic-level storage and decay of input. State-dependant
input/output is implemented by using the same device and adding refractory-period
dependant input. The laboratory method is used to suggest that the ref. per. is probably
one of the neural features relevant for models.

The development of a simulation fast enough to be used in a genetic algorithm
(Simulations II and III) suggests that cellular automata (hypothesis 3) are a promising
concept for neural network models. Genetic algorithms, together with reverse
engineering, are also useful to reduce or eliminate the number of free parameters.

 102

Hypothesis 4 (synchronization) was not proven. There is however extensive
neurobiological evidence that suggests it is correct, this makes it possible to treat it
more like an assumption. Simulations I (4.5.4) suggest a feedback mechanism that
produces stochastic synchronization, and 5.10 why this type of mechanism is difficult
to detect with standard statistical methods. Whether previously not described, not
present in nature, or simply unknown to the author, the discovery of this
synchronization suggest that the methods presented here may be useful in neural
modeling.

Finally, the attempt to show how the proposed methods can reinforce each other was
performed in Simulations III. Although only partially successful, the interaction of such
methods with more traditional ones may be a promising scientific strategy for the
future.

Altogether, this work is an attempt to go beyond deploring the unsatisfactory state of
cognitive modeling. It tries to pinpoint specific problems of models, in which directions
to search for solutions, and non-traditional or overlooked methods to find those
solutions. To what measure this attempt has been fruitful, is maybe better left to the
ultimate scientific tool (to paraphrase Oscar Wilde), the method that dares not speak its
name: intuition.

 103

8 Bibliography

Ahissar, E., Vaadia, E., Ahissar, M., Bergman, H., Arieli, A., & Abeles, M. (1992).
Dependence of Cortical Plasticity on Correlated Activity of Single Neurons and on
Behavioral Context. Science, 257, pp. 1412-1415.

Alkon, D. L. (1983). Learning in a Marine Snail. Scientific American, 249, 70-84.

Atkinson, R. C. (1961) The use of models in experimental psychology. In: H.
Freudenthal (Ed.), The concept and the role of the model in mathematics and natural
and social sciences. Dordrecht, Holland,: Reidel, as quoted in: Deppe, W. (1977)
Formale Modelle in der Psychologie. p. 160 Stuttgart: Kohlhammer.

Barinaga, M.(1990). The Mind Revealed? Science, 249, pp. 856-858.

Barnes, D. M. (1986). Brain Architecture: Beyond Genes. Science, 233, pp. 155-156.

Beardsley, T. (1997) Debunking the Digital Brain. URL:
http://www.sciam.com/explorations/020397brain/020397explorations.htm

Botvinick, M. M., Braver T.S., Barch D.M., Carter C.S., & Cohen J. D. (2001).
Conflict monitoring and cognitive control. Psychological Review, 108(3) pp. 624-652.

Botvinick, M. (2007) personal communication. At the Final Meeting of the Priority
Program on Executive Functions. Leiden, Holland.

Braitenberg, V. (1993): Vehikel. Experimente mit kybernetischen Wesen. Rowohlt
Taschenbuch, Deutschland.

Braitenberg, V., & Shüz, A. (1989). Cortex: hohe Ordnung oder größtmögliches
Durcheinander? Spektrum der Wissenschaft, May 1989, pp. 74-86.

Braithwaite, R. B. (1963): Models in the Empirical Sciences. In Nagel, A. Suppes, P.,
& Tarski, A. (Eds.), Logic, Methodology and the Philosophy of Science. pp. 224-341.
Stanford:Stanford University Press.

Cartwright P, Halgedahl S.L., Hendricks J.R., Jarrard R.D., Marques A.C., Collins,
A.G., & Lieberman, B.L. (2007) Exceptionally Preserved Jellyfishes from the Middle
Cambrian. PLoS One 2(10): e1121. doi:10.1371/journal.pone.0001121

Cohen, J. D. (2008) personal web page. URL:
http://www.csbmb.princeton.edu/ncc/jdc.html

Cohen, J.D., Dunbar, K., & McClelland, J.L. (1990). On the Control of automatic
processes: A parallel distributed processing account of the Stroop effect. Psychological
Review, 97, pp. 332-361.

 104

Cohen, J. D., & Huston, T. A. (1994). Progress in the use of interactive models for
understanding attention and performance. In Umilta, C., & Moscovitch, M. (Eds.),
Attention and performance XV pp. 453-476. Cambridge, MA: MIT press.

Dörner, Dietrich (1994) Heuristic der Theorienbildung. In Herrmann, T., & Tack, W.
H. (Eds.) Enzyklopädie der Psychologie, Themenbereich B Serie I Band 1

Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., Seaver,
E., Rouse, G.W., Obst, M., Edgecombe, G. D., Sørensen, M. V., Haddock, S. H. D.,
Schmidt-Rhaesa, A., Okusu, A., Møbjerg Kristensen, R., Wheeler, W. C., Martindale,
W. Q., & Giribet G. (2008). Broad phylogenomic sampling improves resolution of the
animal tree of life. Nature 452, pp. 745-749.

Engel, A. K., Debener, S., & Kranczioch, C. (2006) Coming to Attention. How the
brain decides what to focus conscious attention on. Scientific American Mind - August,
2006.

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of
a target letter in a nonsearch task. Perception and Psychophysics, 16, pp. 143–149.

Feynman, R. (undated) URL:
http://duartes.org/gustavo/blog/post/2008/02/20/Richard-Feynman-Challenger-Disaster-
Software-Engineering.aspx

Galileo Galilei (1632), Dialogue Concerning the Two Chief World Systems. Florence,
Italy: Unknown publisher.

Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information:
The strategic control of the activation of responses. Journal of Experimental
Psychology: General, 121, pp. 480-506.

Gray, C. M. Konig, P. Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat
visual cortex exhibit inter-columnar synchronization which reflects global stimulus
properties. Nature, 338, p. 334.

Goodman, C. S., & Bastiani, M. J. (1984). How Embryonic Nerve Cells Recognize One
Another. Scientific American, 251, pp. 58-66.

Hayes, B. (1984). Computer Recreations. Scientific American, 250, 3, pp. 10-16.
(auch zu finden im: Spektrum der Wissenschaft, June 1984 pp. 6-16).

Hebb, D.O. (1949). The organization of behavior. New York: Wiley.

Herzog, W. (1984). Modell and Theorie in der Psychologie. Göttingen: Hogrefe.

Hinton, G. E., & Sejnowski, T. J.(1983) Analyzing Cooperative Computation. In:
Proceedings of the 5th Annual Congress of the Cognitive Science Society, Rochester,
NY, May 1983.

 105

Hommel, B., Proctor, R. W., & Vu, K. P. L. (2004) A feature-integration account of
sequential effects in the Simon task, Psychological Research, 68, pp. 1–17.

Kandel, E.R. Schwartz, J.H. Jessell, T.M., Eds. (2000). Principles of Neural Science,
4th ed. New York: McGraw-Hill.

Koch, C. (1997) Computation and the single neuron. Nature, 385, pp. 207-210.

Kuhn,T. (1962) The Structure of Scientific Revolutions. Chicago: Univertity of Chicago
Press.

Luna-Rodriguez, A., Hübner, M., Peters, A., & Kluwe, R. (2003). A Cellular Automata
Model of the Origins of Neural Synchronization. In: Detje, F., Dörner, D., & Schaub,
H. (Eds.) Proceedings of the Fifth International Conference on Cognitive Modeling pp.
159-164. Bamberg: Üniversitäts-Verlag Bamberg.

Markram, H. (2006) The Blue Brain Project. Nature Neuroscience Review, 7, pp. 153-
160.

McCulloch, W., & Walter Pitts, W. (1943) A Logical Calculus of Ideas Immanent in
Nervous Activity. Bulletin of Mathematical Biophysics 5, pp. 115-133.

Minsky M. L., & Papert S. A.(1969) Perceptrons. Cambridge, Mass.: MIT Press.

O'Reilly, R. C., & Munakata, Y. (2000) Computational explorations in cognitive
neuroscience : understanding the mind by simulating the brain. Cambridge, Mass. :
MIT Press.

Pinker, S. (2008) Reverse-Engineering the Psyche. URL:
http://www.wired.com/science/discoveries/news/1998/03/10964

Plunkett, K., & Marchman, V. (1993) From rote learning to system building: acquiring
verb morphology in children and connectionist nets. Cognition, 48, pp. 21-69.

Raffone, A., & Wolters, G. (2001) A Cortical Mechanism for Binding in Visual
Working Memory. Journal of Cognitive Neurocience, 13, pp. 766 – 785.

Roberts, S., & Pashler, H. (2000) THEORETICAL NOTES How Persuasive Is a Good
Fit? A Comment on Theory Testing. Psychological Review. 107(2), pp. 358-367

Rosenblatt, F. (1958), The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain, Cornell Aeronautical Laboratory, Psychological Review,
65(6), pp. 386-408.

 106

Rumelhart, D.E., McClelland, J. L., & the PDP Research Group (1986). Parallel
Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1:
Foundations, Cambridge, MA: MIT Press

Searle, J. (1983). Intentionality: An Essay in the Philosophy of Mind. New York,
Cambridge University Press.

Seidenberg, M., & McClelland, J. (1989) Adistributed model of word recognition and
naming, Psychological Review, 96, 523-568.

Simon, H. A., & Newell, A. (1963): The uses and limitations of models. In: M. H. Marx
(Ed.), Theories in contemporary psychology. New York, MacMillan.

Singer, W. (2000) interview for the Nordwest Funk. URL:
http://www.wz.nrw.de/magazin/artikel.asp?nr=259&ausgabe=2000/1&titel=Entdeckun
gen%5Esind%5Enicht%5Eplanbar&magname=

Skinner, B. F. (1947) 'Superstition' in the Pigeon. Journal of Experimental Psychology,
38, 168-172.

Stachowiak, H. (1973). Allegemeine Modelltheorie. pp. 129-133. Wien: Springer-
Verlag.

Stroop, J. R. (1935) Studies of interference in serial verbal reactions. Journal of
Experimental Psychology, 18, pp. 643-662.

Ueckert, Hans. (1983) Kapitel 5: Computer-Simulation p. 587. In: Brädenkamp, J., &
Feger, H. (Eds.) Enzyklopädie der Psychologie, Themenbereich B Methodologie und
Methoden, Serie I Forschungsmethoden der Psychologie, Band 5 Hypothesenprüfung.
Göttingen: Hogrefe.

Verguts, T., & Notebaert, W. (2008) Hebbian learning of cognitive control: dealing
with specific and nonspecific adaptation. Psychological Review, 115, pp. 518-525.

von der Malsburg, C. (1983) How are nervous structures organized? In: Synergetics of
the Brain, Proceeding of the International Symposium on Synergetics. Basar, E., Flohr,
H., Haken, H., & Mandell A. J. (Eds.), Springer, pp. 238-259.

Von Neumann, J. (1948). The Computer and the Brain. New Haven and London: Yale
University Press.

Vreeken, J. (2002) Spiking neural networks, an introduction, Technical Report UU-CS-
2003-008, Institute for Information and Computing Sciences, Universiteit Utrecht.
URL:
http://www.cs.uu.nl/groups/ADA/people/vreeken/index.php

Walter, G. (1950). An imitation of life. Scientific American. 182(5), pp. 42-45.

 107

Wendt, M., Kluwe, R. H., & Peters, A. (2006). Sequential modulations of interference
evoked by processing task-irrelevant stimulus features. Journal of Experimental
Psychology: Human Perception and Performance, 32, 644 - 667.

Zimbardo, P. G., & Gerrig, R. J. (2008). Psychologie. München: Pearson Studium.

 108

// ion.h first line

#include <stdio.h> //FILE
/*
const int
 //general caracteristics of cellular automata
 N_C = 100, //total Number of Cells
 MAX_SYN = 40, //MAXimum number of SYNapses by cell, must be < N_C
 MIO = 8, //Maximum number of neurotransmiter/Ions types
 R_P_SPAN = 13, //"normal" span of Refractory Period
 //other values used in compile time
 WO_SZ_X = 20, //size of world, including two-row margins (in squares)
 WO_SZ_Y = 20,
 WS = 8, //side-size in pixels of World's squares
 WO_PO_X = 504, //position of world map, upper-left corner (in pixels)
 WO_PO_Y = 176, //..also vertical margin for plot-depo()
 WAVES = 4, //how many "EEG" of groups of cells are to be ploted
 RNDSZ = 7; //rnd vector's size

due to a bug in gpp, previously declared constants cannot be used
to define the size of arrays, have to use #define
*/

#define N_C 100
#define MAX_SYN 40
#define MIO 8
#define R_P_SPAN 13
#define WO_SZ_X 20
#define WO_SZ_Y 20
#define WS 8
#define SHOW_GEN 250
#define WAVES 4
#define AREAS 12
#define RNDSZ 7

#define MAXRBOWCOLORS 16

//#define NDEBUG
#include <assert.h>

extern const int FX,FY;//font size in pixels, hires.c

typedef unsigned char byte;

//vars of main()
extern const int ON; //used for virtual_syn with constant input
 //presynaptic axon is firing if == 0

extern int *Type, //cell's default neurotransmiter
 *State, //cell's "clock" (0 == depolarization)
 *Axon, //delay in transmission of spikes
 *WaveL, //last wavelength
 *SynNum, //number of synapses declared
 *Posflag; //positive flag, catch negative ion amounts
extern float *TotalIo; //total input*equa.*power*cell ref.per.
extern float (*Cell_Io)[MIO], //total cell's store of neurotrans/ions
 (*SynEq) [MIO]; //equalizes number of syn. by NT/ion
extern int (*SynType)[MAX_SYN],//types of declared synapses
 (*SynPos) [MAX_SYN];//neighbor' number, negative:free_syn
extern int *(*Syn) [MAX_SYN];//points to neighbor's Axon
extern float (*SynWei) [MAX_SYN],//weights of synapses
 (*SyIo) [MAX_SYN];//Synaptic Input/Output, Neurotrans & Ions

//global parameter pseudo-constants user-defined
extern int

 109

 EegB[WAVES], //"electroencephalograph" channels
 EegE[WAVES],
 AREA_B[AREAS], //area's begin (first cell)
 AREA_E[AREAS]; //area's end (last cell)
extern char AREA_NAME[AREAS][20];

extern int RANGE[4][MIO];//x-axis nt/io type
 //line[0][io-type] IO top of range on noisy reset(1)
 //line[1][io-type] bottom
 //line[2][io-type] WEIGHT top
 //line[3][io-type] bottom

extern int
 HL_IOG [MIO], //Half-Life of neurotransmitter/ion (generations)
 MASTER_DELAY, //default delay, value 0 means fire in _next_ generation
 DELAY [MIO], //cell's delay by type
 Spontaneous, //to make cells fire without input
 EQUA;//??

extern double
 HL_IO [MIO], //Half-Life of NTs & ions (factor)
 NT_TH [MIO], //NT ThresHold;
 NT_PO [MIO]; //NT POwer

extern double
 MOTOR_TH, //MOTOR ThresHold
 FIXDECAY[MIO][R_P_SPAN], //add xor substract to IO stores
 //depending on type&ref.per.
 REF_PER [MIO][R_P_SPAN], //REFractory PERiod (ion absorption)
 REF_PER_CELL[R_P_SPAN]; //REFractory PERiod (CELL sensitivity)

extern char SEED[81], //random number generator's seed
 STRUCFIL[81], //structure file's name
 PARAMFIL[81]; //parameter file's name

extern int RBOW[MAXRBOWCOLORS], //rainbow, defined in start_graphics()
 NtCol[MIO], //colors of NT/ions
 WO_COL[8]; //world colors

//program's internal global variables
extern int RndVec[RNDSZ], //random number generator
 RndIdx; //gerator's index

extern byte NeiSta[N_C][N_C]; //Neighbor's Status
extern int World[WO_SZ_Y][WO_SZ_X]; //defined in set-World-up
extern int WO_PO_X,WO_PO_Y;

extern double Left, //runnig average of activity in motor zone
 Right, //idem
 Move; //idem

//sensor input uses virtual syns to these vars 0:firing else:inactive
extern int North,
 East,
 South,
 West;
 //frog's retina
extern int Pix[9][4]; //pix[0][] is dummy, always black
 //pix[][0] world values
 //ACHTUNG: 0:firing else:inactive
 // first dimension map (looking up/north):
 // 1 2 3
 // 4 5 6
 // 7(f)8
 //2nd dimension: R,G,B.

 110

extern long Gen; //counter of automata's generations

extern int Frog_po_x, //default frog's position (X axis)
 Frog_po_y, //idem Y axis
 TimePos, //X-axis position for depo & EEG
 Interactive_mode, //1:interactive 0:batch
 SEE; //show hires on batch

extern char Direc, //direction: 'n'orth, 'e'ast, 's'outh, 'w'est
 DispUp; //display up (paraMs Bars For...)

//************** global to gene.c, used by hires.c *******************

extern long His2D[R_P_SPAN][R_P_SPAN];

extern long His3D[AREAS][R_P_SPAN][R_P_SPAN];

extern long Accumulated;

// *** functions ***

// *** main.c ***

void alarm(char *msg,char *str_fil, unsigned uLine) ;

int rnd(int range) ;

void reset_generator(void) ;

double half_life(int generations) ;

void hl_factors(void) ;

void setEqu(void) ;

void retina(void) ;

void compass(void) ;

char motor_navigation(char reset) ;

int cold_start(void) ;

//void batch(int see) ; moved to gene.c

void main_command_line_params(int argc,char *argv[]) ;

// *** compute.c ***
int check_cells(void) ;

void compute(void) ;

// *** hires.c ***

int start_graphics(void) ;

void plot_n(int x, int y, int size, int color) ;

void plot_4(int x, int y, int color) ;

void plot_depo(void) ;

void plot_waves(void) ;

 111

void plot_nei(int what) ;

void plot_wei(void) ;

void plot_frog(void) ;

void plot_World(void) ;

void show_synchro_table(void) ; //uses His2D from gene.c

void synchro_stats(void) ; //shows instantaneous, not accumulated

void histogram(int full) ;

void show_LMRG(void) ;

void bars(void) ;

void restore_text_mode(void) ;

// *** files.c ***

void set_World_up(FILE *dta_fil, int load_fil) ;

void reset(int noise) ;

void read_nei(int reads,int readed,int syntype) ;

int wrap(int first, int last, int pos) ;

void loc_nei(int first, int last, int syn_typ,
 int n0, int n1, int n2, int n3) ;

void rnd_nei(int z_b, int z_e, int s_q, int s_t, int n_b, int n_e) ;

void virtual_syn(int first, int last, int syn_typ, float weight, char *target) ;

int load_struc_file(char *struc_file_name) ;

int load_param_file(char *params_file_name) ;

int save_params(int interactive, char *genename) ;

// *** menus.c ***

void clean_line(int first, int last) ;

void menu_line_tx(void) ;

void menu_line_gr(void) ;

double ask_double(char message[],double min,double max,double old) ;

int ask_int(char message[],int min,int max,int old) ;

int change_cell() ;

void show_syn(int cell, int begin, int tempi) ;

void show_cell(int cell) ;

void def_menu_gr(void) ;

void show_table(int x,int y) ;

 112

void show_table_gr(int x,int y) ;

void display_up(void) ;

void change_params(void) ;

void change_ref_per(void) ;

void warm_reset(int noise) ;

long menu_gr(void) ;

// gene.c

char * sex(int woman, int man) ;

void roulette_selection(long count) ;

void bubble_sort(void) ;

void accu_synch(int mode) ;

double rate_accu_synch(int zonesrow) ;

double two_screens(void) ;

void set_params(int which) ;

void seed_orga(int which,
 int hl_iog0, int hl_iog2, int hl_iog4,
 int nt_po0, int nt_po2, int nt_po4,
 int delay2, int delay4,
 double fitness) ;

void seed_popu(void) ;

//void dump_organism(struct organism which_orga, int orga_num) ;

void batch(void) ;

//******************* global constants & macros *****************

#define TEST

#define F __FILE__

#define L __LINE__

#ifdef TEST

 #define ASSE(f,str) \
 if (f) \
 NULL; \
 else \
 alarm(str,__FILE__,__LINE__)
 #else

 #define ASSE(f,str) NULL

#endif

//good-old EGA colors
#define BLACK 0
#define BLUE 1

 113

#define GREEN 2
#define CYAN 3
#define RED 4
#define MAGENTA 5
#define BROWN 6
#define LIGHTGRAY 7
#define DARKGRAY 8
#define LIGHTBLUE 9
#define LIGHTGREEN 10
#define LIGHTCYAN 11
#define LIGHTRED 12
#define LIGHTMAGENTA 13
#define YELLOW 14
#define WHITE 15

//ion.h last line

 114

//compute.c first line

#include <math.h>
#include "ion.h"

int check_cells(void) {
 int c,c2;
 for(c=0; c<N_C; c++) {
 for(c2=0; c2<MIO; c2++)
 if((Cell_Io[c][c2] < -0.0001) || (Cell_Io[c][c2] > 50.0))
 return(c);
 for(c2=0; c2<SynNum[c]; c2++)
 if((SyIo[c][c2] < -0.0001) || (SyIo[c][c2] > 50.0))
 return(c);
 }
 return(-1);
}//check_cells

void compute(void) {
 double tot_inp = 0.0, //total NTs input (formula)
 nt_act[MIO];
 int c,c2,
 cell_typ, //local cell type
 ref_per, //local Refractory Period (to use States > R_P_SPAN)
 syn_typ, //local Synaptic Type
 next_state[N_C], // defined in formula, synchronize generations
 next_axon[N_C]; // idem

 for(c=0; c<N_C; c++) { //for all cells
 tot_inp = 0.0;
 for(c2=0; c2<MIO; c2++) {
 nt_act[c2] = 0.0;
 Cell_Io[c][c2] *= HL_IO[c2]; //cell's total stores decay
 }
 cell_typ = Type[c];
 ref_per = State[c];
 Posflag[c] = 1;
 TotalIo[c] = 0.0;
 for(c2=0; c2<SynNum[c]; c2++) {
 syn_typ = SynType[c][c2];
 SyIo[c][c2] *= HL_IO[syn_typ]; //syn store decays ???
 SyIo[c][c2] += FIXDECAY[syn_typ][ref_per]; ///new and improved??
 if(SyIo[c][c2] < 0.0) {
 Posflag[c] = 0;
 Cell_Io[c][syn_typ] -= SyIo[c][c2]; ///???
 SyIo[c][c2] = 0.0;
 }
 Cell_Io[c][syn_typ] += FIXDECAY[syn_typ][ref_per];
 if(*Syn[c][c2] - DELAY[syn_typ] == 0) { //neighbor's axon firing?
 SyIo [c][c2] += SynWei[c][c2] * REF_PER[syn_typ][ref_per];
 Cell_Io[c][syn_typ] += SynWei[c][c2] * REF_PER[syn_typ][ref_per];
 }
 nt_act[syn_typ] += SyIo[c][c2];
 }
 for(c2=0; c2<MIO; c2++)
 tot_inp += (nt_act[c2] * SynEq[c][c2] * NT_PO[c2]); //pri
 //FORMULA
 TotalIo[c] = tot_inp;
 tot_inp *= REF_PER_CELL[ref_per];
 //cell can't fire if some NT/ion store is negative
 if(tot_inp > NT_TH[cell_typ]) { //&& (Posflag[c])) {
 next_state[c] = 0; //FIRE!
 next_axon[c] = 0; //put spike on axon-delay
 WaveL[c] = State[c]; //update wavelength
 }

 115

 else {
 next_state[c] = State[c] + 1;
 next_axon[c] = Axon[c] + 1; //?? overflows
 }
 }//for all cells

 for(c=0; c<N_C; c++) { //bug somewhere here???
 State[c] = next_state[c]; //update cell's State
 if(State[c] >= R_P_SPAN) {
 State[c] = R_P_SPAN-1;
 WaveL[c] = R_P_SPAN-1;
// if((Posflag[c])&&(!rnd(Spontaneous))) { //random firing??
 if((TotalIo[c] > -0.01)&&(!rnd(Spontaneous))) { //random firing??
 State[c] = 0;
 next_axon[c] = 0;
 }
 }
 Axon[c] = next_axon[c]; //idem axon ??
 }
// if(check_cells() >= 0) {
// show_cell(check_cells()); ???
// return(1);
// }
// return(0);
}//compute
//compute.c last line

 116

//gene.c first line

#include "ion.h"
#include <bios.h> //bioskey()
//population, number of organisms
#define POPU 100

FILE *gene_output;

struct organism {
 int hl_iog0,
 hl_iog2,
 hl_iog4,
 nt_po0,
 nt_po2,
 nt_po4,
 delay2,
 delay4;
 double fitness;
 char name[20];
 };

struct organism Orga[POPU+1]; //organisms, Orga[POPU] or...
struct organism Baby; //...Baby is the newborn

long His2D[R_P_SPAN][R_P_SPAN]; //used by hires.c

long His3D[AREAS][R_P_SPAN][R_P_SPAN]; //this too

long Accumulated = 0;

//int SEE = 0; //to avoid printf in hires

const int HL_IOG0[15] = {12,18,24,30,36,42,48,54,60,66,72,84,96,108,120},
 HL_IOG2[15] = { 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,14,16,18,20},
 HL_IOG4[15] = { 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,14,16,18,20};

// 0.163507991, 0.179858790, 0.197844669, 0.217629136, 0.239392049,
// 0.263331254, 0.289664380, 0.318630818, 0.350493899, 0.385543289,
// 0.424097618, 0.466507380, 0.513158118, 0.564473930, 0.620921323,
// 0.683013455, 0.751314801, 0.826446281, 0.909090909, 1.000000000,
// 1.100000000, 1.210000000, 1.331000000, 1.464100000, 1.610510000,
// 1.771561000, 1.948717100, 2.143588810, 2.357947691, 2.593742460,
// 2.853116706, 3.138428377, 3.452271214, 3.797498336, 4.177248169,
// 4.594972986, 5.054470285, 5.559917313, 6.115909045, *= 1.1

const double NT_PO0[15] = {0.513158118,
 0.564473930,
 0.620921323,
 0.683013455,
 0.751314801,
 0.826446281,
 0.909090909,
 1.000000000,
 1.100000000,
 1.210000000,
 1.331000000,
 1.464100000,
 1.610510000,
 1.771561000,
 1.948717100},

 NT_PO2[15] = {0.263331254,
 0.289664380,
 0.318630818,

 117

 0.350493899,
 0.385543289,
 0.424097618,
 0.466507380,
 0.513158118,
 0.564473930,
 0.620921323,
 0.683013455,
 0.751314801,
 0.826446281,
 0.909090909,
 1.000000000},

 NT_PO4[15] = {-0.263331254,
 -0.289664380,
 -0.318630818,
 -0.350493899,
 -0.385543289,
 -0.424097618,
 -0.466507380,
 -0.513158118,
 -0.564473930,
 -0.620921323,
 -0.683013455,
 -0.751314801,
 -0.826446281,
 -0.909090909,
 -1.000000000};

//*********************** variables global to gene.c *******************

void init_orga(void) {
int c;
 for(c=0; c<=POPU; c++) { //include newborn one
 Orga[c].hl_iog0 = 0;
 Orga[c].hl_iog2 = 0;
 Orga[c].hl_iog4 = 0;
 Orga[c].nt_po0 = 0;
 Orga[c].nt_po2 = 0;
 Orga[c].nt_po4 = 0;
 Orga[c].delay2 = 0;
 Orga[c].delay4 = 0;
 Orga[c].fitness = 0;
 strcpy(Orga[c].name,"0123456789012345678\0");
 }
}//init_orga

void baptice(struct organism *doe) {
//must be longer than range of parameters
const char *cODE = "0123456789abcdef\0";
 doe->name[0] = cODE[doe->hl_iog0];
 doe->name[1] = cODE[doe->hl_iog2];
 doe->name[2] = cODE[doe->hl_iog4];
 doe->name[3] = cODE[doe->nt_po0];
 doe->name[4] = cODE[doe->nt_po2];
 doe->name[5] = cODE[doe->nt_po4];
 doe->name[6] = doe->delay2 + 'A';
 doe->name[7] = doe->delay4 + 'A';
 doe->name[8] = '\0';
}//baptice

void set_params(int which) {
 HL_IOG[0] = HL_IOG0[Orga[which].hl_iog0];

 118

 HL_IOG[2] = HL_IOG2[Orga[which].hl_iog2];
 HL_IOG[4] = HL_IOG4[Orga[which].hl_iog4];
 NT_PO[0] = NT_PO0[Orga[which].nt_po0];
 NT_PO[2] = NT_PO2[Orga[which].nt_po2];
 NT_PO[4] = NT_PO4[Orga[which].nt_po4];
 DELAY[2] = Orga[which].delay2;
 DELAY[4] = Orga[which].delay4;
 Orga[which].fitness = 0.0;
}//set_params

void seed_orga(int which,
 int hl_iog0, int hl_iog2, int hl_iog4,
 int nt_po0, int nt_po2, int nt_po4,
 int delay2, int delay4,
 double fitness) {
 Orga[which].hl_iog0 = hl_iog0;
 Orga[which].hl_iog2 = hl_iog2;
 Orga[which].hl_iog4 = hl_iog4;
 Orga[which].nt_po0 = nt_po0;
 Orga[which].nt_po2 = nt_po2;
 Orga[which].nt_po4 = nt_po4;
 Orga[which].delay2 = delay2;
 Orga[which].delay4 = delay4;
 set_params(which);
 Orga[which].fitness = fitness;
 baptice(&Orga[which]);
}//seed_orga

void copy_orga(int target, int source) {
 Orga[target].hl_iog0 = Orga[source].hl_iog0;
 Orga[target].hl_iog2 = Orga[source].hl_iog2;
 Orga[target].hl_iog4 = Orga[source].hl_iog4;
 Orga[target].nt_po0 = Orga[source].nt_po0;
 Orga[target].nt_po2 = Orga[source].nt_po2;
 Orga[target].nt_po4 = Orga[source].nt_po4;
 Orga[target].delay2 = Orga[source].delay2;
 Orga[target].delay4 = Orga[source].delay4;
 Orga[target].fitness = Orga[source].fitness;
 strcpy(Orga[target].name,Orga[source].name);
}//copy_orga

void dump_orga(struct organism which_orga, int orga_num) {
char line[256] =
"---------1---------2---------3---------4---------5---------6---------7\0";

 sprintf(line,"\n%3d: %2d %2d %2d %2d %2d %2d %2d %2d %10.4f %s",
 orga_num,
 which_orga.hl_iog0,
 which_orga.hl_iog2,
 which_orga.hl_iog4,
 which_orga.nt_po0,
 which_orga.nt_po2,
 which_orga.nt_po4,
 which_orga.delay2,
 which_orga.delay4,
 which_orga.fitness,
 which_orga.name);
 fprintf(gene_output,line);
 if(!SEE) printf("%s",line);
}//dump_orga

 119

void dump_popu(void) {
int c;
 for(c=0; c<POPU; c++)
 dump_orga(Orga[c],c);
 fprintf(gene_output,"\n\n");
 if(!SEE) printf("\n");
}//dump_popu

int clone_test(struct organism *doe) {
int c;
 for(c=0; c<POPU; c++)
 if(strcmp(Orga[c].name,doe->name) == 0)
 return(1);
 return(0);
}//clone_test

void mutate(struct organism *doe) {
 switch(random() % 7) {
 case 0: doe->hl_iog0 = random() % 15; break;
 case 1: doe->hl_iog2 = random() % 15; break;
 case 2: doe->hl_iog4 = random() % 15; break;
 case 3: doe->nt_po0 = random() % 15; break;
 case 4: doe->nt_po2 = random() % 15; break;
 case 5: doe->nt_po4 = random() % 15; break;
 case 6: doe->delay2 = (random() % (R_P_SPAN-1)) + 1;
 doe->delay4 = (random() % doe->delay2) + 1;
 break;
 }
}//mutate

void seed_popu(void) {
int c;
 for(c=0; c<POPU; c++) {
 Orga[c].hl_iog0 = random() % 15;
 Orga[c].hl_iog2 = random() % 15;
 Orga[c].hl_iog4 = random() % 15;
 Orga[c].nt_po0 = random() % 15;
 Orga[c].nt_po2 = random() % 15;
 Orga[c].nt_po4 = random() % 15;
 Orga[c].delay2 = (random() % (R_P_SPAN-1)) + 1;
 Orga[c].delay4 = (random() % Orga[c].delay2) + 1;
 Orga[c].fitness = 0.0;
 baptice(&Orga[c]);
 }
}//seed_popu

char * sex(int woman, int man) {
//positive==looks like mami, neg.like papi 0==perfect mix
char *mix = "???????????????????\0";
int looks_like = 42;
 while((looks_like < -3) || (looks_like > 3)) { //force 2 swaps
 looks_like = 0;
 if(random()%2) { Baby.hl_iog0 = Orga[woman].hl_iog0;
 mix[0]='+'; ++looks_like; }
 else { Baby.hl_iog0 = Orga[man].hl_iog0;
 mix[0]='-'; --looks_like; }

 if(random()%2) { Baby.hl_iog2 = Orga[woman].hl_iog2;
 mix[1]='+'; ++looks_like; }
 else { Baby.hl_iog2 = Orga[man].hl_iog2;
 mix[1]='-'; --looks_like; }

 120

 if(random()%2) { Baby.hl_iog4 = Orga[woman].hl_iog4;
 mix[2]='+'; ++looks_like; }
 else { Baby.hl_iog4 = Orga[man].hl_iog4;
 mix[2]='-'; --looks_like; }

 if(random()%2) { Baby.nt_po0 = Orga[woman].nt_po0;
 mix[3]='+'; ++looks_like; }
 else { Baby.nt_po0 = Orga[man].nt_po0;
 mix[3]='-'; --looks_like; }

 if(random()%2) { Baby.nt_po2 = Orga[woman].nt_po2;
 mix[4]='+'; ++looks_like; }
 else { Baby.nt_po2 = Orga[man].nt_po2;
 mix[4]='-'; --looks_like; }

 if(random()%2) { Baby.nt_po4 = Orga[woman].nt_po4;
 mix[5]='+'; ++looks_like; }
 else { Baby.nt_po4 = Orga[man].nt_po4;
 mix[5]='-'; --looks_like; }

 if(random()%2) {
 Baby.delay2 = Orga[woman].delay2;
 Baby.delay4 = Orga[woman].delay4;
 mix[6]='+';
 mix[7]='=';
 ++looks_like;
 }
 else {
 Baby.delay2 = Orga[man].delay2;
 Baby.delay4 = Orga[man].delay4;
 mix[6]='-';
 mix[7]='=';
 --looks_like;
 }
 }
 mix[8]='\0';

 Baby.fitness = 0.0; //There's no future, no future for you.

 baptice(&Baby);

 return(mix);

}//sex

void roulette_selection(long count) {
long acfi[POPU], //accumulated fitness array
 accufit = 0,
 ball = 0,
 mutations = 0;
int mother = 0,
 father = 0,
 c;
 if(count >= 1234567891) {
 printf("\nstuck after 1234567891 babys, press any key");
 getch();
 }
 for(c=0; c<POPU; c++) {
 accufit += (long) (Orga[c].fitness*100.0);
 acfi[c] = accufit;
 }
 //choose father and mother with different genomes
 while(strcmp(Orga[father].name,Orga[mother].name) == 0) {

 121

 ball = random() % accufit;
 for(c=0; c<POPU; c++)
 if(ball <= acfi[c]) {
 mother = c;
 break;
 }
 ball = random() % accufit;
 for(c=0; c<POPU; c++)
 if(ball <= acfi[c]) {
 father = c;
 break;
 }
 }
/*
 fprintf(gene_output,"\nmami");
 dump_orga(Orga[mother],mother);
 fprintf(gene_output,"\npapi");
 dump_orga(Orga[father],father);
 fprintf(gene_output,
 "\n %s mix",sex(mother,father));
*/
 sex(mother,father);
 while(clone_test(&Baby)) {
 mutate(&Baby);
 baptice(&Baby);
 ++mutations;
 }

 reset(0);
 HL_IOG[0] = HL_IOG0[Baby.hl_iog0];
 HL_IOG[2] = HL_IOG2[Baby.hl_iog2];
 HL_IOG[4] = HL_IOG4[Baby.hl_iog4];
 NT_PO[0] = NT_PO0[Baby.nt_po0];
 NT_PO[2] = NT_PO2[Baby.nt_po2];
 NT_PO[4] = NT_PO4[Baby.nt_po4];
 DELAY[2] = Baby.delay2;
 DELAY[4] = Baby.delay4;
 Baby.fitness = two_screens();

 dump_orga(Baby,-1);
 fprintf(gene_output," muta:%3d",mutations);
 if(!SEE) printf(" muta:%3d",mutations);

 c=POPU-1;
 while(c>0) { //sort baby in population
 if(Baby.fitness < Orga[c-1].fitness) break;
 Orga[c]=Orga[c-1];
 --c;
 }
 if(Baby.fitness >= Orga[c].fitness) {
 Orga[c]=Baby;
 fprintf(gene_output," :) ");
 if(!SEE) printf(" :) ");
 }
 else {
 fprintf(gene_output," X(");
 if(!SEE) printf(" X(");
 }

}//roulette_selection

void bubble_sort(void) { //what a shame...
struct organism orgacopy[POPU];
int order[POPU];

 122

int swaped = 1,temp,c;
 for(c=0; c<POPU; c++) order[c] = c;
 while(swaped) {
 swaped = 0;
 for(c=0; c<POPU-1; c++)
 if(Orga[order[c]].fitness < Orga[order[c+1]].fitness) {
 temp = order[c];
 order[c] = order[c+1];
 order[c+1] = temp;
 swaped = 1;
 }
 }
 for(c=0; c<POPU; c++)
 orgacopy[c] = Orga[order[c]];
 for(c=0; c<POPU; c++)
 Orga[c] = orgacopy[c];
}//bubble_sort

void accu_synch(int mode) { //accumulated synchronization measure
int c,c2,c3; //mode:0 clean mode:1accumulate
 if(mode == 0) {
 for(c=0; c<AREAS; c++)
 for(c2=0; c2<R_P_SPAN; c2++)
 for(c3=0; c3<R_P_SPAN; c3++)
 His3D[c][c2][c3] = 0;
 for(c=0; c<R_P_SPAN; c++)
 for(c2=0; c2<R_P_SPAN; c2++)
 His2D[c][c2] = 0;
 Accumulated = 0;
 }
 else {
 for(c=0; c<AREAS; c++)
 for(c2=AREA_B[c]; c2<AREA_E[c]; c2++)
 His3D[c][State[c2]][WaveL[c2]]++;
 for(c=0; c<N_C; c++)
 His2D[State[c]][WaveL[c]]++;
 Accumulated++;
 }
}//accu_synch

double rate_accu_synch(int zonesrow) {
const double FIT2[R_P_SPAN][R_P_SPAN] = {
//0 1 2 3 4 5 6 7 8 9 10 11 12 Wavelenght
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 0 state

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 2

{ 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 3

{ 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0}, // 4

{ 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0}, // 5

{ 0, 0, 0, 3, 0, 0, 6, 0, 0, 0, 0, 0, 0}, // 6

{ 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0}, // 7

{ 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0}, // 8

{ 0, 0, 0, 3, 0, 0, 0, 0, 0, 9, 0, 0, 0}, // 9

 123

{ 0, 0, 0, 0, 0, 5, 0, 0, 0, 0,10, 0, 0}, //10

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,10, 0}, //11

{ 0, 0, 0, 3, 4, 0, 6, 0, 0, 0, 0, 0, 0}};//12

int zones[3][12] = {{1,1,1,1,1,1,1,1,1,1,1,1},
 {1,0,1,0,0,0,1,0,0,0,1,0}, //color task, red input
 {0,0,0,1,0,1,0,0,0,1,0,1}};//word task, green input
double his_add[R_P_SPAN][R_P_SPAN],
 his_sub[R_P_SPAN][R_P_SPAN],
 rate = 0.0;
int //big1sta = 12, big1wav = 12,
 //big2sta = 12, big2wav = 12,
 //big3sta = 12, big3wav = 12,
 add_cells = 0,
 sub_cells = 0,
 c,c2,c3;

 for(c=0; c<R_P_SPAN; c++)
 for(c2=0; c2<R_P_SPAN; c2++) {
 his_add[c][c2] = 0.0;
 his_sub[c][c2] = 0.0;
 }

 for(c=0; c<AREAS; c++)
 if(zones[zonesrow][c]) {
 for(c2=0; c2<R_P_SPAN; c2++)
 for(c3=0; c3<R_P_SPAN; c3++)
 his_add[c2][c3] += His3D[c][c2][c3];
 add_cells += AREA_E[c] - AREA_B[c] + 1;
 }
 else {
 for(c2=0; c2<R_P_SPAN; c2++)
 for(c3=0; c3<R_P_SPAN; c3++)
 his_sub[c2][c3] += His3D[c][c2][c3];
 sub_cells += AREA_E[c] - AREA_B[c] + 1;
 }

// if(add_cells)
// for(c=0; c<R_P_SPAN; c++)
// for(c2=0; c2<R_P_SPAN; c2++)
// his_add[c][c2] = his_add[c][c2] / add_cells;
// if(sub_cells)
// for(c=0; c<R_P_SPAN; c++)
// for(c2=0; c2<R_P_SPAN; c2++)
// his_add[c][c2] = his_add[c][c2] - (his_sub[c][c2] / sub_cells);
 rate = 0.0;
// for(c=0; c<R_P_SPAN-1; c++)
// for(c2=0; c2<R_P_SPAN-1; c2++)
// rate += His2D[c][c2]*FIT2[c][c2];
 for(c=0; c<R_P_SPAN-1; c++)
 for(c2=0; c2<R_P_SPAN-1; c2++) {
 his_add[c][c2] -= his_sub[c][c2];
 his_add[c][c2] *= FIT2[c][c2];
 rate += his_add[c][c2];
 }
 if(rate<0.0) rate *= -0.01;//roulette needs positive numbers
 return(rate / Accumulated);
}//rate_accu_synch

double two_screens(void) {
double run = 0.0;
int c;

 124

 reset(0);
 hl_factors(); //transform half-lifes to factors
 if(EQUA) setEqu();
 if(SEE) plot_World(); //show frog's world
 if(SEE) show_LMRG();

 accu_synch(0);
 for(c=0; c<SHOW_GEN; c++) { //first screen
 retina();
 compass();
 compute();
 accu_synch(1);
 if(check_cells() != -1) return(0.0);
 Gen++;
 motor_navigation(' '); //unused return
 ++TimePos;
 if(SEE) plot_depo();
 }
 run = rate_accu_synch(1);

 if(SEE) {
 if(DispUp == 'B') bars();
 if(DispUp == 'H') {histogram(1); synchro_stats(); }
 }

 accu_synch(0);
 TimePos = 0;
 Frog_po_y = 10;
 plot_World();
 for(c=0; c<SHOW_GEN; c++) { //second screen
 retina();
 compass();
 compute();
 accu_synch(1);
 if(check_cells() != -1) return(0.0);
 Gen++;
 motor_navigation(' '); //unused return
 ++TimePos;
 if(SEE) plot_depo();
 }
 run += rate_accu_synch(2);

 if(SEE) {
 if(DispUp == 'B') bars();
 if(DispUp == 'H') {histogram(1); synchro_stats(); }
 }
 return(run / 2.0);
}//two_screens

void batch(void) { //if SEE==1:show depo,etc. 0:run blind, print text
long c;
int c2;
 reset(0);
 if((gene_output = fopen("geneout.txt","w+")) == NULL) {
 clean_line(1,1);
 printf("can't save file geneout.txt");
 delay(2000);
 exit(1);
 }
 if(SEE) if(start_graphics()) exit(1);

 init_orga();

 seed_popu();

 125

 for(c=0; c<POPU; c++) {
 reset(0);
 set_params(c);
 Orga[c].fitness = two_screens();
 if(!SEE) printf("%6D \n",c);
 }

 bubble_sort();

 dump_popu();

 srand48(1234567891L);//limits.h: #define LONG_MAX 2147483647L
 for(c=0; c<10000; c++) {
 roulette_selection(c);
 fprintf(gene_output," babys:%6D ",c);
 printf(" babys:%6D ",c);
 if(!SEE) if(c % 100 == 0) dump_popu();
 if(bioskey(1)) {
 getch();
 break;
 }
 }
 fprintf(gene_output,"\n\n after %D babys \n\n",c);
 dump_popu();

 fclose(gene_output);
 reset(0);
 hl_factors();
 if(EQUA) setEqu();
 set_params(0);
 save_params(0,"param00.txt");
 fclose(gene_output);
 exit(0);
}//batch

 126

// ion_main.c first line
// written by Aquiles Luna-Rodr¡guez
// email: luna@unibw-hamburg.de
// compiles on DJGPP with GRX graphics

#include <conio.h> //getch gotoxy kbhit color-names

#include "ion.h"

const int ON = 0;

//cell's components
int *Type,
 *State,
 *Axon,
 *WaveL,
 *SynNum,
 *Posflag;
float *TotalIo;
float (*Cell_Io)[MIO],
 (*SynEq) [MIO];
int (*SynType)[MAX_SYN],
 (*SynPos) [MAX_SYN];
int *(*Syn) [MAX_SYN];
float (*SynWei) [MAX_SYN],
 (*SyIo) [MAX_SYN];

//global parameters, user-defined
//these are only dummy values, definition is in params.bck and struc.bck
int EegB[WAVES] ={ 0, 0, 0, 0},
 EegE[WAVES] ={ -1,-1,-1,-1};
int AREA_B[AREAS] = {0,0,0,0,0,0,0,0,0,0,0,0},
 AREA_E[AREAS] = {0,0,0,0,0,0,0,0,0,0,0,0};
char AREA_NAME[AREAS][20]={"00-----------------\0",
 "01-----------------\0",
 "02-----------------\0",
 "03-----------------\0",
 "04-----------------\0",
 "05-----------------\0",
 "06-----------------\0",
 "07-----------------\0",
 "08-----------------\0",
 "09-----------------\0",
 "10-----------------\0",
 "11-----------------\0"};
int RANGE[4][MIO];

int HL_IOG [MIO],
 MASTER_DELAY = 0, //minimum, 0 fires next generation
 DELAY [MIO] = { 0,0,0,0,0,0,0,0},
 Spontaneous = 250,
 EQUA = 0;
double HL_IO [MIO],
 NT_TH [MIO],
 NT_PO[MIO];
double MOTOR_TH = 0.0,
 FIXDECAY[MIO][R_P_SPAN],
 REF_PER[MIO][R_P_SPAN],
 REF_PER_CELL[R_P_SPAN];

char SEED[81] = "0123456789\0",
 STRUCFIL[81] = "12345678.123\0",
 PARAMFIL[81] = "12345678.123\0";
int RBOW[MAXRBOWCOLORS],//defined in start_graphics()
 NtCol[MIO] = {15,15,15,15,15,15,15,15},

 127

 WO_COL[8] = {BLACK,LIGHTRED,LIGHTGREEN,LIGHTBLUE,
 YELLOW,CYAN,LIGHTMAGENTA,WHITE};

//program's internal global variables
int RndVec[RNDSZ]= {1,1,1,1,1,1,1},
 RndIdx = 0;
byte NeiSta[N_C][N_C];
int World[WO_SZ_Y][WO_SZ_X];
int WO_PO_X = SHOW_GEN*2+4,
 WO_PO_Y = 400; //magic??
double Left = 0.0,
 Right = 0.0,
 Move = 0.0;

int North = 1,
 East = 1,
 South = 1,
 West = 1;

int Pix[9][4] = {{0,0,0,0}, //ACHTUNG: 0:firing else:inactive
 {0,1,1,1},
 {0,1,1,1},
 {0,1,1,1},
 {0,1,1,1},
 {0,1,1,1},
 {0,1,1,1},
 {0,1,1,1},
 {0,1,1,1}};

long Gen = 0;
int Frog_po_x = 9,
 Frog_po_y = 9,
 TimePos = -1,
 Interactive_mode = 1,
 SEE = 1;
char Direc = 'n',
 DispUp = 'H';

//=========================== functions ==============================

void alarm(char *msg,char *str_fil, unsigned uLine) {
 fflush(NULL);
 if(str_fil!=NULL)
 fprintf(stderr,"\n %s %s, line %u \n",msg,str_fil, uLine);
 else fprintf(stderr,"\n %s\n",msg);
 fflush(stderr);
 while(getch()!='q') ;
}//alarm

//**
int rnd(int range) { //returns integer random numbers between 0 and range-1
 const int pRIME = 4001; //pRIME and RNDVEC *must* be prime numbers
 long templ = 0;
 int c;
 if(range <= 0)
 return(-1); //division by 0??
 if (++RndIdx >= RNDSZ) RndIdx = 0;
 for(c=0; c<RNDSZ; c++)
 templ += RndVec[c];
 templ %= pRIME;
 RndVec[RndIdx] = (int)templ;
 for(c=0; c<RNDSZ; c++)
 assert(RndVec[c] >= 0 && RndVec[c] < pRIME);
 assert(RndIdx >= 0 && RndIdx < RNDSZ);
// return((int) (templ * range / pRIME));

 128

 return((int) (templ % range));
}//rnd
//**
void reset_generator(void) {
long key[RNDSZ];
int c,c2;
 #ifdef TEST
 c = 0;
 while(SEED[c] != '\0') {
 if(SEED[c] < 0) alarm("not ASCII in SEED",NULL,NULL);
 c++;
 }
 if(c<RNDSZ) alarm("SEED to short",NULL,NULL);
 #endif
 for(c=0; c<RNDSZ; c++) key[c] = 0;
 c = c2 = 0;
 while(1) {
 if(SEED[c] == '\0') break;
 key[c2] = (key[c2] * 256 + SEED[c]) % 4001; //?? magic == pRIME
 c++;
 if(++c2>=RNDSZ) c2 = 0;
 }
 for(RndIdx = 0, c=0; c<RNDSZ; RndVec[c] = (int)key[c], c++) ;
}//reset_generator

//**
double half_life(int generations) {
// for(c=0; c<100; c++) {
// if(c%5==0) printf("\n");
// printf(" %12.9f,",half_life(c));
// }

const double HL_GEN[150] = {
 0.000000000, 0.500000000, 0.707106590, 0.793700218, 0.840895653,
 0.870551109, 0.890898705, 0.905724525, 0.917004585, 0.925875664,
 0.933033943, 0.938931465, 0.943873405, 0.948077202, 0.951695442,
 0.954840660, 0.957602501, 0.960045815, 0.962224007, 0.964175224,
 0.965935707, 0.967532158, 0.968983650, 0.970313072, 0.971531868,
 0.972655296, 0.973692894, 0.974654198, 0.975548744, 0.976382256,
 0.977160454, 0.977889061, 0.978571892, 0.979214668, 0.979819298,
 0.980391502, 0.980929375, 0.981440544, 0.981925011, 0.982384682,
 0.982821465, 0.983235359, 0.983632088, 0.984009743, 0.984370232,
 0.984715462, 0.985045433, 0.985360146, 0.985663414, 0.985953331,
 0.986231804, 0.986500740, 0.986758232, 0.987006187, 0.987246513,
 0.987477303, 0.987698555, 0.987914085, 0.988120079, 0.988320351,
 0.988514900, 0.988701820, 0.988883018, 0.989058495, 0.989228249,
 0.989392281, 0.989552498, 0.989706993, 0.989857674, 0.990004539,
 0.990147591, 0.990284920, 0.990418434, 0.990550041, 0.990675926,
 0.990799904, 0.990921974, 0.991038322, 0.991152763, 0.991265297,
 0.991374016, 0.991478920, 0.991581917, 0.991683006, 0.991782188,
 0.991877556, 0.991972923, 0.992064476, 0.992154121, 0.992241859,
 0.992327690, 0.992411613, 0.992493629, 0.992573738, 0.992653847,
 0.992730141, 0.992806435, 0.992878914, 0.992951393, 0.993023872,
 0.993092537, 0.993161201, 0.993227959, 0.993292809, 0.993357658,
 0.993420601, 0.993481636, 0.993542671, 0.993601799, 0.993660927,
 0.993718147, 0.993775368, 0.993830681, 0.993884087, 0.993937492,
 0.993990898, 0.994042397, 0.994093895, 0.994143486, 0.994193077,
 0.994240761, 0.994288445, 0.994334221, 0.994379997, 0.994425774,
 0.994469643, 0.994513512, 0.994557381, 0.994599342, 0.994641304,
 0.994681358, 0.994723320, 0.994763374, 0.994801521, 0.994839668,
 0.994877815, 0.994915962, 0.994954109, 0.994990349, 0.995026588,
 0.995060921, 0.995095253, 0.995131493, 0.995163918, 0.995198250,
 0.995230675, 0.995263100, 0.995295525, 0.995327950, 0.995358467};

 129

 double hi = 1.0,
 lo = 0.0,
 tempd = 0.0;
 int c;
 if(generations < 0) return(0.0);
 if(generations >= 999) return (1.0);
 if(generations < 150) return HL_GEN[generations];
 for(c=0; c<20; c++) {
 tempd = (hi + lo) / 2.0;
 if (pow(tempd,generations) < 0.5) lo = tempd;
 if (pow(tempd,generations) > 0.5) hi = tempd;
 }
 return(tempd);
}//half_life

//**
void hl_factors(void) {
 int c;
 for(c=0; c<MIO; c++)
 HL_IO [c] = half_life(HL_IOG[c]);
}//hl_factors

//**
void setEqu(void) {
 int nt[MIO];
 int c,c2;
 for(c=0; c<N_C; c++) {
 for(c2=0; c2<MIO; c2++)
 nt[c2] = 0;
 for(c2=0; c2<SynNum[c]; c2++)
 nt[SynType[c][c2]]++;
 for(c2=0; c2<MIO; c2++)
 if(nt[c2] > 0) SynEq[c][c2] = 1.0 / nt[c2];
 }
}//setEqu

//***
void retina(void) { //looks ahead
int c;
 //using normal logic
 for(c=0; c<9; c++) {Pix[c][0]=0; Pix[c][1]=0; Pix[c][2]=0; Pix[c][3]=0; }
 switch (Direc) { //store world's colors in pixel[][0]
 case 'n':Pix[1][0] = World[Frog_po_y-2][Frog_po_x-1]; //up left
 Pix[2][0] = World[Frog_po_y-2][Frog_po_x]; //up
 Pix[3][0] = World[Frog_po_y-2][Frog_po_x+1]; //up right
 Pix[4][0] = World[Frog_po_y-1][Frog_po_x-1]; //middle left
 Pix[5][0] = World[Frog_po_y-1][Frog_po_x]; //middle
 Pix[6][0] = World[Frog_po_y-1][Frog_po_x+1]; //middle right
 Pix[7][0] = World[Frog_po_y][Frog_po_x-1]; //left
 Pix[8][0] = World[Frog_po_y][Frog_po_x+1]; //right
 break;
 case 'e':Pix[1][0] = World[Frog_po_y-1][Frog_po_x+2];
 Pix[2][0] = World[Frog_po_y][Frog_po_x+2];
 Pix[3][0] = World[Frog_po_y+1][Frog_po_x+2];
 Pix[4][0] = World[Frog_po_y-1][Frog_po_x+1];
 Pix[5][0] = World[Frog_po_y][Frog_po_x+1];
 Pix[6][0] = World[Frog_po_y+1][Frog_po_x+1];
 Pix[7][0] = World[Frog_po_y-1][Frog_po_x];
 Pix[8][0] = World[Frog_po_y+1][Frog_po_x];
 break;
 case 's':Pix[1][0] = World[Frog_po_y+2][Frog_po_x+1];
 Pix[2][0] = World[Frog_po_y+2][Frog_po_x];
 Pix[3][0] = World[Frog_po_y+2][Frog_po_x-1];
 Pix[4][0] = World[Frog_po_y+1][Frog_po_x+1];
 Pix[5][0] = World[Frog_po_y+1][Frog_po_x];

 130

 Pix[6][0] = World[Frog_po_y+1][Frog_po_x-1];
 Pix[7][0] = World[Frog_po_y][Frog_po_x+1];
 Pix[8][0] = World[Frog_po_y][Frog_po_x-1];
 break;
 case 'w':Pix[1][0] = World[Frog_po_y+1][Frog_po_x-2];
 Pix[2][0] = World[Frog_po_y][Frog_po_x-2];
 Pix[3][0] = World[Frog_po_y-1][Frog_po_x-2];
 Pix[4][0] = World[Frog_po_y+1][Frog_po_x-1];
 Pix[5][0] = World[Frog_po_y][Frog_po_x-1];
 Pix[6][0] = World[Frog_po_y-1][Frog_po_x-1];
 Pix[7][0] = World[Frog_po_y+1][Frog_po_x];
 Pix[8][0] = World[Frog_po_y-1][Frog_po_x];
 break;
 }
 for(c=1; c<=8; c++) //inverted logic: 0:firing else:inactive
 switch(Pix[c][0]) { //transform colors in red, green & blue pixels
 case 0:Pix[c][1] = 1; Pix[c][2] = 1; Pix[c][3] = 1; break; //black

 case 1:Pix[c][1] = 0; Pix[c][2] = 1; Pix[c][3] = 1; break; //red

 case 2:Pix[c][1] = 1; Pix[c][2] = 0; Pix[c][3] = 1; break; //green

 case 3:Pix[c][1] = 1; Pix[c][2] = 1; Pix[c][3] = 0; break; //blue

 case 4:Pix[c][1] = 0; Pix[c][2] = 0; Pix[c][3] = 1; break; //yellow

 case 5:Pix[c][1] = 1; Pix[c][2] = 0; Pix[c][3] = 0; break; //cyan

 case 6:Pix[c][1] = 0; Pix[c][2] = 1; Pix[c][3] = 0; break; //magenta

 case 7:Pix[c][1] = 0; Pix[c][2] = 0; Pix[c][3] = 0; break; //white
 default: assert(0);//(0,"funny RGB component in pixel");
 }
}//retina

void compass(void) {
 if(AREA_B[3]+AREA_E[3] > 0) //test for north
 switch (Direc) { //inverted logic
 case 'n':North = 0; East = 1; South = 1; West = 1;
 break;
 case 'e':North = 1; East = 0; South = 1; West = 1;
 break;
 case 's':North = 1; East = 1; South = 0; West = 1;
 break;
 case 'w':North = 1; East = 1; South = 1; West = 0;
 break;
 }
}//compass

//**
char motor_navigation(char reset) {
#define wAIT 250
#define pAST 0.95
#define nOW 0.05
static int pause = wAIT; //wait for cold-start/reset frog to warm-up
static char status = '\0'; // \0 no behavior
 // l left
 // r right
 // m move(free)
 // e no move(empty)
 // + move(food), reinforced
 // c crash, punished

 131

double left = 0.0, move = 0.0, right = 0.0;
int c,opox,opoy; //old position in X and Y axis

 switch(reset) {
 case ' ':break;
 case 'f':pause = wAIT; break; //frozen
 case '+':status = '+';
 pause = wAIT;
 break;
 case '-':status = 'c';
 pause = wAIT;
 break;
 default:printf("\n\007bad motor_navigation parameter"); getch();
 }
 if(pause > 0) {
 --pause;
 switch(status) {
 case'\0':
 case'e':
 case'l':
 case'r':
 case'm':break;
 case'+'://for(c=AREA_B[10]; c<=AREA_E[10]; AuxInp[c]+=STI, c++);
 break; ///???
 case'c'://for(c=AREA_B[11]; c<=AREA_E[12]; AuxInp[c]+=STI, c++);
 break; ///???
 default:printf("\n\007funny motor_navigation status"); getch();
 }
 return(status);
 }
 status = '\0';
 opox = Frog_po_x; //store actual position in case it tries to move and crashes
 opoy = Frog_po_y;

 for(c=AREA_B[7]; c<=AREA_E[7]; c++)
 if(!State[c]) left = left + 1.0;
 left /= AREA_E[7] - AREA_B[7] + 1;
 Left = (Left * pAST) + (left * nOW);

 for(c=AREA_B[8]; c<=AREA_E[8]; c++)
 if(!State[c]) move = move + 1.0;
 move /= AREA_E[8] - AREA_B[8] + 1;
 Move = (Move * pAST) +(move * nOW);

 for(c=AREA_B[9]; c<=AREA_E[9]; c++)
 if(!State[c]) right = right + 1.0;
 right /= AREA_E[9] - AREA_B[9] + 1;
 Right = (Right * pAST) +(right * nOW);

 //order changed: move has priority
 if (Move > MOTOR_TH) {
 switch (Direc) {
 case 'n': --Frog_po_y; break;
 case 'e': ++Frog_po_x; break;
 case 's': ++Frog_po_y; break;
 case 'w': --Frog_po_x; break;
 }
 switch(World[Frog_po_y][Frog_po_x]) {
 case 0:status = 'e'; //empty space, no movement, no reinf.
 Frog_po_y = opoy;
 Frog_po_x = opox;
// printf("\007");
 break;
 case 1://status = 'c'; //rock (red), no movement, punishment
 //Frog_po_y = opoy;

 132

 //Frog_po_x = opox;
// printf("\007");
 //break;
 case 2://status = 'm';
 //plot_n(WO_PO_X+((opox-2)*WS),WO_PO_Y+((opoy-2)*WS),
 // WS,WO_COL[World[opoy][opox]]);
 //plot_frog();
 //break; //free (green), moves, no reinf.
 case 3:
 case 4:
 case 5:
 case 6://break;//??
 case 7://status = '+';
 //--World[Frog_po_y][Frog_po_x];
 plot_n(WO_PO_X+((opox-2)*WS),WO_PO_Y+((opoy-2)*WS),
 WS,WO_COL[World[opoy][opox]]);
 plot_frog();
 break;
 default:printf("\n\007motor/navigation error"); getch();
 }
 pause = wAIT;
 Left = Move = Right = 0.0;
 plot_frog();
 }
 if ((status =='\0') && (Left > MOTOR_TH)) {
 status = 'l';
 switch (Direc) {
 case 'n': Direc = 'w'; break;
 case 'e': Direc = 'n'; break;
 case 's': Direc = 'e'; break;
 case 'w': Direc = 's'; break;
 }
 pause = wAIT;
 Left = Move = Right = 0.0;
 plot_frog();
 }
 if ((status =='\0') && (Right > MOTOR_TH)) {
 status = 'r';
 switch (Direc) {
 case 'n': Direc = 'e'; break;
 case 'e': Direc = 's'; break;
 case 's': Direc = 'w'; break;
 case 'w': Direc = 'n'; break;
 }
 pause = wAIT;
 Left = Move = Right = 0.0;
 plot_frog();
 }
 return(status);
}//motor_navigation

//cleans up all global vars. not defined on declaration (except RBOW)
//**
int cold_start(void) {
 int c,c2;

 Type = (int *) malloc (N_C * sizeof(int));
 if(Type==NULL) return 1;

 State = (int *) malloc (N_C * sizeof(int));
 if(State==NULL) return 1;

 Axon = (int *) malloc (N_C * sizeof(int));
 if(Axon==NULL) return 1;

 133

 WaveL = (int *) malloc (N_C * sizeof(int));
 if(WaveL==NULL) return 1;

 SynNum = (int *) malloc (N_C * sizeof(int));
 if(SynNum==NULL) return 1;

 Posflag = (int *) malloc (N_C * sizeof(int));
 if(Posflag==NULL) return 1;

 TotalIo = (float *) malloc (N_C * sizeof(float));
 if(TotalIo==NULL) return 1;

 Cell_Io = (float (*)[MIO]) malloc (N_C * MIO * sizeof(float));
 if(Cell_Io==NULL) return 1;

 SynEq = (float (*)[MIO]) malloc (N_C * MIO * sizeof(float));
 if(SynEq==NULL) return 1;

 SynType = (int (*)[MAX_SYN]) malloc (N_C * MAX_SYN * sizeof(int));
 if(SynType==NULL) return 1;

 SynPos = (int (*)[MAX_SYN]) malloc (N_C * MAX_SYN * sizeof(int));
 if(SynPos==NULL) return 1;

 Syn = (int*(*)[MAX_SYN]) malloc (N_C * MAX_SYN * sizeof(int*));
 if(Syn==NULL) return 1;

 SynWei = (float (*)[MAX_SYN]) malloc (N_C * MAX_SYN * sizeof(float));
 if(SynWei==NULL) return 1;

 SyIo = (float (*)[MAX_SYN]) malloc (N_C * MAX_SYN * sizeof(float));
 if(SyIo==NULL) return 1;

 for(c=0; c<N_C; c++) {
 Type[c] = 0; //types 0 and 1 are undefined; allowed: 2->MIO
 State[c] = 0;
 Axon[c] = R_P_SPAN;
 SynNum[c] = 0;
 Posflag[c] = 1;
 TotalIo[c] = 0.0;
 for(c2 = 0; c2<MIO; c2++) {
 Cell_Io[c][c2] = 0.0;
 SynEq [c][c2] = 1.0; //no equalization
 }
 for(c2=0; c2<MAX_SYN; c2++) {
 SynType[c][c2] = 0; //type 0 undefined
 SynPos [c][c2] = -1; //range of actual nei 0..N_C, -1 undefined
 Syn [c][c2] = NULL; //doesn't points to anything yet
 SynWei [c][c2] = 0.0;
 SyIo [c][c2] = 0.0;
 }
 }

 for(c=0; c<4; c+=2)
 for(c2=0; c2<MIO; c2++) { //??check
 RANGE[c][c2] = 1;
 RANGE[c+1][c2] = 0;
 }

 for(c=0; c<MIO; c++) {
 HL_IOG[c] = 0;
 HL_IO[c] = 0.0;
 NT_TH[c] = 0.0;
 NT_PO[c] = 0.0;
 for(c2=0; c2<R_P_SPAN; c2++) {

 134

 FIXDECAY[c][c2] = 0.0;
 REF_PER[c][c2] = 0.0;
 }
 }

 for(c=0; c<R_P_SPAN; c++)
 REF_PER_CELL[c] = 0.0;//??

 for(c=0; c<N_C; c++) //status of neighbor, 0 no conection, 127 itself
 for(c2=0; c2<N_C; c2++)
 NeiSta[c][c2] = (c != c2) ? 0 : 127;
 for(c=0; c<WO_SZ_Y; c++)
 for(c2=0; c2<WO_SZ_X; c2++)
 World[c][c2] = 0;
 return 0;
}//cold_start

void main_command_line_params(int argc,char *argv[]) {
 if(argc == 1) {
 if(load_struc_file("struc.txt")) exit(1);
 if(load_param_file("param.txt")) exit(2);
 }
 if(argc == 2) {
 if(load_struc_file("struc.txt")) exit(1);
 if(load_param_file(argv[1])) exit(2);
 }
 if(argc == 3) {
 if(load_struc_file(argv[1])) exit(1);
 if(load_param_file(argv[2])) exit(2);
 }
 if(argc == 4) {
 Interactive_mode = 0;
 if(load_struc_file(argv[1])) exit(1);
 if(load_param_file(argv[2])) exit(2);
 if(strcmp(argv[3],"batch") == 0) {SEE=0; batch();}
 else if(strcmp(argv[3],"batchsee") == 0) {SEE = 1; batch();}
 else exit(3);
 }
}//main_command_line_params

//============================ MAIN =================================
int main(int argc,char *argv[]) {
long loops,c; //main's variables
 clrscr();
 if(cold_start()) return 1;
 main_command_line_params(argc,argv);
 reset(0);
 if(start_graphics()) return 1;
 hl_factors(); //transform half-lifes to factors
 if(EQUA) setEqu();
 plot_World(); //show frog's world
 show_LMRG();
// seed_orga(0,9,1,8,8,9,2,2,6,1.4189);
 while (1) {
 loops = menu_gr(); //main menu, wait for command
 if(!loops) break; //exit ion on Quit || escape
 accu_synch(0);
 for(c=0; c<loops; c++) { //if loops > 0 (main loop)
 retina();
 compass();
 compute();
 accu_synch(1);
 if(check_cells() != -1) { //compute metabolism

 135

 show_cell(check_cells());
 break;
 }
 Gen++;
 motor_navigation(' '); //unused return
 //histogram(0); //cleans lower-right corner too ??
 show_LMRG();
 if (++TimePos >= SHOW_GEN) {
 TimePos = 0;
 if (DispUp == 'B') display_up();
 if (DispUp == 'H') display_up();
 }
 //plot_waves(); //show EEG
 plot_depo(); //show "firing" cells (wavelength->color)
 if(kbhit()) {
 getch();
 break;
 } //if a key was pressed, stop->menu
 }
 }
 printf("\nend\n");
 return 0;
}//main
// This is the end, my only friend, the end.

 136

// files.c first line

#include <string.h>
#include <stdlib.h>
#include <conio.h>
#include <dos.h>
#include "ion.h"

void set_World_up(FILE *dta_fil, int load_fil) {
static byte world_model[WO_SZ_Y][WO_SZ_X];
 char line[80];
 int c,c2;
 if(load_fil) {
 for(c=0; c<WO_SZ_Y; c++) {
 fscanf(dta_fil,"%s",&line);
 if(strlen(line)!=WO_SZ_X)
 alarm("wrong line size in World",NULL,NULL);
 for(c2=0; c2<WO_SZ_X; c2++)
 world_model[c][c2] = line[c2];
 }
 assert(c==WO_SZ_Y);
 }
 reset_generator();
 for(c=0; c<WO_SZ_Y; c++)
 for(c2=0; c2<WO_SZ_X; c2++)
 switch (world_model[c][c2]) {
 case '0':
 case '.':World[c][c2] = 0; break; //darkgray (empty)
 case '1':
 case '-':World[c][c2] = 1; break; //red (stone)
 case '2':
 case '+':World[c][c2] = 2; break; //green (free)
 case '3':
 case '*':World[c][c2] = 3; break; //blue (food)
 case '4':World[c][c2] = 4; break; //yellow
 case '5':World[c][c2] = 5; break; //cyan
 case '6':World[c][c2] = 6; break; //magenta
 case '7':World[c][c2] = 7; break; //white
 case 'r':World[c][c2] = rnd(3)+1; break;
 case 's':World[c][c2] = rnd(4)+1; break;
 case 't':World[c][c2] = rnd(5)+1; break;
 case 'u':World[c][c2] = rnd(6)+1; break;
 case 'v':World[c][c2] = rnd(7)+1; break;
 case 'F':World[c][c2] = 2; //frog's position
 Frog_po_y = c;
 Frog_po_x = c2;
 break;
 case 0:if(!load_fil) {World[c][c2] = 0; break;}
 default :alarm("unrecogniced char in World",NULL,NULL);
 }
}//set_World_up

//**
void reset(int noise) {
 int c,c2;
 for(c=0; c<MIO; c++)
 if((RANGE[0][c]-RANGE[1][c] < 1) ||
 (RANGE[2][c]-RANGE[3][c] < 1)) {
 alarm("\007 range top - range bottom <= 0",NULL,NULL);
 exit(1);
 }
 Left = 0.0;
 Right = 0.0;
 Move = 0.0;

 137

 Gen = 0;
 Frog_po_x = 9;
 Frog_po_y = 9;
 TimePos = -1;
 Direc = 'n';
 set_World_up(0,0); //resets generator anyway
 for(c=0; c<N_C; c++) {
 //Type determined by struc.txt
 State[c] = rnd(R_P_SPAN - 2) + 1;//initial states are random (!0)
 Axon[c] = R_P_SPAN; //??
 WaveL[c] = State[c];//rnd(R_P_SPAN - 2) + 1;
 //SynNum is determined by struc.txt
 Posflag[c] = 1;
 TotalIo[c] = 0.0;
 for(c2 = 0; c2<MIO; c2++)
 Cell_Io[c][c2] = 0.0;
 for(c2=0; c2<MAX_SYN; c2++) {
 if(SynPos[c][c2] >= 0)
 SynWei [c][c2] = (rnd(RANGE[2][SynType[c][c2]]-
 RANGE[3][SynType[c][c2]])*0.01)+
 (RANGE[3][SynType[c][c2]]*0.01);
 SyIo[c][c2] = 0.0;
 }
 }
 if(noise)
 for(c=0; c<N_C; c++)
 for(c2=0; c2<SynNum[c]; c2++) {
 SyIo[c][c2] = (rnd(RANGE[0][SynType[c][c2]] -
 RANGE[1][SynType[c][c2]])*0.01) +
 (RANGE[1][SynType[c][c2]]*0.01);
 Cell_Io[c][SynType[c][c2]] += SyIo[c][c2];
 }
 accu_synch(0);
 accu_synch(1);
}//reset

//**
void read_nei(int reads,int readed,int syntype) { //>read---
 Syn [reads][SynNum[reads]] = &Axon[readed]; //no check??
 SynType[reads][SynNum[reads]] = (syntype < 0) ? Type[readed] : syntype;
 SynPos [reads][SynNum[reads]] = readed;
 NeiSta [reads][readed] = (byte)SynType[reads][SynNum[reads]];
 ++SynNum[reads];
}//read_nei

//**
int wrap(int first, int last, int pos) {
 if (pos < first) pos += (last - first + 1);
 else if (pos > last) pos -= (last - first + 1);
 return(pos);
}//wrap

//**
void loc_nei(int first, int last, int syn_typ, //local neighborhood
 int n0, int n1, int n2, int n3) {
 const int lOC_NEIS = 4;
 int c,c2,
 nei_pos,
 nei[lOC_NEIS];
 nei[0] = n0; nei[1] = n1; nei[2] = n2; nei[3] = n3;
 if((first < 0) || (last >= N_C) || (first >= last)) {
 printf("\n\007 out of range in loc_nei ");
 printf("\nfirst %sd last %2d type %2d %3d %3d %3d %3d",
 first,last,syn_typ,n0,n1,n2,n3);
 getch();

 138

 return;
 }
 for(c=0; c<lOC_NEIS; c++)
 if(abs(nei[c]) > (last-first)) {
 printf("\n\007 neighbor distance bigger than target size ");
 getch();
 return;
 }
 for(c=first; c<=last; c++)
 for(c2=0; c2<lOC_NEIS; c2++) {
 if(!nei[c2]) continue; //neighbor position == 0 -> no synapse
 if(SynNum[c] + 1 >= MAX_SYN) {
 printf("\n\007 too many neighbors on cell %2d",c);
 getch();
 continue;}
 nei_pos = wrap(first, last, c+nei[c2]);
 if(NeiSta[c][nei_pos] != 0) {
 printf("\n taken: cell %d neighbor %d (press a key)"
 ,c,nei_pos);
 getch();
 continue;}
 Syn [c][SynNum[c]] = &Axon[nei_pos]; //??
 SynType[c][SynNum[c]] = (syn_typ < 0) ? Type[nei_pos] : syn_typ;
 SynPos [c][SynNum[c]] = nei_pos;
 NeiSta[c][nei_pos] = (byte) SynType[c][SynNum[c]];
 ++SynNum[c];
 }
}//loc_nei

 //zone begin,id end ,quantity of syn,id type,neighbor's address
//**
void rnd_nei(int z_b, int z_e, int s_q, int s_t, int n_b, int n_e) {
 int c,c2,
 target_size,
 tempi;
 target_size = n_e - n_b + 1;
 for(c=z_b; c <= z_e; c++) {
 if(SynNum[c]+s_q >= MAX_SYN) {
 printf("\n\007too many synapses in cell:%d (%d)",c,SynNum[c]);
 printf(" %d %d %d %d %d %d",z_b,z_e,s_q,s_t,n_b,n_e);
 getch();
 continue;
 }
 else
 for(c2=SynNum[c]; c2<SynNum[c]+s_q; c2++) {
 do tempi = rnd(target_size);
 while (NeiSta[c][n_b + tempi]);
 Syn[c][c2] = &Axon [n_b + tempi]; //??
 //if s_t < 0 take the Type of neighbor
 SynType[c][c2] = (s_t < 0) ? Type[n_b + tempi] : s_t;
 SynPos [c][c2] = n_b + tempi;
 NeiSta[c][n_b + tempi] = (byte) SynType[c][c2];
 }
 SynNum[c] += s_q;
 }
}//rnd_nei

//**
//produce input from own state, sensors, constant, etc.
void virtual_syn(int first,int last,int syn_typ,float weight,char *target) {
char target_name[31][20] = {"on\0", // 0
 "state\0", // 1
 "wave_length\0", // 2
 "far_left_red\0", // 3
 "far_left_green\0", // 4

 139

 "far_left_blue\0", // 5
 "far_middle_red\0", // 6
 "far_middle_green\0", // 7
 "far_middle_blue\0", // 8
 "far_right_red\0", // 9
 "far_right_green\0", //10
 "far_right_blue\0", //11
 "near_left_red\0", //12
 "near_left_green\0", //13
 "near_left_blue\0", //14
 "near_middle_red\0", //15
 "near_middle_green\0", //16
 "near_middle_blue\0", //17
 "near_right_red\0", //18
 "near_right_green\0", //19
 "near_right_blue\0", //20
 "side_left_red\0", //21
 "side_left_green\0", //22
 "side_left_blue\0", //23
 "side_right_red\0", //24
 "side_right_green\0", //25
 "side_right_blue\0", //26
 "north\0", //27
 "east\0", //28
 "south\0", //29
 "west\0"}; //30
int recogniced = 0,
 c,c2;

 if((first < 0) || (last >= N_C) || (first > last)) {
 printf("\n\007 out of range in virtual syn ");
 printf("\nfirst %2d last %2d type %2d weight %f target %s",
 first,last,syn_typ,weight,target);
 getch();
 return;
 }
 if((syn_typ < 0) || (syn_typ >= MIO)) {
 printf("\n\007 wrong NT type in virtual syn ");
 printf("\nfirst %2d last %2d type %2d weight %f target %s",
 first,last,syn_typ,weight,target);
 getch();
 return;
 }

 for(c=0; c<31; c++)
 if(strcmp(target,target_name[c]) == 0) {
 recogniced = 1;
 if(Interactive_mode) printf("\n%s",target);
 for(c2=first; c2<=last; c2++) {
 if(SynNum[c2] + 1 >= MAX_SYN) {
 printf("\n\007 too many neighbors on cell %2d",c);
 getch();
 continue;
 }
 else switch(c) {
 case 0:SynPos [c2][SynNum[c2]] = -2;
 //compiler bitches for lost of "const"
 Syn [c2][SynNum[c2]] = &ON;
 break;
 case 1:SynPos [c2][SynNum[c2]] = -3;
 Syn [c2][SynNum[c2]] = &State[c2];
 break;
 case 2:SynPos [c2][SynNum[c2]] = -4;
 Syn [c2][SynNum[c2]] = &WaveL[c2];//??bug: never 0
 break;

 140

 case 3:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[1][1];
 break;
 case 4:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[1][2];
 break;
 case 5:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[1][3];
 break;
 case 6:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[2][1];
 break;
 case 7:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[2][2];
 break;
 case 8:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[2][3];
 break;
 case 9:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[3][1];
 break;
 case 10:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[3][2];
 break;
 case 11:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[3][3];
 break;
 case 12:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[4][1];
 break;
 case 13:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[4][2];
 break;
 case 14:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[4][3];
 break;
 case 15:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[5][1];
 break;
 case 16:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[5][2];
 break;
 case 17:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[5][3];
 break;
 case 18:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[6][1];
 break;
 case 19:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[6][2];
 break;
 case 20:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[6][3];
 break;
 case 21:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[7][1];
 break;
 case 22:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[7][2];
 break;
 case 23:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[7][3];
 break;
 case 24:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[8][1];

 141

 break;
 case 25:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[8][2];
 break;
 case 26:SynPos [c2][SynNum[c2]] = -5;
 Syn [c2][SynNum[c2]] = &Pix[8][3];
 break;
 case 27:SynPos [c2][SynNum[c2]] = -6;
 Syn [c2][SynNum[c2]] = &North;
 break;
 case 28:SynPos [c2][SynNum[c2]] = -6;
 Syn [c2][SynNum[c2]] = &East;
 break;
 case 29:SynPos [c2][SynNum[c2]] = -6;
 Syn [c2][SynNum[c2]] = &South;
 break;
 case 30:SynPos [c2][SynNum[c2]] = -6;
 Syn [c2][SynNum[c2]] = &West;
 break;
 default:alarm("\nunrecogniced virtual synapse target",NULL,NULL);
 }
 SynType[c2][SynNum[c2]] = syn_typ;
 SynWei [c2][SynNum[c2]] = weight;
 ++SynNum[c2];
 }
 }
 if(!recogniced) {
 printf("\n\007 unrecogniced target in virtual syn. ");
 printf("\nfirst %2d last %2d type %2d weight %f target %s",
 first,last,syn_typ,weight,target);
 getch();
 return;
 }
}//virtual_syn

//**
int load_struc_file(char *struc_file_name) {
#define cODE_SIZE 15 //0..13, 14 == '\0'
#define pAS_SZ 256 //pascal size of strings
#define mAX_CODE 22 //total of recogniced codes
 FILE *struc_fil;
 char big_line[pAS_SZ] = "\0";
 char code [cODE_SIZE] = "\0";
 char code_list[mAX_CODE][cODE_SIZE] = { ">Eeg0---------\0", // 0
 ">Eeg1---------\0", // 1
 ">Eeg2---------\0", // 2
 ">Eeg3---------\0", // 3
 ">PLEAdummy----\0", // 4
 ">PAINdummy----\0", // 5
 ">area---------\0", // 6
 ">NtCol--------\0", // 7
 ">World--------\0", // 8
 ">Type---------\0", // 9
 ">readdummy----\0", //10
 ">loc_nei------\0", //11
 ">rnd_nei------\0", //12
 ">stop---------\0", //13
 ">virtual_syn--\0", //14
 ">eastdummy----\0", //15
 ">southdummy---\0", //16
 ">westdummy----\0", //17
 ">leftdummy----\0", //18
 ">movedummy----\0", //19
 ">rightdummy---\0", //20

 142

 ">end.---------\0" };
 int dumch,
 c,c2,
 dum1,dum2,dum3,dum4,dum5,dum6,dum7; //dummy integer 1, 2, ...??
 float dumfl;
 strcpy(big_line,struc_file_name);
 if((struc_fil = fopen(big_line,"r+")) == NULL)
 while(1) {
 printf("\n\n[q]->quit [space bar]->type structure-file's name ");
 dumch = getch();
 if((dumch == 'q')||(dumch =='Q')) return(1);
 else {
 printf("\n\nplease type [file_name.txt] [RETURN]: ");
 scanf("%s",&big_line);
 }
 if((struc_fil = fopen(big_line,"r+")) == NULL)
 printf("\n\ncan't find file \"%s\"",big_line);
 else break;
 }
 strcpy(STRUCFIL,big_line);
 if(Interactive_mode) printf("\nloading structure file: %s",STRUCFIL);
 do {
 fgets(code,cODE_SIZE,struc_fil);
 if(code[0] != '>') continue;
 for(c=0; c<mAX_CODE; c++)
 if(strcmp(code,code_list[c]) == 0) {
 if(Interactive_mode) printf("\n%s",code);
 switch(c) {
 case 0:fscanf(struc_fil,"%d%d",&EegB[0],&EegE[0]);
 if(Interactive_mode) printf(" %3d %3d",EegB[0],EegE[0]); break;
 case 1:fscanf(struc_fil,"%d%d",&EegB[1],&EegE[1]);
 if(Interactive_mode) printf(" %3d %3d",EegB[1],EegE[1]); break;
 case 2:fscanf(struc_fil,"%d%d",&EegB[2],&EegE[2]);
 if(Interactive_mode) printf(" %3d %3d",EegB[2],EegE[2]); break;
 case 3:fscanf(struc_fil,"%d%d",&EegB[3],&EegE[3]);
 if(Interactive_mode) printf(" %3d %3d",EegB[3],EegE[3]); break;
 case 4:break;
 case 5:break;
 case 6:for(c2=0; c2<AREAS; c2++) {
 fscanf(struc_fil,"%d%d %s",
 &AREA_B[c2],
 &AREA_E[c2],
 &AREA_NAME[c2]);
 }
 break; //ex-GREY
 case 7:fgets(big_line,pAS_SZ,struc_fil);
 if(Interactive_mode) printf("\n");
 for(c2=0; c2<MIO; c2++) {
 fscanf(struc_fil,"%d",&NtCol[c2]);
 if(Interactive_mode) printf("%4d",NtCol[c2]);
 }
 break;
 case 8:set_World_up(struc_fil,1); break;
 case 9:fscanf(struc_fil,"%d%d%d",&dum1,&dum2,&dum3);
 if(Interactive_mode) printf(" %3d %3d %3d ",dum1,dum2,dum3);
 if((dum3 < 0) || (dum3 >= MIO)) {
 if(Interactive_mode) printf("\n\007wrong cell type:
%d\n",dum3);
 getch();
 break;
 }
 for(c2=dum1; c2 <= dum2; c2++)
 Type[c2] = dum3;
 break;
 case 10:fscanf(struc_fil,"%d%d%d",&dum1,&dum2,&dum3);

 143

 if(Interactive_mode) printf(" %3d %3d %3d",dum1,dum2,dum3);
 read_nei(dum1,dum2,dum3);
 break;
 case 11:fscanf(struc_fil,"%d%d%d%d%d%d%d",
 &dum1,&dum2,&dum3,&dum4,&dum5,&dum6,&dum7);
 if(Interactive_mode) printf(" %3d %3d %3d %3d %3d %3d %3d",
 dum1,dum2,dum3,dum4,dum5,dum6,dum7);
 loc_nei(dum1,dum2,dum3,dum4,dum5,dum6,dum7);
 break;
 case 12:fscanf(struc_fil,"%d%d%d%d%d%d",
 &dum1,&dum2,&dum3,&dum4,&dum5,&dum6);
 if(Interactive_mode) printf(" %3d %3d %3d %3d %3d %3d",
 dum1,dum2,dum3,dum4,dum5,dum6);
 rnd_nei(dum1,dum2,dum3,dum4,dum5,dum6) ;
 break;
 case 13:if(Interactive_mode) printf(" press any key");
 getch();
 break;
 case 14:fscanf(struc_fil,"%d%d%d%f %s",
 &dum1,&dum2,&dum3,&dumfl,&big_line);
 if(Interactive_mode) printf(" %3d %3d %3d %f %s",
 dum1,dum2,dum3,dumfl,big_line);
 virtual_syn(dum1,dum2,dum3,dumfl,big_line);
 break;
 case 15:break;
 case 16:break;
 case 17:break;
 case 18:break;
 case 19:break;
 case 20:break;
 case 21:if(Interactive_mode) {
 printf("\n END OF DATA press any key");
 getch();
 clrscr();
 }
 goto terminate;
 }
 }
 }while(1);
 terminate:
 fclose(struc_fil);
 return(0);
}//struc_file

//**
int load_param_file(char *param_file_name) {
#define cODE_SIZE 15
#define mAXCODES 22
#define bIG 256
const float fT = 100.01;
FILE *in_fil;
char cODE_LIST[mAXCODES][cODE_SIZE] = { ">HL_IOG-------\0", // 0
 ">RANGE--------\0", // 1
 ">dummy2-------\0", // 2
 ">dummy3-------\0", // 3
 ">NT_TH--------\0", // 4
 ">NT_PO--------\0", // 5
 ">MASTER_DELAY-\0", // 6
 ">DELAY--------\0", // 7
 ">dummy8-------\0", // 8
 ">Spontaneous--\0", // 9
 ">dummy10------\0", //10
 ">dummy11------\0", //11
 ">dummy12------\0", //12

 144

 ">MOTOR_TH-----\0", //13
 ">REF_PER------\0", //14
 ">REF_PER_CELL-\0", //15
 ">EQUALIZE-----\0", //16
 ">dummy17------\0", //17
 ">FIXDECAY-----\0", //18
 ">dummy19------\0", //19
 ">dummy20------\0", //20
 ">end.---------\0" };//21
char code[cODE_SIZE] = "\0",
 big_line[bIG] = "\0";
int missing[mAXCODES],
 abort_flag = 0,
 //auto_flag = 1,
 dumch,
 c,c2,c3;

 for(c=0; c<mAXCODES; missing[c]=0, c++) ;
 //set dummies as read
 missing[2] = 1;
 missing[3] = 1;
 missing[8] = 1;
 missing[10] = 1;
 missing[11] = 1;
 missing[12] = 1;
 missing[17] = 1;
 missing[19] = 1;
 missing[20] = 1;
// gotoxy(1,1);
 strcpy(big_line,param_file_name);
 if((in_fil = fopen(big_line,"r+")) == NULL)
 while(1) {
 //auto_flag = 0;
 printf("\n\n[q]->quit [space bar]->type parameters-file's name ");
 dumch = getch();
 if((dumch == 'q')||(dumch =='Q'))
 return(1); //goto
 else {
 printf("\n\nplease type [file_name.txt] [RETURN]: ");
 scanf("%s",&big_line);
 }
 if((in_fil = fopen(big_line,"r+")) == NULL)
 printf("\n\ncan't find file \"%s\"",big_line);
 else break;
 }
 strcpy(PARAMFIL,big_line);
 if(Interactive_mode) printf("\nloading parameter file: %s",PARAMFIL);
 while(!feof(in_fil)) {
 strcpy(code, "\0");
 fgets(code,cODE_SIZE,in_fil);
 if(code[0] != '>') continue; //ignore lines not beginning with '>'
 for(c=0; c<mAXCODES; c++)
 if(strcmp(code,cODE_LIST[c]) == 0) {
 missing[c]++;
 if(Interactive_mode) printf("\n%s",code); //print heading
 fgets(big_line,bIG,in_fil); //read rest of the line
 switch(c) {
 case 0:for(c2=0; c2<MIO; c2++) {
 fscanf(in_fil,"%d",&HL_IOG[c2]);
 if(Interactive_mode) printf(" %4d ",HL_IOG[c2]);
 }
 break;
 case 1:if(Interactive_mode) printf("\n");
 for(c2=0; c2<MIO; c2++) {
 fscanf(in_fil,"%d",&RANGE[0][c2]);

 145

 if(Interactive_mode) printf(" %4d ",RANGE[0][c2]) ;
 }
 if(Interactive_mode) printf("\n");
 for(c2=0; c2<MIO; c2++) {
 fscanf(in_fil,"%d",&RANGE[1][c2]);
 if(Interactive_mode) printf(" %4d ",RANGE[1][c2]) ;
 }
 if(Interactive_mode) printf("\n");
 for(c2=0; c2<MIO; c2++) {
 fscanf(in_fil,"%d",&RANGE[2][c2]);
 if(Interactive_mode) printf(" %4d ",RANGE[2][c2]) ;
 }
 if(Interactive_mode) printf("\n");
 for(c2=0; c2<MIO; c2++) {
 fscanf(in_fil,"%d",&RANGE[3][c2]);
 if(Interactive_mode) printf(" %4d ",RANGE[3][c2]) ;
 }
 break;
 case 2:break;
 case 3:break;
 case 4:for(c2=0; c2<MIO; c2++) {
 fscanf(in_fil,"%lf",&NT_TH[c2]);
 if(Interactive_mode) printf(" %4d ",(int)(NT_TH[c2] * fT));
 }
 break;
 case 5:for(c2=0; c2<MIO; c2++) {
 fscanf(in_fil,"%lf",&NT_PO[c2]);
 if(Interactive_mode) printf(" %4d ",(int)(NT_PO[c2] * fT));
 }
 break;
 case 6:fscanf(in_fil,"%d",&MASTER_DELAY);
 if(Interactive_mode) printf(" %4d",MASTER_DELAY);
 --MASTER_DELAY;
 break;
 case 7:for(c2=0; c2<MIO; c2++) {
 fscanf(in_fil,"%d",&DELAY[c2]);
 if(Interactive_mode) printf(" %4d ",DELAY[c2]);
 --DELAY[c2];
 }
 break;
 case 8:break;
 case 9:fscanf(in_fil,"%d",&Spontaneous);
 if(Interactive_mode) printf(" %4d",Spontaneous);
 break;
 case 10:break;
 case 11:break;
 case 12:break;
 case 13:fscanf(in_fil,"%lf",&MOTOR_TH);
 if(Interactive_mode) printf(" %4d ",(int)(MOTOR_TH * fT));
 break;
 case 14:for(c2=0; c2<MIO; c2++) {
 if(Interactive_mode) printf("\n");
 for(c3=0; c3<R_P_SPAN; c3++) {
 fscanf(in_fil,"%lf",&REF_PER[c2][c3]);
 if(Interactive_mode) printf(" %3d",(int)(REF_PER[c2][c3]
* 100.01));
 }
 }
 break;
 case 15:if(Interactive_mode) printf("\n");
 for(c2=0; c2<R_P_SPAN; c2++) {
 fscanf(in_fil,"%lf",&REF_PER_CELL[c2]);
 if(Interactive_mode) printf(" %4.2lf ",REF_PER_CELL[c2]);
 }
 break;

 146

 case 16:fscanf(in_fil,"%d",&EQUA);
 if(Interactive_mode) printf(" %4d ",EQUA);
 break;
 case 17:break;
 case 18:for(c2=0; c2<MIO; c2++) {
 if(Interactive_mode) printf("\n");
 for(c3=0; c3<R_P_SPAN; c3++) {
 fscanf(in_fil,"%lf",&FIXDECAY[c2][c3]);
 if(Interactive_mode) printf(" %3d",(int)(FIXDECAY[c2][c3]
* 100.01));
 }
 }
 break;
 case 19:break;
 case 20:if(Interactive_mode) {
 printf(" press any key");//?? two stops & crash
 getch();
 }
 break;
 case 21:if(Interactive_mode) {
 printf("\n END OF DATA press any key");
 getch();
 clrscr();
 }
 break;
 }
 }
 }
 fclose(in_fil);
 missing[16] = 1; //stop not required
 for(c=0; c<mAXCODES; c++)
 if(missing[c] != 1) {
 abort_flag = 1;
 printf("\n\n*** %s ",cODE_LIST[c]);
 printf("missing, duplicated or bad formated ***\n");
 getch();
 }
 if (abort_flag) return(1); else return(0);
}//load_params

//**
int save_params(int interactive, char *genename) {
#define bIG 256
 const char *oUT_NAME = "param.txt\0"; //default output file
 FILE *out_fil;
 char big_line[bIG] = "\0";
 int dumch,c,c2;

 if(interactive)
 while(1) { //***************saving****************
 strcpy(big_line,oUT_NAME);
 clean_line(1,1);
 printf("[RETURN]->save as %s [x]->exit ",big_line);
 printf(" [any letter]->type a file name ");
 dumch = getch();
 if(dumch != 13) { //if not a [RETURN]
 if((dumch == 'x')||(dumch == 'X'))
 return(1);
 else {
 clean_line(1,1);
 printf("please type [file name] [RETURN] ");
 scanf("%s",&big_line);
 }
 }
 if((out_fil = fopen(big_line,"w+")) == NULL) {

 147

 clean_line(1,1);
 printf("can't save file \"%s\"",big_line);
 delay(2000);
 }
 else break;
 }
 else
 if((out_fil = fopen(genename,"w+")) == NULL) {
 clean_line(1,1);
 printf("can't save file \"%s\"",big_line);
 delay(2000);
 return(-1);
 }

 fprintf(out_fil,"/*\n>HL_IOG-------\n"); //0
 for(c=0; c<MIO; c++)
 fprintf(out_fil," %4d ",HL_IOG[c]);

 fprintf(out_fil,"\n>RANGE--------\n"); //1
 for(c=0; c<MIO; c++)
 fprintf(out_fil," %4d ",RANGE[0][c]);
 fprintf(out_fil,"\n");
 for(c=0; c<MIO; c++)
 fprintf(out_fil," %4d ",RANGE[1][c]);
 fprintf(out_fil,"\n");
 for(c=0; c<MIO; c++)
 fprintf(out_fil," %4d ",RANGE[2][c]);
 fprintf(out_fil,"\n");
 for(c=0; c<MIO; c++)
 fprintf(out_fil," %4d ",RANGE[3][c]);

 fprintf(out_fil,"\n>NT_TH--------\n"); //4
 for(c=0; c<MIO; c++)
 fprintf(out_fil," %7.4lf ",NT_TH[c]);

 fprintf(out_fil,"\n>NT_PO--------\n"); //5
 for(c=0; c<MIO; c++)
 fprintf(out_fil," %7.4lf ",NT_PO[c]);

 fprintf(out_fil,"\n>MASTER_DELAY-\n"); //6
 fprintf(out_fil," %4d",MASTER_DELAY+1);

 fprintf(out_fil,"\n>DELAY--------\n"); //7
 for(c=0; c<MIO; c++)
 fprintf(out_fil," %4d ",DELAY[c]+1);

 fprintf(out_fil,"\n>Spontaneous--\n"); //9
 fprintf(out_fil," %4d",Spontaneous);

 fprintf(out_fil,"\n>MOTOR_TH-----\n"); //13
 fprintf(out_fil," %1.4lf",MOTOR_TH);

 fprintf(out_fil,"\n>REF_PER------\n"); //14
 for(c=0; c<MIO; c++) {
 for(c2=0; c2<R_P_SPAN; c2++)
 fprintf(out_fil," %1.2lf",REF_PER[c][c2]);
 fprintf(out_fil,"\n");
 }
 fprintf(out_fil,"\n>REF_PER_CELL-\n"); //15
 for(c2=0; c2<R_P_SPAN; c2++)
 fprintf(out_fil," %4.2lf",REF_PER_CELL[c2]);
 fprintf(out_fil,"\n");

 fprintf(out_fil,"\n>EQUALIZE-----\n"); //16
 fprintf(out_fil," %d",EQUA);

 148

 fprintf(out_fil,"\n>FIXDECAY-----\n"); //18
 for(c=0; c<MIO; c++) {
 for(c2=0; c2<R_P_SPAN; c2++)
 fprintf(out_fil," %5.2lf",FIXDECAY[c][c2]);
 fprintf(out_fil,"\n");
 }

 fprintf(out_fil,"\n>end.---------\n*/"); //21 end
 fclose(out_fil);
 menu_line_tx();
 return(0);
}//save_params

//files.c last line

 149

//menus.c first line

#include <conio.h> //gotoxy getch
#include <string.h> //strcpy strlen
#include <dos.h> //delay
#include <grx20.h> //outtextxy
#include "ion.h"

char dumline[81];

//**
void clean_line(int first, int last) {
int c;
 dumline[0] = 'ú';
 for(c=1; c<79; c++) dumline[c] = ' ';
 dumline[79] = 'ú';
 dumline[80] = '\0';
 assert(first > 0 && last <= 25 && last >= first);//,"cleaning false line");//??
 for(c=first; c<=last; c++) {
 gotoxy(1,c);
 printf("%s",dumline);
 }
 gotoxy(1,first);
}//clean_line

//**
void menu_line_tx(void) {
 clean_line(1,1);
 setcolor(DARKGRAY); //?? to print screen grabs on white paper
 switch(DispUp) {
 case 'B':printf(" Quit 0 1 2 3 bars Histo paraMs ref-Per");
 printf(" Fix-io cEll Neig Wei Reset saVe ");
 break;
 case 'H':printf(" Quit 0 1 2 3 Bars histo paraMs ref-Per");
 printf(" Fix-io cEll Neig Wei Reset saVe ");
 break;
 case 'M':printf(" Quit 0 1 2 3 Bars Histo params ref-Per");
 printf(" Fix-io cEll Neig Wei Reset saVe RETURN");
 break;
 case 'P':printf(" Quit 0 1 2 3 Bars Histo paraMs ref-per");
 printf(" Fix-io cEll Neig Wei Reset saVe RETURN");
 break;
 case 'F':printf(" Quit 0 1 2 3 Bars Histo paraMs ref-Per");
 printf(" fix-io cEll Neig Wei Reset saVe RETURN");
 break;
 default:alarm(" DispUp undefined",NULL,NULL);
 }
}//menu_line_tx

void menu_line_gr(void) {
 switch(DispUp) {
 case 'B':sprintf(dumline," Quit 0 1 2 3 bars Histo paraMs ref-Per ");
 GrTextXY(0, 0, dumline, WHITE, BLACK);
 sprintf(dumline,"Fix-io cEll Neig Wei Reset saVe ");
 GrTextXY(FX*34, 0,dumline , WHITE, BLACK);
 break;
 case 'H':sprintf(dumline," Quit 0 1 2 3 Bars histo paraMs ref-Per ");
 GrTextXY(0, 0, dumline, WHITE, BLACK);
 sprintf(dumline,"Fix-io cEll Neig Wei Reset saVe ");
 GrTextXY(FX*34, 0,dumline , WHITE, BLACK);
 break;
 case 'M':sprintf(dumline," Quit 0 1 2 3 Bars Histo params ref-Per ");
 GrTextXY(0, 0,dumline , WHITE, BLACK);
 sprintf(dumline,"Fix-io cEll Neig Wei Reset saVe RETURN");
 GrTextXY(FX*34, 0,dumline , WHITE, BLACK);

 150

 break;
 case 'P':sprintf(dumline," Quit 0 1 2 3 Bars Histo paraMs ref-per ");
 GrTextXY(0, 0,dumline , WHITE, BLACK);
 sprintf(dumline,"Fix-io cEll Neig Wei Reset saVe RETURN");
 GrTextXY(FX*34, 0,dumline , WHITE, BLACK);
 break;
 case 'F':sprintf(dumline," Quit 0 1 2 3 Bars Histo paraMs ref-Per ");
 GrTextXY(0, 0,dumline , WHITE, BLACK);
 sprintf(dumline,"fix-io cEll Neig Wei Reset saVe RETURN");
 GrTextXY(FX*34, 0,dumline , WHITE, BLACK);
 break;
 default:alarm(" DispUp undefined",NULL,NULL);
 }
}//menu_line_gr

//**
double ask_double(char message[],double min,double max,double old) {
double tempd = 0.0;
 clean_line(1,1);
 printf("%s min:%1.3lf max:%1.3lf actual:%1.3lf new: ",message,min,max,old);
 gets(dumline);
 if(dumline[0] =='\0') { menu_line_tx(); return(old); }
 else {
 sscanf(dumline,"%lf",&tempd);
 menu_line_tx();
 if(tempd<min || tempd>max) return(old); else return(tempd);
 }
}//ask_double

//**
int ask_int(char message[],int min,int max,int old) {
int tempi = 0;
 clean_line(1,1);
 printf("%s min:%d max:%d actual:%d new: ",message,min,max,old);
 gets(dumline);
 if(dumline[0] =='\0') { menu_line_tx(); return(old); }
 else {
 sscanf(dumline,"%d",&tempi);
 menu_line_tx();
 if(tempi<min || tempi>max) return(old); else return(tempi);
 }
}//ask_int

//**
int change_cell() {
 int temp,c;
 gotoxy(7,2); printf("®91");
 gotoxy(19,2); printf("®92");
 gotoxy(30,2); printf("®93");
 gotoxy(45,2); printf("®94");
 for(c=0; c<MIO; c++) {gotoxy(c*9+11,4); printf("®%d1",c); }
 temp = ask_int("type the digits after '®' ",1,94,0);
 return(temp);
}//change_cell

//**
void show_syn(int cell, int begin, int tempi) {
const float fT = 1.0;
 int c;
 printf("\n\nTY");
 for(c=begin; c<tempi; c++)
 printf("%7d",SynType[cell][c]);
 printf("\nNE");

 151

 for(c=begin; c<tempi; c++)
 printf("%7d",SynPos[cell][c]);
 printf("\nIO");
 for(c=begin; c<tempi; c++)
 printf("% 6.4f",SyIo[cell][c] * fT);
 printf("\nWE");
 for(c=begin; c<tempi; c++)
 printf("% 6.4f",SynWei[cell][c] * fT);
}//show_syn

//**
void show_cell(int cell) {
 double ntinploc[MIO]; //nt input local-var
 int c = 0, tempi = 0, returned = 0, dumch = '-';

 GrSetMode(GR_default_text);

 do {
 clean_line(1,25);
 gotoxy(1,1);
 if(cell < 0) cell += N_C;
 else if(cell >= N_C) cell -= N_C;
 printf("cell %2d®[cursor] [return]®changes ",cell);
 printf("[space]®exit generation: %d",Gen);
 printf("\ntype %d state %2d axon %2d",
 Type[cell],State[cell],Axon[cell]);
 printf(" w.length %2d syn-num %2d +-%d total%6.3f",
 WaveL[cell],SynNum[cell],Posflag[cell],TotalIo[cell]);
 printf("\n [0] [1] [2] [3]");
 printf(" [4] [5] [6] [7]");
 printf("\nIO");
 for(c=0; c<MIO; c++) {
 printf(" %6.3f ",Cell_Io[cell][c]*SynEq[cell][c]);
 ntinploc[c] = 0.0;
 }

 printf("\nio"); //debug
 for(c=0; c<SynNum[cell]; c++)
 ntinploc[SynType[cell][c]] += SyIo[cell][c];
 for(c=0; c<MIO; c++)
 printf(" %6.4f",ntinploc[c]);
 if(SynNum[cell] > 0) {
 tempi = (SynNum[cell] > 10) ? 10 : SynNum[cell];
 show_syn(cell, 0,tempi);
 }
 if(SynNum[cell] > 10) {
 tempi = (SynNum[cell] > 20) ? 20 : SynNum[cell];
 show_syn(cell,10,tempi);
 }
 if(SynNum[cell] > 20) {
 tempi = (SynNum[cell] > 30) ? 30 : SynNum[cell];
 show_syn(cell,20,tempi);
 }
 if(SynNum[cell] > 30) {
 tempi = (SynNum[cell] > 40) ? 40 : SynNum[cell];
 show_syn(cell,30,tempi);
 }
 dumch = getch();
 if(dumch==0)//double-byte char
 switch(getch()) {
 case 72: cell -= 10; break;
 case 77: cell++; break;
 case 80: cell += 10; break;
 case 75: cell--; break;
 }

 152

 else if(dumch==13)
 switch(returned=change_cell()) {
 case 1: case 11: case 21: case 31:
 case 41: case 51: case 61: case 71:
 Cell_Io[cell][returned/10] =
 ask_double("NT/IOn",0.0,1000.0,
 Cell_Io[cell][returned/10] *
 SynEq[cell][returned/10])
 / SynEq[cell][returned/10];
 break;
 case 2: case 12: case 22: case 32:
 case 42: case 52: case 62: case 72:
 break;
 case 91:Type[cell] = ask_int("cell type:",2,MIO,Type[cell]);
 break;
 case 92:State[cell] =
 ask_int("cell state:",0,1000,State[cell]);
 break;
 case 93:Axon[cell] =
 ask_int("axon state:",0,R_P_SPAN,Axon[cell]);
 break;
 case 94:WaveL[cell] =
 ask_int("wavelength:",1,1000,WaveL[cell]);
 break;
 default:clean_line(1,1);
 printf("DOES NOT COMPUTE");
 delay(1000);
 menu_line_tx();
 }
 else if(dumch == ' ') break;
 }
 while (1);
 start_graphics();
 plot_World();
 show_LMRG();
}//show_cell

//**
void def_menu_gr(void) { //default menu, parameters
const int lAST_COL = 400;
char line[81]="\0";
int c;

 for(c=0; c<MIO; c++) {
 sprintf(line,"%d %4d %1.4f %6.3f %1.3f %2d",
 c,HL_IOG[c],HL_IO[c],NT_PO[c],NT_TH[c],DELAY[c]+1);
 GrTextXY(0,(FY*c)+(2*FY),line,WHITE,BLACK);
 switch (c) {
 case 0:sprintf(line," %4.3lf moto",MOTOR_TH);
 GrTextXY(lAST_COL,(FY*c)+(2*FY),line,WHITE,BLACK);break;
 case 1:sprintf(line," %3d delay",MASTER_DELAY+1);
 GrTextXY(lAST_COL,(FY*c)+(2*FY),line,WHITE,BLACK);break;
 case 2:sprintf(line," %3d Spontan",Spontaneous);
 GrTextXY(lAST_COL,(FY*c)+(2*FY),line,WHITE,BLACK);break;
 case 3:sprintf(line," %d equa",EQUA);
 GrTextXY(lAST_COL,(FY*c)+(2*FY),line,WHITE,BLACK);break;
 }
 }
 sprintf(line," %s",STRUCFIL);
 GrTextXY(lAST_COL,(FY*6)+(2*FY),line,WHITE,BLACK);
 sprintf(line," %s",PARAMFIL);
 GrTextXY(lAST_COL,(FY*7)+(2*FY),line,WHITE,BLACK);
 sprintf(line,
 "IO «l-g «l-f pow thres del");
 GrTextXY(0,FY,line,WHITE,BLACK);

 153

 menu_line_gr();
}//def_menu_gr

//**
void show_table(int x,int y) {
 int c,c2;
 clean_line(2,11);
 switch (DispUp) {
 case 'P':for(printf("y:IO x:time-step"), c=0; c<y; c++) {
 printf("\n%d)",c);
 for(c2=0; c2<x; c2++)
 if(REF_PER[c][c2] == 0.0) printf(" 0.0 ");
 else printf(" %1.2lf",REF_PER[c][c2]);
 }
 for(printf("\n "), c=0; c<x; c++)
 if(c<10) printf(" [0%d]",c);
 else printf(" [%2d]",c);
 printf("\nC8");
 for(c2=0; c2<x; c2++)
 if(REF_PER_CELL[c2] == 0.0) printf(" 0.0 ");
 else printf(" %1.2lf",REF_PER_CELL[c2]);
 break;
 case 'F':for(printf("y:IO x:time-step"), c=0; c<y; c++) {
 printf("\n%d",c);
 for(c2=0; c2<x; c2++)
 if(FIXDECAY[c][c2] == 0.0) printf(" 0.0 ");
 else printf(" %5.2lf",FIXDECAY[c][c2]);
 }
 for(printf("\n "), c=0; c<x; c++)
 if(c<10) printf(" [0%d] ",c);
 else printf(" [%2d] ",c);
 //printf("time");
 break;
 }
}//show_table

//**
void show_table_gr(int x,int y) {
 int c,c2;
 switch (DispUp) {
 case 'P':sprintf(dumline,"y:IO x:time-step");
 GrTextXY(0,FY,dumline,WHITE,BLACK);
 for(c=0; c<y; c++) {
 sprintf(dumline,"%d)",c);
 GrTextXY(0,(FY*c)+(FY*2),dumline,WHITE,BLACK);
 for(c2=0; c2<x; c2++) {
 if(REF_PER[c][c2] == 0.0) sprintf(dumline," 0.0 ");
 else sprintf(dumline," %1.2lf",REF_PER[c][c2]);
 GrTextXY((50*c2)+15,(FY*c)+(FY*2),dumline,WHITE,BLACK);
 }
 }
 for(c=0; c<x; c++) {
 if(c<10) sprintf(dumline," [0%d]",c);
 else sprintf(dumline," [%2d]",c);
 GrTextXY((50*c)+15,(FY*10),dumline,WHITE,BLACK);
 }
 sprintf(dumline,"C ");
 GrTextXY(0,FY*(y+3),dumline,WHITE,BLACK);
 for(c2=0; c2<x; c2++) {
 if(REF_PER_CELL[c2] == 0.0) sprintf(dumline," 0.0 ");
 else sprintf(dumline," %1.2lf",REF_PER_CELL[c2]);
 GrTextXY((50*c2)+15,(FY*(y+3)),dumline,WHITE,BLACK);
 }
 break;

 154

 case 'F':sprintf(dumline,"y:IO x:time-step");
 GrTextXY(0,FY,dumline,WHITE,BLACK);
 for(c=0; c<y; c++) {
 sprintf(dumline,"%d)",c);
 GrTextXY(0,(FY*c)+(FY*2),dumline,WHITE,BLACK);
 for(c2=0; c2<x; c2++) {
 if(FIXDECAY[c][c2] == 0.0) sprintf(dumline," 0.0 ");
 else sprintf(dumline," %5.2lf",FIXDECAY[c][c2]);
 GrTextXY((50*c2)+15,(FY*c)+(FY*2),dumline,WHITE,BLACK);
 }
 }
 for(c=0; c<x; c++) {
 if(c<10) sprintf(dumline," [0%d]",c);
 else sprintf(dumline," [%2d]",c);
 GrTextXY((50*c)+20,(FY*10),dumline,WHITE,BLACK);
 }
 break;
 }
}//show_table_gr

//**
void display_up(void) {
 switch(DispUp) {
 case 'B':bars(); break;
 case 'H':histogram(1);
 synchro_stats();
 break;
 case 'M':def_menu_gr(); break;
 case 'P':show_table_gr(R_P_SPAN,MIO); break;
 case 'F':show_table_gr(R_P_SPAN,MIO); break;
 default:printf("DispUp invalid"); getch();
 }
}//display_up

//**
void change_params(void) {
int which,hidi,lodi,c,c2; //hi-digit, low-digit
 which = hidi = lodi = 0;
 gotoxy(1,2);
 printf("IO «l-g «l-f pow thres del");
 for(c=0; c<MIO; c++) {
 gotoxy(1,c+3);
 printf("%d %4d®1%d %1.3lf®2%d %6.3lf®3%d %1.3lf®4%d %2d®5%d",
 c,HL_IOG[c],c,HL_IO[c],c,NT_PO[c],c,NT_TH[c],c,DELAY[c]+1,c);
 switch (c) {
 case 1:printf(" %1.3lf moto®1",MOTOR_TH); break;
 case 2:printf(" %3d delay®2",MASTER_DELAY+1);break;
 case 3:printf(" %3d Spontan®3",Spontaneous);break;
 case 4:printf(" %d equa®4",EQUA); break;
 }
 }
 printf(" %s",STRUCFIL);
 printf(" %s",PARAMFIL);

 clean_line(1,1);
 which = ask_int("please type the digits after '®' ",1,57,0);
 hidi = (int) which / 10;
 lodi = which - (hidi*10);
 switch(which) {
 case 10: case 11: case 12: case 13: case 14: case 15: case 16: case 17:
 HL_IOG[lodi] = ask_int("NT/IOn «-life generations",0,9999,
 HL_IOG[lodi]);
 HL_IO[lodi] = half_life(HL_IOG[lodi]);
 break;
 case 20: case 21: case 22: case 23: case 24: case 25: case 26: case 27:

 155

 HL_IO[lodi] = ask_double("NT/IOn «-life factor",0.0,1.0,HL_IO[lodi]);
 break;
 case 30: case 31: case 32: case 33: case 34: case 35: case 36: case 37:
 NT_PO[lodi] = ask_double("NT/IOn power ",-1000.0,1000.0,
 NT_PO[lodi]);
 break;
 case 40: case 41: case 42: case 43: case 44: case 45: case 46: case 47:
 NT_TH[lodi] = ask_double("NT/IOn ThresHold ",0.0,1000.0,NT_TH[lodi]);
 break;
 case 50: case 51: case 52: case 53: case 54: case 55: case 56: case 57:
 DELAY[lodi] = ask_int("NT/IOn axon Delay ",1,R_P_SPAN-1,DELAY[lodi]+1)-1;
 break;
 case 1:MOTOR_TH = ask_double("motor threshold",0.0,1000.0,MOTOR_TH);
 break;
 case 2:MASTER_DELAY = ask_int("master axon delay",
 1,R_P_SPAN-1,MASTER_DELAY+1)-1;

 for(c=2; c<MIO; c++) DELAY[c] = MASTER_DELAY;
 break;
 case 3:Spontaneous = ask_int("spontaneous firing(one in x chances)",
 0,999,Spontaneous);
 break;
 case 4:if(EQUA) {
 EQUA = 0;
 for(c=0; c<N_C; c++)
 for(c2=0; c2<MIO; c2++)
 SynEq[c][c2] = 1.0;
 }
 else {EQUA = 1; setEqu();}
 break;
 default:clean_line(1,1);
 printf("DOES NOT COMPUTE");
 delay(1000);
 }
 menu_line_tx();
}//change_params

//**
void change_table(void) {
 int y,x;
 if(DispUp == 'P') {
 y = ask_int(" IO ",0,MIO , 0);
 if((y<0) || (y>MIO)) return;
 x = ask_int(" time step ",0,R_P_SPAN-1,0);
 if((x<0) || (y>=R_P_SPAN)) return;
 if(y<MIO) REF_PER[y][x] = ask_double("ion % crossing membran ",
 0.0,100.0,REF_PER[y][x]);
 if(y==MIO) REF_PER_CELL[x] = ask_double("cell's refractory period ",
 0.0,100.0,REF_PER_CELL[x]);
 }
 if(DispUp == 'F') {
 y = ask_int(" IO ",0,MIO-1 , 0);
 if((y<0) || (y>=MIO)) return;
 x = ask_int(" time step ",0,R_P_SPAN-1,0);
 if((x<0) || (y>=R_P_SPAN)) return;
 FIXDECAY[y][x] = ask_double("add/substract ion amount ",
 -9.9,9.9,FIXDECAY[y][x]);
 }
}//change_table

//**
void warm_reset(int noise) {
 char dum_str[80] = "\0";
 int c;

 156

 clean_line(1,1);
 printf(" [RETURN] \"%s\" [s] new seed [space] exit",SEED);
 switch (getch()) {
 case ' ':break;
 case 13 :strcpy(SEED,"0123456789\0");
 reset(noise);
 motor_navigation('f');
 break;
 case 's':clean_line(1,1);
 printf("type seed >= %d characters ",RNDSZ);
 scanf("%s",&dum_str);
 if(strlen(dum_str)<RNDSZ) break;
 for(c=0; c<strlen(dum_str); c++)
 if(dum_str[c] < 0)
 goto do_nothing;
 strcpy(SEED,dum_str);
 gotoxy(50,1);
 printf("readed: %s ",dum_str);
 delay(1000);
 reset(noise);
 motor_navigation('f');
 break;
 }
 do_nothing: c++;///???
}//warm_reset

//**
long menu_gr(void) {
 int opoy,opox,dumch;
 while (1) {
 dumch = '-';
 menu_line_gr();
 display_up();
 dumch = getch();
 switch(dumch) {
 case '0':return(1); //1 Generation
 case '1':return(10); //10 Gen.
 case '2':return(SHOW_GEN); //one spike-plot screen
 case '3':return(2147483647l); //2147483647 biggest signed long int

 case 'C':if(getbkcolor() == 0) setbkcolor(LIGHTGRAY);
 else setbkcolor(BLACK);//??undocumented, just for screengrabs
 break;
 case 'n':plot_nei(1); break;
 case 'N':plot_nei(2); break;
 case 'w':plot_wei();
 plot_World();
 show_LMRG();
 break;
 case 'b':DispUp = 'B'; break;
 case 'h':DispUp = 'H'; break;
 case 'e':show_cell(0); break;
 case 13 :switch (DispUp) { //13=ASCII for RETURN
 case 'M':GrSetMode(GR_default_text);
 change_params();
 start_graphics();
 plot_World();
 show_LMRG();
 break;
 case 'P':GrSetMode(GR_default_text);
 show_table(R_P_SPAN,MIO);
 change_table();
 start_graphics();
 plot_World();
 show_LMRG();

 157

 break;
 case 'F':GrSetMode(GR_default_text);
 show_table(R_P_SPAN,MIO);
 change_table();
 start_graphics();
 plot_World();
 show_LMRG();
 break;
 }
 break;
 case 'm':GrFilledBox(0,0,800,WO_PO_Y-2,BLACK); DispUp = 'M'; break;
 case 'p':GrFilledBox(0,0,800,WO_PO_Y-2,BLACK); DispUp = 'P'; break;
 case 'f':GrFilledBox(0,0,800,WO_PO_Y-2,BLACK); DispUp = 'F'; break;
 case 'R'://GrSetMode(GR_default_text); ??
 //warm_reset(1);
 reset(1);
 //start_graphics();
 plot_World();
 show_LMRG();
 break;
 case 'r'://GrSetMode(GR_default_text);
 //warm_reset(0);
 reset(0);
 //start_graphics();
 plot_World();
 show_LMRG();
 break;
 case 'v':GrSetMode(GR_default_text); //save parameters
 save_params(1,"params.txt");
 start_graphics();
 plot_World();
 show_LMRG();
 break;
 case '+':motor_navigation('+'); break; //reinforce
 case '-':motor_navigation('-'); break; //punish
 case 0 :switch(getch()) {
 case 77:switch(Direc) { //cursor right
 case 'n':Direc = 'e'; break;
 case 'e':Direc = 's'; break;
 case 's':Direc = 'w'; break;
 case 'w':Direc = 'n'; break;
 }
 plot_frog();
 break;
 case 72:opoy = Frog_po_y; opox = Frog_po_x;
 plot_n(WO_PO_X+((Frog_po_x-2)*WS),
 WO_PO_Y+((Frog_po_y-2)*WS),
 WS,WO_COL[World[Frog_po_y][Frog_po_x]]);
 switch(Direc) { //cursor up
 case 'n':--Frog_po_y; break;
 case 'e':++Frog_po_x; break;
 case 's':++Frog_po_y; break;
 case 'w':--Frog_po_x; break;
 }
 if((Frog_po_y<2) || (Frog_po_y > WO_SZ_Y-3) ||
 (Frog_po_x<2) || (Frog_po_x > WO_SZ_X-3)) {
 Frog_po_y = opoy;
 Frog_po_x = opox;
 }
 plot_frog();
 break;
 case 75:switch(Direc) { //cursor left
 case 'n':Direc = 'w'; break;
 case 'e':Direc = 'n'; break;
 case 's':Direc = 'e'; break;

 158

 case 'w':Direc = 's'; break;
 }
 plot_frog();
 break;
 case 80:opoy = Frog_po_y; opox = Frog_po_x;
 plot_n(WO_PO_X+((Frog_po_x-2)*WS),
 WO_PO_Y+((Frog_po_y-2)*WS),
 WS,WO_COL[World[Frog_po_y][Frog_po_x]]);
 switch(Direc) { //cursor up
 case 'n':++Frog_po_y; break;
 case 'e':--Frog_po_x; break;
 case 's':--Frog_po_y; break;
 case 'w':++Frog_po_x; break;
 }
 if((Frog_po_y<2) || (Frog_po_y > WO_SZ_Y-3) ||
 (Frog_po_x<2) || (Frog_po_x > WO_SZ_X-3)) {
 Frog_po_y = opoy;
 Frog_po_x = opox;
 }
 plot_frog();
 break;
 }
 break;
 case 'q': //feed-up with program...
 case 27:GrSetMode(GR_default_text);
 return(0); //ascii 27 == ESC, terminate program
 }
 }
}//menu_gr
//menus.c last line

 159

//hires.c first line

#include <conio.h> //getch gotoxy
#include <math.h> //log sqrt
#include <grx20.h>
#include <grxkeys.h>
#include "ion.h"

const int VGA = 1,
 FX= 8, //graphics-default-Font horizontal size in pixels
 FY=13; //idem vertical

int Rgb[3][MAXRBOWCOLORS];

//**
int start_graphics(void) {
const int RGB[3][MAXRBOWCOLORS] = //red, green, blue
/*
 setrgbpalette(pal.colors[0], 0, 0, 0);//blac
 setrgbpalette(pal.colors[1],63, 0, 0);//red
 setrgbpalette(pal.colors[2],63,27, 0);//rry
 setrgbpalette(pal.colors[3],63,39, 0);//ry
 setrgbpalette(pal.colors[4],63,51, 0);//ryy
 setrgbpalette(pal.colors[5],63,63, 0);//yell
 setrgbpalette(pal.colors[6],47,63, 0);//lemo
 setrgbpalette(pal.colors[7], 0,63, 0);//gree used as text-color :-(
 setrgbpalette(pal.colors[8], 0,63,63);//cyan
 setrgbpalette(pal.colors[9], 0,43,63);//ccb
 setrgbpalette(pal.colors[10], 0,26,63);//cbb
 setrgbpalette(pal.colors[11], 0, 0,63);//blue
 setrgbpalette(pal.colors[12],63, 0,63);//mage
 setrgbpalette(pal.colors[13],33,33,33);//dark
 setrgbpalette(pal.colors[14],53,53,53);//ligh
 setrgbpalette(pal.colors[15],63,63,63);//whit
*/
{{ 0,255,255,255,255,255,190, 0, 0, 0, 0, 0,255,134,202,255},
 { 0, 0,109,148,206,255,255,255,255,174,105, 0, 0,134,202,255},
 { 0, 0, 0, 0, 0, 0, 0, 0,255,255,255,255,255,134,202,255}};
/*
{{255,255,255,255,255,255,255,208,144, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

 { 0, 0, 0, 80,128,192,255,255,255,255,
 255,255,192,128, 80, 0, 0, 0, 0, 0},

 {255,112, 0, 0, 0, 0, 0, 0, 0, 0,
 112,255,255,255,255,255,176,128, 96, 64}};
*/
int c;
 GrSetDriver(NULL);
 if(GrCurrentVideoDriver() == NULL) {
 printf("No graphics driver found\n");
 getch();
 exit(1);
 }
 if(VGA) GrSetMode(GR_width_height_bpp_graphics,640,480,8);
 else GrSetMode(GR_width_height_bpp_graphics,800,600,8);
 for(c=0;c<MAXRBOWCOLORS;c++) {
 Rgb[0][c] = RGB[0][c];
 Rgb[1][c] = RGB[1][c];
 Rgb[2][c] = RGB[2][c];
 }
 for(c=0;c<MAXRBOWCOLORS;c++) {
 GrSetColor(c+56,Rgb[0][c],Rgb[1][c],Rgb[2][c]);

 160

 RBOW[c] = c+56;
 }
 for(c=0; c<16; c++) //GrSetColor(c+72,128-(c-72),(c-72)*2,(c-72)*2);
 GrSetColor(c+ 72, 63+c*12, 63, 63);
 for(c=0; c<16; c++)
 GrSetColor(c+ 88,255, 63+c*12, 63);
 for(c=0; c<16; c++)
 GrSetColor(c+104,255-c*12,255, 63);
 for(c=0; c<16; c++)
 GrSetColor(c+120, 63,255, 63+c*12);
 for(c=0; c<16; c++)
 GrSetColor(c+136, 63,255-c*12,255);
 for(c=0; c<16; c++)
 GrSetColor(c+152, 63+c*12, 63+c*12,255);
 for(c=168; c<256; c++) GrSetColor(c,255,0,255);
 if(VGA) {
 GrLine(0,479,639,479,WHITE);
 GrLine(639,0,639,479,WHITE);
 WO_PO_Y = 200;
 }
 return(0);
}//start_graphics

//**
//substitute calls by GrFilledBox ??
void plot_n(int x, int y, int size, int color) {
 int c,c2;
 for(c=0; c<size; c++)
 for(c2=0; c2<size; c2++)
 GrPlot(x+c2,y+c,color);
}//plot_n

//**
void plot_4(int x, int y, int color) {
 if(GrPixel(x,y) == color) return;//check if plot needed
 GrPlot(x ,y ,color);
 GrPlot(x ,y+1,color);
 GrPlot(x+1,y ,color);
 GrPlot(x+1,y+1,color);
}//plot_4

//**
void plot_depo(void) {
int y,color;
 if(TimePos == 0)
 plot_4(SHOW_GEN*2-2,WO_PO_Y-2,BLACK);
 else
 plot_4(TimePos*2-2,WO_PO_Y-2,BLACK);
 plot_4(TimePos*2,WO_PO_Y-2,WHITE);
 for(y=0; y<N_C; y++) {
 if(State[y]==0) //on depolarization...
 color = RBOW[WaveL[y]];
 else
 color = BLACK; //no depo: erase
 plot_4(TimePos*2,y*2+WO_PO_Y,color);
 }
}//plot_depo

//**
void plot_waves(void) {
#define tRUNCATE 22
static int eeg[250][WAVES],//TimePos range: 0..249
 wave_pos[WAVES];
int c,c2,wave[WAVES],wc; // wc: waves counter

 161

 if(eeg[0][0] == 0) { //static vars set to 0 in declaration
 wave_pos[0] = getmaxy()-24;
 wave_pos[1] = getmaxy()-16;
 wave_pos[2] = getmaxy()-8;
 wave_pos[3] = getmaxy();
 for(c=0; c<250; c++)
 for(c2=0; c2<WAVES; eeg[c][c2] = wave_pos[c2], c2++);
 }
 for(wc=0; wc<WAVES; wc++) {
 if(EegB[wc] + EegE[wc] <= 0) wave[wc] = 0;
 else for(wave[wc]=0, c=EegB[wc]; c<=EegE[wc]; c++)
 if(State[c] == 0) wave[wc]++;
 if (wave[wc] > tRUNCATE) wave[wc] = tRUNCATE;
 }
 for(c=0; c<WAVES; c++) {
 GrLine(TimePos *2, eeg[TimePos][c], //erase old lines
 TimePos *2+2, eeg[TimePos+1][c],
 BLACK);
 eeg[TimePos][c] = wave_pos[c] - (wave[c] * 2); //compute new values
 GrLine(TimePos *2, eeg[TimePos][c],//draw new lines
 TimePos *2-2,eeg[TimePos-1][c],
 NtCol[Type[EegB[c]]]); //use color of first cell
 }
}//plot_waves

//**
void plot_nei(int what) {
 const double sCALE = 4.0;
 int c,c2,
 syn_size;

 if(what==1) {
 GrFilledBox(0,WO_PO_Y,(N_C*2)-1,WO_PO_Y+(N_C*2)-1,BLACK);
 for(c=0; c<N_C; c++) //plot synaptic position & type
 for(c2=0; c2<SynNum[c]; c2++)
 if((SynType[c][c2] >= 0) &&
 (SynType[c][c2] <= MIO) &&
 (SynPos[c][c2] >= 0))
 plot_4(SynPos[c][c2]*2,
 c*2+WO_PO_Y,
 NtCol[SynType[c][c2]]);
 else
 if(SynPos[c][c2] >= 0)
 plot_4(SynPos[c][c2]*2,c*2+WO_PO_Y,WHITE);
 }
 if(what==2) {
 GrFilledBox(0,WO_PO_Y,(N_C*2)-1,WO_PO_Y+(N_C*2)-1,DARKGRAY);
 for(c=0; c<N_C; c++) //plot weights
 for(c2=0; c2<SynNum[c]; c2++){
 syn_size = (int) (SynWei[c][c2] * sCALE);
 if((syn_size<MAXRBOWCOLORS) &&
 (SynType[c][c2] >= 0) &&
 (SynType[c][c2] <= MIO) &&
 (SynPos[c][c2] >= 0))
 plot_4(SynPos[c][c2]*2,
 c*2+WO_PO_Y,
 RBOW[MAXRBOWCOLORS-syn_size-1]);
 else
 if(SynPos[c][c2] >= 0)
 plot_4(SynPos[c][c2]*2,c*2+WO_PO_Y,WHITE);
 }
 }
}//plot_nei

//**

 162

void plot_wei(void) {
const int tOP = 0,
 dEFA = 100, //position of default SynWei[][] (1.0)
 bOTTOM = 400,
 S = 6; //s-1 = spacing pixels between cells
const double tRESHOLD = 0.5; //show syns over this weight

char dumline[81] = "X";
//"XXXXXXXXX1XXXXXXXXX2XXXXXXXXX3XXXXXXXXX4XXXXXXXXX5XXXXXXXXX6XXXXXXXXX7XXXXXXXXX8";
int cell = 0,c,c2;
 if(VGA) return;

 GrFilledBox(0,0,GrMaxX(),bOTTOM,BLACK);
 GrLine(0, (int)(log(1.0)*dEFA+dEFA), N_C*S, (int)(log(1.0)*dEFA+dEFA),WHITE);
 GrLine(0, (int)(log(2.0)*dEFA+dEFA), N_C*S, (int)(log(2.0)*dEFA+dEFA),WHITE);
 GrLine(0, (int)(log(4.0)*dEFA+dEFA), N_C*S, (int)(log(4.0)*dEFA+dEFA),WHITE);
 GrLine(0, (int)(log(8.0)*dEFA+dEFA), N_C*S, (int)(log(8.0)*dEFA+dEFA),WHITE);
 GrLine(0, (int)(log(16.0)*dEFA+dEFA), N_C*S, (int)(log(16.0)*dEFA+dEFA),WHITE);
 for(c=0; c<N_C; c++) { //show all synapses of all cells
 plot_4(c*S, tOP,NtCol[Type[c]]);
 plot_4(c*S,bOTTOM-5,NtCol[Type[c]]);
 for(c2=0; c2<SynNum[c]; c2++)
 if(SynPos[c][c2] >= 0) { //plot every non-free_syn synapse
 if(SynWei[c][c2] < 16.0)
 GrPlot(SynPos[c][c2]*S,(int)(log(SynWei[c][c2])*dEFA+dEFA),
 NtCol[SynType[c][c2]]);
 else GrLine(c*S,tOP+3,SynPos[c][c2]*S,bOTTOM-5,WHITE);
 }
 }
// for(c=0;c<25;c++)
// for(c2=0; c2<80; c2++)
// GrTextXY(c2*FX,c*FY,dumline , WHITE, BLACK);
 do { //show a single cell
 if(cell < 0) cell += N_C; //wrap borders
 else if(cell >= N_C) cell -= N_C;
// gotoxy(76,1); printf("%3d",cell); //show number of cell..??
 sprintf(dumline,"cell:%3d",cell);
 GrTextXY(72*FX,0*FY,dumline , WHITE, BLACK);
 plot_4(cell*S, tOP,WHITE); //..and position
 plot_4(cell*S,bOTTOM-5,WHITE);
 for(c=0; c<SynNum[cell]; c++)
 if(SynPos[cell][c] >= 0) { //plot this cell's synapses
 plot_4(SynPos[cell][c]*S, bOTTOM-1, NtCol[SynType[cell][c]]);
 if(SynWei[cell][c] > tRESHOLD) { //and a line for those grown
 if(SynWei[cell][c] < 16.0)
 GrLine(cell*S, tOP+3,SynPos[cell][c] * S,
 (int)(log(SynWei[cell][c]) * dEFA + dEFA),WHITE);
 else GrLine(cell*S,tOP+3,SynPos[cell][c]*S,bOTTOM-5,WHITE);
 }
 }
 if(getch() == 0) {
 plot_4(cell*S, tOP,NtCol[Type[cell]]);
 plot_4(cell*S,bOTTOM-5,NtCol[Type[cell]]);
 for(c=0; c<SynNum[cell]; c++)
 if(SynPos[cell][c] >= 0) {
 plot_4(SynPos[cell][c]*S, bOTTOM-1, BLACK); //erase !grown syn.
 if(SynWei[cell][c] > tRESHOLD) {
 if(SynWei[cell][c] < MAXRBOWCOLORS)
 GrLine(cell*S,
 tOP+3,
 SynPos[cell][c] * S,
 (int)(log(SynWei[cell][c]) * dEFA + dEFA),
 RBOW[NtCol[SynType[cell][c]]]);
 else GrLine(cell*S,
 tOP+3,

 163

 SynPos[cell][c]*S,
 bOTTOM-5,
 NtCol[SynType[cell][c]]);//??
 }
 }
 switch(getch()) {
 case 72: cell -= 10; break;
 case 77: cell++; break;
 case 80: cell += 10; break;
 case 75: cell--; break;
 }
 }

 else break;
 }
 while (1);
 GrFilledBox(0,0,GrMaxX(),bOTTOM,BLACK);
}//plot_wei

//**
void plot_frog(void) {
int x = WO_PO_X + ((Frog_po_x-2)*WS),
 y = WO_PO_Y + ((Frog_po_y-2)*WS);
 GrFilledBox(x, y,x+WS-1,y+WS-1,WHITE); //"body"
 switch(Direc) { //"eyes"
 case 'n':plot_4(x+1, y+1, DARKGRAY);
 plot_4(x+WS-3, y+1, DARKGRAY);
 break;
 case 's':plot_4(x+1, y+WS-3, DARKGRAY);
 plot_4(x+WS-3, y+WS-3, DARKGRAY);
 break;
 case 'e':plot_4(x+WS-3, y+1, DARKGRAY);
 plot_4(x+WS-3, y+WS-3, DARKGRAY);
 break;
 case 'w':plot_4(x+1, y+1, DARKGRAY);
 plot_4(x+1, y+WS-3, DARKGRAY);
 break;
 }
}//plot_frog

//**
void plot_World(void) {
int x,y;
 for(y=0; y<WO_SZ_Y-4; y++)
 for(x=0; x<WO_SZ_X-4; x++)
 GrFilledBox(WO_PO_X+(x*WS),
 WO_PO_Y+(y*WS),
 WO_PO_X+(x*WS)+WS-1,
 WO_PO_Y+(y*WS)+WS-1,
 WO_COL[World[y+2][x+2]]);
 plot_frog();
 for(x=0; x<MAXRBOWCOLORS; x++) //show spectrum,
 plot_n(WO_PO_X+(x*WS),WO_PO_Y+((WO_SZ_Y-3)*WS),WS,RBOW[x]);

 for(x=0; x<MIO; x++) //show NT colors
 plot_n(WO_PO_X+(x*WS),WO_PO_Y+((WO_SZ_Y-1)*WS),WS,NtCol[x]);
}//plot_World

//**
void show_synchro_tableVGA(void) {
int mAXY = 100;
char line[20] = "\0";
int ypos = mAXY+FY+FY+4,
 c,c2;

 164

 sprintf(line,"ra:%7.3f",rate_accu_synch(0));
 GrTextXY(AREAS*60,mAXY+2,line,WHITE,DARKGRAY);
 mAXY += R_P_SPAN * 5 + 10;
 for(c=0; c<R_P_SPAN; c++)
 for(c2=0; c2<R_P_SPAN; c2++)
 if(His2D[c][c2]<183)
 GrFilledBox(c2*5+520,
 mAXY-c*5,
 c2*5+523,
 mAXY-c*5+3,
 72+(int)(His2D[c][c2]));
// RBOW[(int)(His2D[c][c2])]);
// RBOW[(int)((His2D[c][c2] / Accumulated)*R_P_SPAN)]);
// RBOW[(int)(His2D[c][c2] / Accumulated)]);
 else
 GrFilledBox(c2*5+520,
 mAXY-c*5,
 c2*5+523,
 mAXY-c*5+3,
 255);
}//show_synchro_tableVGA

//**
void show_synchro_table(void) {
int mAXY = FY + N_C * 3;//GrMaxY();
char line[20] = "\0";
int ypos = mAXY+FY+FY+4,
 c,c2;
 if(VGA) {show_synchro_tableVGA(); return;}
 sprintf(line,"ra:%7.3f",rate_accu_synch(0));
 GrTextXY(AREAS*60,mAXY+2,line,WHITE,DARKGRAY);
 mAXY += R_P_SPAN * 5 + 10;
 for(c=0; c<R_P_SPAN; c++)
 for(c2=0; c2<R_P_SPAN; c2++)
 if(His2D[c][c2]<183)
 GrFilledBox(c2*5+720,
 mAXY-c*5,
 c2*5+723,
 mAXY-c*5+3,
 72+(int)(His2D[c][c2]));
// RBOW[(int)(His2D[c][c2])]);
// RBOW[(int)((His2D[c][c2] / Accumulated)*R_P_SPAN)]);
// RBOW[(int)(His2D[c][c2] / Accumulated)]);
 else
 GrFilledBox(c2*5+720,
 mAXY-c*5,
 c2*5+723,
 mAXY-c*5+3,
 255);
}//show_synchro_table

//**
void synchro_stats(void) {
int mAXY = FY + N_C * 3;//GrMaxY();
char line[20] = "\0";
int his[R_P_SPAN][R_P_SPAN] = {{0,0,0,0,0,0,0,0,0,0,0,0,0}, //??
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},

 165

 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0}},
 big1,big2,
 ypos = mAXY+FY+FY+4,
 c,c2;

 if(VGA) {show_synchro_table(); return;}

 GrFilledBox(0,mAXY+2,GrMaxX(),mAXY+80,DARKGRAY);
 for(c=0; c<256; c++) GrFilledBox(c*3,mAXY-1,c*3+3,mAXY+1,c);
 for(c=0; c<AREAS; c++) {

 for(c2=AREA_B[c]; c2<AREA_E[c]; c2++)
 his[c][State[c2]]++;
 for(c2=0; c2<R_P_SPAN; c2++) {
 his[c][c2] *= 4; //show it big...
 GrLine(c2*4+c*60+2,
 ypos,
 c2*4+c*60+2,
 ypos+his[c][c2],
 //RBOW[c2]);
 LIGHTGRAY);
 GrLine(c2*4+c*60+3,
 ypos,
 c2*4+c*60+3,
 ypos+his[c][c2],
 //RBOW[c2]);
 LIGHTGRAY);
 his[c][c2] /= 4; //return to original size
 }
 his[c][12] = 0; //state 12 is minimum activity, ignore it
 big1 = 12; big2 = 12;
 for(c2=0; c2<R_P_SPAN; c2++) //choose biggest two
 if(his[c][c2] > his[c][big1]) { big2 = big1; big1 = c2; }
 else if(his[c][c2] > his[c][big2]) big2 = c2;
 sprintf(line,"%2d %2d",big1,big2);
 GrTextXY(c*60,mAXY+2,line,WHITE,DARKGRAY);
 sprintf(line,"%2d %2d",his[c][big1],his[c][big2]);
 GrTextXY(c*60,mAXY+FY+2,line,WHITE,DARKGRAY);
 }
 show_synchro_table();
}//synchro_stats

//**
void histogram(int full) {
const int mAXY = FY + N_C * 3;//GrMaxY();
char line[20] = "\0";
int his[AREAS][R_P_SPAN] = {{0,0,0,0,0,0,0,0,0,0,0,0,0}, //??
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0}},

 c,c2;

 166

 if(VGA) return;
 if(full) {
 GrFilledBox(0,mAXY-180,GrMaxX(),mAXY,DARKGRAY);
 for(c=0; c<AREAS; c++) {
 sprintf(line,"%s",AREA_NAME[c]);
 GrTextXY(c*60,mAXY-FY,line,WHITE,DARKGRAY);
 for(c2=AREA_B[c]; c2<AREA_E[c]; c2++)
 his[c][WaveL[c2]]++;
 for(c2=0; c2<R_P_SPAN; c2++) {
 his[c][c2] *= 4; //make it bigger
 GrLine(c2*4+c*60+2,
 mAXY-FY,
 c2*4+c*60+2,
 mAXY-his[c][c2]-FY,
 RBOW[c2]);
 GrLine(c2*4+c*60+3,
 mAXY-FY,
 c2*4+c*60+3,
 mAXY-his[c][c2]-FY,
 RBOW[c2]);
 }
 }
 for(c=0; c<AREAS; c++) his[0][c] = 0;
 sprintf(line,"total",AREA_NAME[c]);
 GrTextXY(740,mAXY-FY,line,WHITE,DARKGRAY);
 }

 for(c=0; c<N_C; c++)
 his[0][WaveL[c]]++;

 for(c=0; c<R_P_SPAN; c++) {
 GrLine(c*4+740+2,
 mAXY-FY,
 c*4+740+2,
 mAXY-his[0][c]-FY,
 RBOW[c]);

 GrLine(c*4+740+3,
 mAXY-FY,
 c*4+740+3,
 mAXY-his[0][c]-FY,
 RBOW[c]);
 }
 GrFilledBox(796,596,800,600,WHITE);
}//histogram

//**
void show_LMRG(void) { //show Left Move Right Generations
char line[81] = "\0";
 sprintf(line,"%6.4lf %6.4lf %6.4lf",Left,Move,Right);
 GrTextXY(WO_PO_X,WO_PO_Y+(WO_SZ_Y*WS)+FY,line,WHITE,BLACK);
 sprintf(line," %9ld",Gen);
 GrTextXY(WO_PO_X,WO_PO_Y+(WO_SZ_Y*WS)+(FY*2),line,WHITE,BLACK);
} //show_LMRG

//**
void bars(void) {
 const int y_MARGIN = FY,
 ySZ = 3; //Y-space between bars, in pixels
 const float cAL[4] = {0.7071,1.0,1.4142,2.0},//sqrt(0.5 1.0 2.0 4.0)
 xSZ = 38.0; //X expansion factor
 int level[MIO] = { 0, 80,160,240,320,400,480,560},
 levelT = 720, //for TotalIo

 167

 y_tot,
 c,c2;

 GrFilledBox(0,y_MARGIN,GrMaxX(),y_MARGIN+N_C*ySZ,BLACK);
 for(c=0; c<MIO; c++) { //calibration marks for IO[n]
 GrLine(level[c]+(int)(cAL[0]*xSZ), y_MARGIN,
 level[c]+(int)(cAL[0]*xSZ), y_MARGIN+10,WHITE);
 GrLine(level[c]+(int)(cAL[1]*xSZ), y_MARGIN,
 level[c]+(int)(cAL[1]*xSZ), y_MARGIN+15,WHITE);
 GrLine(level[c]+(int)(cAL[2]*xSZ), y_MARGIN,
 level[c]+(int)(cAL[2]*xSZ), y_MARGIN+10,WHITE);
 GrLine(level[c]+(int)(cAL[3]*xSZ), y_MARGIN,
 level[c]+(int)(cAL[3]*xSZ), y_MARGIN+10,WHITE);
 }
 GrLine(levelT, y_MARGIN,levelT, y_MARGIN+15,LIGHTMAGENTA);//for totals
 GrLine(levelT+(int)(cAL[0]*xSZ), y_MARGIN,
 levelT+(int)(cAL[0]*xSZ), y_MARGIN+10,LIGHTMAGENTA);
 GrLine(levelT+(int)(cAL[1]*xSZ), y_MARGIN,
 levelT+(int)(cAL[1]*xSZ), y_MARGIN+15,LIGHTMAGENTA);
 GrLine(levelT+(int)(cAL[2]*xSZ), y_MARGIN,
 levelT+(int)(cAL[2]*xSZ), y_MARGIN+10,LIGHTMAGENTA);
 GrLine(levelT+(int)(cAL[3]*xSZ), y_MARGIN,
 levelT+(int)(cAL[3]*xSZ), y_MARGIN+10,LIGHTMAGENTA);
 GrLine(levelT-(int)(cAL[0]*xSZ), y_MARGIN,
 levelT-(int)(cAL[0]*xSZ), y_MARGIN+10,LIGHTMAGENTA);
 GrLine(levelT-(int)(cAL[1]*xSZ), y_MARGIN,
 levelT-(int)(cAL[1]*xSZ), y_MARGIN+15,LIGHTMAGENTA);
 GrLine(levelT-(int)(cAL[2]*xSZ), y_MARGIN,
 levelT-(int)(cAL[2]*xSZ), y_MARGIN+10,LIGHTMAGENTA);
 GrLine(levelT-(int)(cAL[3]*xSZ), y_MARGIN,
 levelT-(int)(cAL[3]*xSZ), y_MARGIN+10,LIGHTMAGENTA);
 for(c=0; c<N_C; c++) {
 for(c2=MIO-1; c2>=0; --c2)
 GrLine(level[c2],
 c * ySZ + y_MARGIN,
 level[c2]+(int)(sqrt(Cell_Io[c][c2]*SynEq[c][c2])*xSZ),
 c * ySZ + y_MARGIN,NtCol[c2]);
 y_tot = c * ySZ + y_MARGIN;
 if(TotalIo[c] >= 0.0) {
 GrLine(levelT,
 y_tot,
 levelT+(int)(sqrt(TotalIo[c])*xSZ),
 y_tot,LIGHTGRAY);
 GrPlot(levelT+(int)(sqrt(TotalIo[c]*REF_PER_CELL[State[c]])*xSZ),
 y_tot+1,
 WHITE);
 }
 else {
 GrLine(levelT,
 y_tot,
 levelT-(int)(sqrt(fabs (TotalIo[c]))*xSZ),
 y_tot,LIGHTGRAY);
 GrPlot(levelT-(int)(sqrt(fabs(TotalIo[c])*REF_PER_CELL[State[c]])*xSZ),
 y_tot,WHITE);
 }
 }
}//bars

void restore_text_mode(void) {
 closegraph();
}

//hires.c last line

 168

//gene.c first line

#include "ion.h"
#include <bios.h> //bioskey()
//population, number of organisms/genomes
#define POPU 2000

FILE *gene_output;

struct organism Orga[POPU+1]; //organisms, Orga[POPU] or...
struct organism Baby; //...Baby is the newborn

long His2D[R_P_SPAN][R_P_SPAN], //Histogram 2-dimensional used by hires.c
 His2Ds[R_P_SPAN][R_P_SPAN]; //idem, only for spikes

int RATE_SYNCH[R_P_SPAN][R_P_SPAN] = {
//0 1 2 3 4 5 6 7 8 9 10 11 12 Wavelenght
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 0 state

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // 2

{ 0, 0, 0, 0, 2, 4, 4, 0, 0, 0, 0, 0, 0}, // 3

{ 0, 0, 0, 2, 0, 4, 4, 4, 0, 0, 0, 0, 0}, // 4

{ 0, 0, 0, 4, 4, 0, 4, 4, 4, 0, 0, 0, 0}, // 5

{ 0, 0, 0, 4, 4, 4, 0, 4, 4, 4, 0, 0, 0}, // 6

{ 0, 0, 0, 0, 4, 4, 4, 0, 4, 4, 4, 0, 0}, // 7

{ 0, 0, 0, 0, 0, 4, 4, 4, 0, 4, 4, 4, 0}, // 8

{ 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 4, 4, 0}, // 9

{ 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 2, 0}, //10

{ 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 2, 0, 0}, //11

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0}};//12

int RATESYNCHCAP = N_C * SHOW_GEN;

long Accumulated = 0;

//int SEE = 0; //to avoid printf in hires

const int HL_IOG0[15] = {12,18,24,30,36,42,48,54,60,66,72,84,96,108,120},
 HL_IOG2[15] = { 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,14,16,18,20};

const double REF_PER_GEN[25][R_P_SPAN] =
 {{1.00,1.00,0.98,0.86,0.74,0.62,0.50,0.38,0.26,0.14,0.02,0.00,0.00},
 {1.00,1.00,0.94,0.83,0.72,0.61,0.50,0.39,0.28,0.17,0.06,0.00,0.00},
 {1.00,1.00,0.90,0.80,0.70,0.60,0.50,0.40,0.30,0.20,0.10,0.00,0.00},
 {1.00,0.95,0.86,0.77,0.68,0.59,0.50,0.41,0.32,0.23,0.14,0.05,0.00},
 {0.98,0.90,0.82,0.74,0.66,0.58,0.50,0.42,0.34,0.26,0.18,0.10,0.02},
 {0.92,0.85,0.78,0.71,0.64,0.57,0.50,0.43,0.36,0.29,0.22,0.15,0.08},
 {0.86,0.80,0.74,0.68,0.62,0.56,0.50,0.44,0.38,0.32,0.26,0.20,0.14},
 {0.80,0.75,0.70,0.65,0.60,0.55,0.50,0.45,0.40,0.35,0.30,0.25,0.20},
 {0.74,0.70,0.66,0.62,0.58,0.54,0.50,0.46,0.42,0.38,0.34,0.30,0.26},
 {0.68,0.65,0.62,0.59,0.56,0.53,0.50,0.47,0.44,0.41,0.38,0.35,0.32},

 169

 {0.62,0.60,0.58,0.56,0.54,0.52,0.50,0.48,0.46,0.44,0.42,0.40,0.38},
 {0.56,0.55,0.54,0.53,0.52,0.51,0.50,0.49,0.48,0.47,0.46,0.45,0.44},
 {0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50},
 {0.44,0.45,0.46,0.47,0.48,0.49,0.50,0.51,0.52,0.53,0.54,0.55,0.56},
 {0.38,0.40,0.42,0.44,0.46,0.48,0.50,0.52,0.54,0.56,0.58,0.60,0.62},
 {0.32,0.35,0.38,0.41,0.44,0.47,0.50,0.53,0.56,0.59,0.62,0.65,0.68},
 {0.26,0.30,0.34,0.38,0.42,0.46,0.50,0.54,0.58,0.62,0.66,0.70,0.74},
 {0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80},
 {0.14,0.20,0.26,0.32,0.38,0.44,0.50,0.56,0.62,0.68,0.74,0.80,0.86},
 {0.08,0.15,0.22,0.29,0.36,0.43,0.50,0.57,0.64,0.71,0.78,0.85,0.92},
 {0.02,0.10,0.18,0.26,0.34,0.42,0.50,0.58,0.66,0.74,0.82,0.90,0.98},
 {0.00,0.05,0.14,0.23,0.32,0.41,0.50,0.59,0.68,0.77,0.86,0.95,1.00},
 {0.00,0.00,0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90,1.00,1.00},
 {0.00,0.00,0.06,0.17,0.28,0.39,0.50,0.61,0.72,0.83,0.94,1.00,1.00},
 {0.00,0.00,0.02,0.14,0.26,0.38,0.50,0.62,0.74,0.86,0.98,1.00,1.00}};

const double REF_PER_CELL_GEN[63][R_P_SPAN] = {
{0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.125,0.250,0.375,0.500,0.625,0.750,0.875,1.000,1.000,1.000,1.000,1.0},
{0.000,0.111,0.222,0.333,0.444,0.556,0.667,0.778,0.889,1.000,1.000,1.000,1.0},
{0.000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.000,1.000,1.0},

{0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.125,0.250,0.375,0.500,0.625,0.750,0.875,1.000,1.000,1.000,1.0},
{0.000,0.000,0.111,0.222,0.333,0.444,0.556,0.667,0.778,0.889,1.000,1.000,1.0},
{0.000,0.000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.000,1.0},

{0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.125,0.250,0.375,0.500,0.625,0.750,0.875,1.000,1.000,1.0},
{0.000,0.000,0.000,0.111,0.222,0.333,0.444,0.556,0.667,0.778,0.889,1.000,1.0},
{0.000,0.000,0.000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.0},

{0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.125,0.250,0.375,0.500,0.625,0.750,0.875,1.000,1.0},
{0.000,0.000,0.000,0.000,0.111,0.222,0.333,0.444,0.556,0.667,0.778,0.889,1.0},

{0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.125,0.250,0.375,0.500,0.625,0.750,0.875,1.0},

{0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.000,1.0},

 170

{0.000,0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.143,0.286,0.429,0.571,0.714,0.857,1.0},

{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.167,0.333,0.500,0.667,0.833,1.0},

{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.400,0.600,0.800,1.0},

{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.250,0.500,0.750,1.0},

{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.000,1.0},
{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.333,0.667,1.0},

{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.500,1.0}};

// 0.163507991, 0.179858790, 0.197844669, 0.217629136, 0.239392049,
// 0.263331254, 0.289664380, 0.318630818, 0.350493899, 0.385543289,
// 0.424097618, 0.466507380, 0.513158118, 0.564473930, 0.620921323,
// 0.683013455, 0.751314801, 0.826446281, 0.909090909, 1.000000000,
// 1.100000000, 1.210000000, 1.331000000, 1.464100000, 1.610510000,
// 1.771561000, 1.948717100, 2.143588810, 2.357947691, 2.593742460,
// 2.853116706, 3.138428377, 3.452271214, 3.797498336, 4.177248169,
// 4.594972986, 5.054470285, 5.559917313, 6.115909045, *= 1.1

#define LOG_RANGE 95

const double LOG_05[LOG_RANGE] = {
0.01019074,0.01070028,0.01123530,0.01179706,0.01238691,
0.01300626,0.01365657,0.01433940,0.01505637,0.01580919,
0.01659965,0.01742963,0.01830111,0.01921617,0.02017698,
0.02118582,0.02224512,0.02335737,0.02452524,0.02575150,
0.02703908,0.02839103,0.02981058,0.03130111,0.03286617,
0.03450948,0.03623495,0.03804670,0.03994903,0.04194648,
0.04404381,0.04624600,0.04855830,0.05098621,0.05353552,
0.05621230,0.05902291,0.06197406,0.06507276,0.06832640,
0.07174272,0.07532986,0.07909635,0.08305117,0.08720373,
0.09156391,0.09614211,0.10094921,0.10599668,0.11129651,
0.11686133,0.12270440,0.12883962,0.13528160,0.14204568,
0.14914797,0.15660536,0.16443563,0.17265741,0.18129029,
0.19035480,0.19987254,0.20986617,0.22035947,0.23137745,
0.24294632,0.25509364,0.26784832,0.28124073,0.29530277,
0.31006791,0.32557131,0.34184987,0.35894236,0.37688948,
0.39573396,0.41552065,0.43629669,0.45811152,0.48101710,
0.50506795,0.53032135,0.55683742,0.58467929,0.61391325,
0.64460892,0.67683936,0.71068133,0.74621540,0.78352617,
0.82270247,0.86383760,0.90702948,0.95238095,1.00000000};

//*********************** variables global to gene.c *******************

void init_orga(void) {
int c;
 for(c=0; c<=POPU; c++) { //include newborn one
 Orga[c].hl_iog0 = 0;
 Orga[c].hl_iog2 = 0;

 171

 Orga[c].fixdec00 = 0;
 Orga[c].fixdec0rest = 0;
 Orga[c].fixdec2all = 0;
 Orga[c].nt_po0 = 0;
 Orga[c].nt_po2 = 0;
 Orga[c].refper0 = 0;
 Orga[c].refper2 = 0;
 Orga[c].refpercell = 0;
 Orga[c].delay2 = 0;
 Orga[c].fitness = 1.0;
 strcpy(Orga[c].name,"0123456789012345678\0");
 }
}//init_orga

void baptice(struct organism *doe) {
//must be longer than range of parameters
const char *cODE =
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ\
!#$&'()*+,-./:;<=>?@[]^_`{|}~�€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž�\0";
 doe->name[0] = cODE[doe->hl_iog0];
 doe->name[1] = cODE[doe->hl_iog2];
 doe->name[2] = cODE[doe->fixdec00];
 doe->name[3] = cODE[doe->fixdec0rest];
 doe->name[4] = cODE[doe->fixdec2all];
 doe->name[5] = cODE[doe->nt_po0];
 doe->name[6] = cODE[doe->nt_po2];
 doe->name[7] = cODE[doe->refper0];
 doe->name[8] = cODE[doe->refper2];
 doe->name[9] = cODE[doe->refpercell];
 doe->name[10] = cODE[doe->delay2];
 doe->name[11] = '\0';
}//baptice

void set_params(struct organism *doe) {
int c;
 HL_IOG[0] = HL_IOG0[doe->hl_iog0];
 HL_IOG[2] = HL_IOG2[doe->hl_iog2];
 FIXDECAY[0][0] = LOG_05[doe->fixdec00] * -1.0;
 for(c=1; c<R_P_SPAN; c++)
 FIXDECAY[0][c] = LOG_05[doe->fixdec0rest];
 for(c=0; c<R_P_SPAN; c++)
 FIXDECAY[2][c] = LOG_05[doe->fixdec2all];
 IO_PO[0] = LOG_05[doe->nt_po0];
 IO_PO[2] = LOG_05[doe->nt_po2];

 for(c=0; c<R_P_SPAN; c++)
 REF_PER[0][c] = REF_PER_GEN[doe->refper0][c];

 for(c=0; c<R_P_SPAN; c++)
 REF_PER[2][c] = REF_PER_GEN[doe->refper2][c];

 for(c=0; c<R_P_SPAN; c++)
 REF_PER_CELL[c] = REF_PER_CELL_GEN[doe->refpercell][c];

 DELAY[2] = doe->delay2;
 doe->fitness = 1.0;
}//set_params

void copy_orga(int target, int source) {
 Orga[target].hl_iog0 = Orga[source].hl_iog0;
 Orga[target].hl_iog2 = Orga[source].hl_iog2;

 172

 Orga[target].fixdec00 = Orga[source].fixdec00;
 Orga[target].fixdec0rest = Orga[source].fixdec0rest;
 Orga[target].fixdec2all = Orga[source].fixdec2all;

 Orga[target].nt_po0 = Orga[source].nt_po0;
 Orga[target].nt_po2 = Orga[source].nt_po2;

 Orga[target].refper0 = Orga[source].refper0;
 Orga[target].refper2 = Orga[source].refper2;
 Orga[target].refpercell = Orga[source].refpercell;

 Orga[target].delay2 = Orga[source].delay2;

 Orga[target].fitness = Orga[source].fitness;
 strcpy(Orga[target].name,Orga[source].name);
}//copy_orga

void dump_orga(struct organism which_orga, int orga_num) {
char line[256] =
"---------1---------2---------3---------4---------5---------6---------7\0";

 sprintf(line,"\n%4d:%2d %2d %2d %2d %2d %2d %2d %2d %2d %2d %2d %7.4f %s",
 orga_num,
 which_orga.hl_iog0,
 which_orga.hl_iog2,
 which_orga.fixdec00,
 which_orga.fixdec0rest,
 which_orga.fixdec2all,
 which_orga.nt_po0,
 which_orga.nt_po2,
 which_orga.refper0,
 which_orga.refper2,
 which_orga.refpercell,
 which_orga.delay2,
 which_orga.fitness,
 which_orga.name);
 fprintf(gene_output,line);
 if(!SEE) printf("%s",line);
}//dump_orga

void dump_popu(void) {
int c;
 for(c=0; c<POPU; c++)
 dump_orga(Orga[c],c);
 fprintf(gene_output,"\n\n");
 if(!SEE) printf("\n");
}//dump_popu

int clone_test(struct organism *doe) {
int c;
 for(c=0; c<POPU; c++)
 if(strcmp(Orga[c].name,doe->name) == 0)
 return(1);
 return(0);
}//clone_test

void mutate(struct organism *doe) {
 switch(random() % 11) {
 case 0: doe->hl_iog0 = random() % 15; break;
 case 1: doe->hl_iog2 = random() % 15; break;
 case 2: doe->fixdec00 = random() % LOG_RANGE; break;

 173

 case 3: doe->fixdec0rest = random() % (doe->fixdec00 +1); break; //***
 case 4: doe->fixdec2all = random() % LOG_RANGE; break;
 case 5: doe->nt_po0 = random() % LOG_RANGE; break;
 case 6: doe->nt_po2 = random() % LOG_RANGE; break;
 case 7: doe->refper0 = random() % 25; break;
 case 8: doe->refper2 = random() % 25; break;
 case 9: doe->refpercell = random() % 63; break;
 case 10: doe->delay2 = (random() % (R_P_SPAN-1)) + 1; break;
 }
 switch(random() % 11) {

 case 4: doe->fixdec2all = random() % LOG_RANGE; break;

 if(random()%2) { Baby.hl_iog2 = Orga[woman].hl_iog2;

 case 0: doe->hl_iog0 = random() % 15; break;
 case 1: doe->hl_iog2 = random() % 15; break;
 case 2: doe->fixdec00 = random() % LOG_RANGE; break;
 case 3: doe->fixdec0rest = random() % (doe->fixdec00 +1); break; //***

 case 5: doe->nt_po0 = random() % LOG_RANGE; break;
 case 6: doe->nt_po2 = random() % LOG_RANGE; break;
 case 7: doe->refper0 = random() % 25; break;
 case 8: doe->refper2 = random() % 25; break;
 case 9: doe->refpercell = random() % 63; break;
 case 10: doe->delay2 = (random() % (R_P_SPAN-1)) + 1; break;
 }
}//mutate

void seed_popu(void) {
int c;
 for(c=0; c<POPU; c++) {
 Orga[c].hl_iog0 = random() % 15;
 Orga[c].hl_iog2 = random() % 15;
 Orga[c].fixdec00 = random() % LOG_RANGE;
 Orga[c].fixdec0rest = random() % (Orga[c].fixdec00+1); //***
 Orga[c].fixdec2all = random() % LOG_RANGE;
 Orga[c].nt_po0 = random() % LOG_RANGE;
 Orga[c].nt_po2 = random() % LOG_RANGE;
 Orga[c].refper0 = random() % 25;
 Orga[c].refper2 = random() % 25;
 Orga[c].refpercell = random() % 63;
 Orga[c].delay2 = (random() % (R_P_SPAN-1)) + 1;
 Orga[c].fitness = 1.0;
 baptice(&Orga[c]);
 }
}//seed_popu

char * sex(int woman, int man) {
//positive==looks like mami, neg.like papi 0==perfect mix
char *mix = "???????????????????????\0";
int looks_like = 42;
 while((looks_like < -3) || (looks_like > 3)) { //force 2 swaps
 looks_like = 0;
 if(random()%2) { Baby.hl_iog0 = Orga[woman].hl_iog0;
 mix[0]='+'; ++looks_like; }
 else { Baby.hl_iog0 = Orga[man].hl_iog0;
 mix[0]='-'; --looks_like; }

 mix[1]='+'; ++looks_like; }
 else { Baby.hl_iog2 = Orga[man].hl_iog2;
 mix[1]='-'; --looks_like; }

 if(random()%2) { Baby.fixdec00 = Orga[woman].fixdec00;
 mix[2]='+'; ++looks_like; }
 else { Baby.fixdec00 = Orga[man].fixdec00;
 mix[2]='-'; --looks_like; }

 174

 if(random()%2) { Baby.fixdec0rest = Orga[woman].fixdec0rest;
 mix[3]='+'; ++looks_like; }
 else { Baby.fixdec0rest = Orga[man].fixdec0rest;
 mix[3]='-'; --looks_like; }

 if(random()%2) { Baby.fixdec2all = Orga[woman].fixdec2all;
 mix[4]='+'; ++looks_like; }
 else { Baby.fixdec2all = Orga[man].fixdec2all;
 mix[4]='-'; --looks_like; }

 if(random()%2) { Baby.nt_po0 = Orga[woman].nt_po0;
 mix[5]='+'; ++looks_like; }
 else { Baby.nt_po0 = Orga[man].nt_po0;
 mix[5]='-'; --looks_like; }

 if(random()%2) { Baby.nt_po2 = Orga[woman].nt_po2;
 mix[6]='+'; ++looks_like; }

 mix[11]='\0';

 else { Baby.nt_po2 = Orga[man].nt_po2;
 mix[6]='-'; --looks_like; }

 if(random()%2) { Baby.refper0 = Orga[woman].refper0;
 mix[7]='+'; ++looks_like; }
 else { Baby.refper0 = Orga[man].refper0;
 mix[7]='-'; --looks_like; }

 if(random()%2) { Baby.refper2 = Orga[woman].refper2;
 mix[8]='+'; ++looks_like; }
 else { Baby.refper2 = Orga[man].refper2;
 mix[8]='-'; --looks_like; }

 if(random()%2) { Baby.refpercell = Orga[woman].refpercell;
 mix[9]='+'; ++looks_like; }
 else { Baby.refpercell = Orga[man].refpercell;
 mix[9]='-'; --looks_like; }

 if(random()%2) { Baby.delay2 = Orga[woman].delay2;
 mix[10]='+'; ++looks_like; }
 else { Baby.delay2 = Orga[man].delay2;
 mix[10]='-'; --looks_like; }
 }

 Baby.fitness = 1.0; //There's no future, no future for you.

 baptice(&Baby);

 return(mix);

}//sex

void roulette_selection(long count) {
long acfi[POPU], //accumulated fitness array
 accufit = 0,
 ball = 0,
 mutations = 0;
int mother = 0,
 father = 0,
 c;
 if(count >= 1234567891) {
 printf("\nstuck after 1234567891 babys, press any key");
 getch();
 }
 for(c=0; c<POPU; c++) {

 175

 accufit += (long) (Orga[c].fitness*100.0);
 acfi[c] = accufit;
 }
 //choose father and mother with different genomes
 while(strcmp(Orga[father].name,Orga[mother].name) == 0) {
 ball = random() % accufit;
 for(c=0; c<POPU; c++)
 if(ball <= acfi[c]) {
 mother = c;
 break;
 }
 ball = random() % accufit;
 for(c=0; c<POPU; c++)
 if(ball <= acfi[c]) {
 father = c;
 break;
 }
 }
/*
 fprintf(gene_output,"\nmami");
 dump_orga(Orga[mother],mother);
 fprintf(gene_output,"\npapi");
 dump_orga(Orga[father],father);
 fprintf(gene_output,
 "\n %s mix",sex(mother,father));
*/
 sex(mother,father);
 while(clone_test(&Baby)) {
 mutate(&Baby);
 baptice(&Baby);
 mutations+=2;
 }

 reset(1);
 set_params(&Baby);
 Baby.fitness = 1.0 + run1screen();

 dump_orga(Baby,-1);
 fprintf(gene_output," mut%2d",mutations);
 if(!SEE) printf(" mut%2d",mutations);

 c=POPU-1;
 while(c>0) { //sort baby in population
 if(Baby.fitness < Orga[c-1].fitness) break;
 Orga[c]=Orga[c-1];
 --c;
 }
 if(Baby.fitness >= Orga[c].fitness) {
 Orga[c]=Baby;

 }

}//roulette_selection

 fprintf(gene_output," :)");
 if(!SEE) printf(" :)");

 else {
 fprintf(gene_output," X(");
 if(!SEE) printf(" X(");
 }

void bubble_sort(void) { //?? what a shame
struct organism orgacopy[POPU];
int order[POPU];
int swaped = 1,temp,c;
 for(c=0; c<POPU; c++) order[c] = c;

 176

 while(swaped) {
 swaped = 0;
 for(c=0; c<POPU-1; c++)
 if(Orga[order[c]].fitness < Orga[order[c+1]].fitness) {
 temp = order[c];
 order[c] = order[c+1];
 order[c+1] = temp;
 swaped = 1;
 }
 }
 for(c=0; c<POPU; c++)
 orgacopy[c] = Orga[order[c]];
 for(c=0; c<POPU; c++)
 Orga[c] = orgacopy[c];
}//bubble_sort

void accu_synch(int mode) { //accumulated synchronization measure
int c,c2,c3; //mode:0 clean mode:1accumulate
 if(mode == 0) {
 for(c=0; c<R_P_SPAN; c++)
 for(c2=0; c2<R_P_SPAN; c2++) {
 His2D[c][c2] = 0;
 His2Ds[c][c2] = 0;
 }
 Accumulated = 0;
 }
 else {
 for(c=0; c<N_C; c++) { //His2D is read by show_synchro_table in hires.c
 His2D[State[c]][WaveL[c]]++;
 if(!State[c])
 His2Ds[WaveL[c]][WaveL1[c]]++;
 }
 Accumulated++;
 }
}//accu_synch

double rate_accu_synch(void) {
double rate = 0.0;
int c,c2,c3;

 for(c=0; c<R_P_SPAN-1; c++)
 for(c2=0; c2<R_P_SPAN-1; c2++) {
 if(His2Ds[c][c2] > RATESYNCHCAP)
 rate += RATESYNCHCAP * RATE_SYNCH[c][c2]; //***
 else
 rate += His2Ds[c][c2] * RATE_SYNCH[c][c2]; //***
 }
 //roulette needs positive numbers /0error
 if(rate <= 0) rate = 0.01;
 return(rate / Accumulated);
}//rate_accu_synch

double run1screen(void) {
double run = 0.0;
int c;
 reset(1);
 hl_factors(); //transform half-lifes to factors
 if(EQUA) setEqu();
 if(SEE) plot_World(); //show frog's world
 if(SEE) show_LMRG();

 accu_synch(0);

 177

 for(c=0; c<SHOW_GEN; c++) { //first screen
 retina();
 compass();
 compute();
 if(check_cells() != -1) return(0.0);
 accu_synch(1);
 Gen++;
// motor_navigation(' '); //unused return
 ++TimePos;
 if(SEE) plot_depo();
 }
 run = rate_accu_synch();

 if(SEE) {
 if(DispUp == 'B') bars();
 if(DispUp == 'H') {histogram(1); synchro_stats(); }
 }

 return(run);
}//run1screen

void batch(long loops) { //if SEE==1:show depo,etc. 0:run blind, print text
long c;
char *babycount = "01234567890123456789";
int c2;
 reset(1);
 if((gene_output = fopen("geneout.txt","w+")) == NULL) {
 clean_line(1,1);
 printf("can't save file geneout.txt");
 delay(2000);
 exit(1);
 }
 if(SEE) if(start_graphics()) exit(1);

 init_orga();

 seed_popu();

 for(c=0; c<POPU; c++) {
 reset(1);
 set_params(&Orga[c]);
 Orga[c].fitness = 1.0 + run1screen();
 if(!SEE) printf("%6D \n",c);
 }

 bubble_sort();

 dump_popu();

 srand48(1234567891L);//limits.h: #define LONG_MAX 2147483647L
 for(c=0; c<loops; c++) {
 roulette_selection(c);
 fprintf(gene_output," babys:%6D",c);
 if(!SEE) printf(" babys:%6D",c);
 if(SEE) {
 sprintf(babycount," babys:%6D",c);
 GrTextXY(500,214,babycount,WHITE,DARKGRAY);
 }
// if(!SEE) if(c % 100 == 0) dump_popu();
 if(bioskey(1)) {
 getch();
 break;
 }
 }

 178

 179

 fprintf(gene_output,"\n\n after %D babys\n\n",c);
 dump_popu();

 fclose(gene_output);
 reset(1);
 hl_factors();
 if(EQUA) setEqu();
 set_params(&Orga[0]);
 save_params(0,"param00.txt");
 fclose(gene_output);
 exit(0);
}//batch

	Abstract
	3 METHOD
	Fig. 22. model 4.5.4 adapted to run under the ION simulation program. The accumulated synchronicity table (5.12) is shown approximately in the middle the screen above the spike display. To the right of it is the new synchronicity table, showing only sp
	The model behaves in a virtually identical way to the model presented in 4.5.4. The individual spikes are different mainly because the compiler used for this simulation is a different one, and are not due to the many changes in the structure of the simul
	6.1 changes on the genetic algorithm
	Beside some minor changes in the graphics, all the changes were performed in the genetic algorithm on source file GENE.C. In model 4.5.4 there are no distinct areas of cell, but rather homogeneous random connections. The fitness measurement was adapted t
	6.2 run 0909
	The fitness evaluation was simply adapted to results of accumulated synchronicity of the model 4.5.4 (as shown in the previous figure):
	>RATE_SYNCH---
	0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 9 0 0 0 0 0 0
	0 0 0 0 0 9 9 9 0 0 0 0 0
	0 0 0 0 0 0 9 9 9 0 0 0 0
	0 0 0 0 0 0 0 9 9 9 0 0 0
	0 0 0 0 0 0 0 0 9 9 9 0 0
	0 0 0 0 0 0 0 0 0 9 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0
	-1 0 0 0 0 0 0 0 0 0 0 0 0
	A small difference with previous forms of fitness evaluation is the use of a negative value in the lower right corner of the fitness table. The intention is to diminish the measured fitness of models whose cells fire continuously.
	A final, relatively important change was to limit the value of the synchronicity data to a maximum of 100. The reason for this, is to force the models to distribute their spikes over the whole expected area (the digits '9' on the fitness table). If mor
	Running the program produced the following results:
	�
	Fig. 23 Run 0909
	This result is surprising for two reasons. First, stochastic synchronization is achieved (and remains stable in the form shown at the right of the screen) but on each wave the cells spike twice, producing the green/red columns shown. If it were not for
	The second surprise was found while searching for an error in the program that could have produced this result. The limit of a maximum 100 spikes on a position of the table had been wrongly implemented. Instead of converting values greater than 100 to 10
	6.3 run 0923
	Finally, the error was corrected, and the limit was taken out of the program and read as a model parameter from the data file. A new fitness evaluation was tested:
	>RATE_SYNCH---
	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	-1 -1 -1 -1 -1 6 6 7 8 9 -1 -1 -1
	-1 -1 -1 -1 -1 6 -1 -1 -1 8 -1 -1 -1
	-1 -1 -1 -1 -1 5 -1 -1 -1 7 -1 -1 -1
	-1 -1 -1 -1 -1 5 -1 -1 -1 7 -1 -1 -1
	-1 -1 -1 -1 -1 5 5 5 6 6 -1 -1 -1
	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	>RATESYNCHCAP-
	370
	The theory expressed in this fitness evaluation, is that all activity outside the expected one should decrease the fitness (-1 values). The wanted wavelengths
	should oscillate between 5 and 9. The values used are adjusted in inverse proportion to the expected spikes at a given frequency (5 in diagonal 5, 9 in diagonal 9). Finally, the cells should oscillate between wavelengths 5 and 9 but do so without havin
	�
	Fig. 24 run 0923
	This model synchronizes fast, the individual cells have no stable frequency, and the wave is much less spread than 4.5.4., it can be considered an improvement over the positive case model used as reference.
	7 GENERAL DISCUSSION

