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Abstract

Due to the capability of mold injecting manufacturing short �ber-reinforced composites are increasingly in

use in the aeronautical and automotive industries. However, a crucial aspect is their spatially distributed

material properties induced by the probabilistic characteristics of the microstructure. To predict the structural

response of components made of short �ber-reinforced composites by numerical simulation correctly the

probabilistic information must be included in the modeling approach. Furthermore, commonly used matrix

material is characterized by a distinct plastic deformation even at low stress levels. Therefore, in this work,

a modeling approach is proposed that utilizes second-order Gaussian random �elds for the representation

of the spatially distributed material properties on the component level in the elastic and plastic domain.

The modeling approach comprises the cross-correlation analysis of the material parameters describing the

elastic-ideal plastic material behavior and a subsequent representation of the parameters by second-order

Gaussian random �elds. The analysis reveals a complex cross-correlation structure of the parameters, which

depends on the window size on the mesoscale and requires the use of suitable numerical methods like the

multiple correlated Karhunen-Loève expansion to synthesize the representation of the material parameters.

The numerical simulations of tensile test specimens in the elastic and plastic domain predict the structural

response under uniaxial loading accurately. The localized plastic deformation of the specimen is observable

and meets the experimental validation by tensile tests until failure. Furthermore, the experimental data is used

to determine the correlation length. Besides this, the modeling approach is validated by nanoindentation tests

on the mesoscale, which reveal the spatial distribution of the material properties. Furthermore, it is shown

that the area characterized by nanoindentation tests is 25 times larger than the projected area of the used

Berkovich tip. In conclusion, the proposed modeling approach utilizing random �elds is capable of representing

the localized deformation of short �ber-reinforced composites induced by the probabilistic characteristics of

the microstructure. Furthermore, the correlation structure can be derived by numerical simulation on the

mesoscale, which can be experimentally analyzed by nanoindentation tests. Finally, the correlation length is

an independent material parameter, which can be derived from experimental data.
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Kurzfassung

Auf Grund der Eignung von kurzfaserverstärkte Verbundwerksto�en zur Verarbeitung in Spritzgussbauteilen

werden diese zunehmend in der Luftfahrt- und Automobilindustrie eingesetzt. Eine wichtige Eigenschaft dieser

Materialien sind ihre räumlich verteilten Materialeigenschaften, die durch die probabilistischen Eigenschaften

der Mikrostruktur bedingt sind. Um die Strukturantwort von Bauteilen aus kurzfaserverstärkten Verbund-

werksto�en durch numerische Simulation korrekt voraussagen zu können, müssen diese probabilistischen

Informationen in den Modellierungsansatz mit einbezogen werden. Darüber hinaus zeichnet sich das üblicher-

weise verwendete Matrixmaterial durch eine ausgeprägte plastische Verformung auch bei geringen Belastungen

aus. Abgeleitet aus diesen Eigenschaften wird in dieser Arbeit ein Modellierungsansatz vorgestellt, der homo-

gene Gauß’sche Zufallsfelder zweiter Ordnung für die Abbildung der räumlich verteilten Materialeigenschaften

auf Komponentenebene im elastischen und plastischen Bereich verwendet. Der Modellierungsansatz umfasst

die Kreuzkorrelationsanalyse der Materialparameter, die das elastisch ideale-plastische Materialverhalten

beschreiben, und eine anschließende Abbildung der streuenden Parameter durch homogene Gauß’sche Zu-

fallsfelder. Dabei zeigt sich eine komplexe Kreuzkorrelationsstruktur der Materialparameter, die von der

Fenstergröße auf der Mesoskala abhängt und somit die Verwendung einer geeigneten numerischen Methode,

wie der mehrfach korrelierten Karhunen-Loève-Erweiterung zur Synthese der Zufallsfelder zur Darstellung

der Materialparameter erfordert. Diesem Ansatz folgend geben numerische Simulationen von Zugversuch-

sproben im elastischen und plastischen Bereich die Verformung unter einem einachsigen Belastungszustand

wieder. Die lokalisierte plastische Verformung des Probekörpers ist beobachtbar und entspricht der exper-

imentellen Validierung durch Zugversuche bis zum Versagen. Darüber hinaus werden die experimentellen

Daten zur Bestimmung der Korrelationslänge verwendet. Weiterhin wird der Modellierungsansatz durch

Nanoindentationsversuche auf der Mesoskala validiert, welche die räumliche Verteilung der Materialeigen-

schaften aufzeigen. Dabei kann nachgewiesen werden, dass die durch Nanoindentationstests charakterisierte

Fläche 25 Mal größer ist als die projizierte Fläche der verwendeten Berkovich-Spitze. Zusammenfassend

lässt sich sagen, dass der vorgeschlagene Modellierungsansatz unter Verwendung von Zufallsfeldern in der

Lage ist, die lokalisierte Verformung von kurzfaserverstärkten Verbundwerksto�en darzustellen, die durch die

probabilistischen Eigenschaften der Mikrostruktur verursacht wird. Ferner kann die Korrelationsstruktur durch

numerische Simulation auf der Mesoskala abgeleitet werden, die durch Nanoindentationstests experimentell

analysiert werden kann. Schließlich ist die Korrelationslänge ein unabhängiger Materialparameter, der aus

experimentellen Daten bestimmt werden kann.
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Chapter 1

Introduction

1.1 Motivation and state of the art

In comparison to well-established homogeneous materials, heterogeneous materials like reinforced composites

show a signi�cantly improved speci�c strength and sti�ness. They usually consist of two constituents, the

matrix material and reinforcing elements like particles and �bers, respectively. One class of materials in this

context are short �ber-reinforced composites (SFRC), where a thermoplastic matrix material like polyamide or

polypropylene is combined with glass or carbon �bers of 100 µm to 300 µm length. The short length of the

reinforcing elements allows the processing of such materials by injection molding and hence, in large-scale

serial production. Due to this, SFRCs are of high interest in e.g. the automotive industry [38]. However, the

short length of the reinforcing �bers in combination with the varying melt �ow velocities in the cavity causes

a spatial distribution of the material properties on the component level [141]. Subsequently, the accurate

representation and prediction of the structural response under load lead to complex and expensive numerical

simulations. One approach to solve this issue and allow the exploitation of the full lightweight potential is the

use of probabilistic, multi-scale methods.

There are many di�erent approaches to model the probabilistic characteristics of SFRC. In [2] an approach

based on the orientation tensor is introduced, which can also be directly implemented in the material description

[9]. There is also an extension of this approach, which combines the orientation tensor with a coupled micro-

mechanical and phenomenological approach [33, 123]. A further technique is provided by the extended �nite

element method (XFEM), which was developed for application in the �eld of crack growth and interfaces [122].

It is also applied to reinforced concrete [68] and combined with a cohesive zone model [137]. Finally, in [156] a

�rst attempt of a scale transition is introduced by combining XFEM with a Monte Carlo sampling to estimate

the size of the representative volume element (RVE) for random composites.

In addition, a stochastic technique for the representation of spatially distributed data and hence, a suitable

approach for the material modeling of SFRC are random �elds [75, 108, 176]. This technique enables one to

incorporate the probabilistic information on the component level, without the need for explicit modeling of

the microstructure. A comprehensive framework of non-Gaussian positive-de�nite matrix-valued random

�elds and tensor-valued random �elds for mesoscale stochastic models of anisotropic elastic microstructures is

provided in [163, 164]. This work is extended to the stochastic �uctuation in �ber-reinforced composites on the

mesoscale in [56, 57], to cover, e.g. the continuous mode conversion of guided ultrasonic waves in thin-walled

composites [189], multi-scale approaches for heterogeneous materials with non-Gaussian random �elds [55],

and random interphases from atomistic simulations to polymer nanocomposites [97]. This technique is also

applied in the context of geosystems [22], thin-walled composite cylinders [31] and three-dimensional concrete

microstructures [167].

To synthesize random �elds mostly the Karhunen-Loève expansion (KLE) is used [106], which leads to

a separation of the deterministic numerical modeling and the probabilistic representation of the material

properties. This concept is also known as the stochastic �nite element method (SFEM) [112, 131], which is used

for di�erent applications. The combination of SFEM with cohesive zone models to analyze the crack growth

in �ber-reinforced cementitious composites is presented in [86]. In [56, 164] the SFEM is combined with an

RVE. In addition to this, the �uctuation of the volume fraction is discussed in [57]. Furthermore, the utilization

of the KLE requires knowledge about the correlation structure of the underlying random variables. Since

the spatial distribution of the material properties is induced by the probabilistic nature of the microstructure,

the in�uence of the microstructural characteristics on the material properties is of interest. In contrast to
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Chapter 1 Introduction

continuous �ber-reinforced composites, local e�ects on the stress and strain state must be considered. The

analytical framework of the properties of materials with inclusions or reinforcement like SFRC is based on

the mean-�eld theory combined with Eshelby’s work [40]. This work was expanded in [121, 170] leading

to the well-known material models by Mori and Tanaka as well as Tandon and Weng. Besides this, Halpin

and Tsai developed an additional approach [61, 62], which is a self-consistent method. A detailed overview is

provided in [174], which shows that the material model by Tandon and Weng describes the elastic properties

best. Using these material models the analysis of the in�uencing parameters reveals that the �uctuation of

the �ber volume fraction and the �ber orientation a�ects the mechanical properties signi�cantly [45, 60, 78].

However, it is important to note that the probabilistic information of the microstructural characteristics is not

included in these analyses.

In addition to this, so far the work provided in literature is limited to the elastic domain. However, most

matrix materials used for SFRC show very prominent plastic deformation even at operation loads [77]. A �rst

application of random �elds to nonlinear isotropic material behavior is given in [185]. Besides this, most works

either deal with the spatial distribution of the linear-elastic material behavior or homogenization methods are

utilized in the context of nonlinear material behavior [1, 22, 85, 118] to derive the RVE of the material [17, 18].

1.2 Objectives and outline

The main objective of the presented work is the development of a probabilistic multi-scale material modeling

approach covering elastic and plastic deformations. To reduce computational costs, the probabilistic informa-

tion induced by the microstructural characteristics is included on the component level without the explicit

representation of the microscale. Following the state of the art, a probabilistic modeling approach utilizing

second-order homogeneous Gaussian random �elds is used to achieve this goal, because this technique enables

one to incorporate spatially distributed properties into a numerical modeling procedure on the component level.

In combination with knowledge about the in�uence of the probabilistic characteristics of the microstructure

and the resulting spatial distribution of the material properties a probabilistic multi-scale material modeling

approach can be established.

Hence, the �rst step of this work is the analysis of the in�uencing microstructural characteristics and their

spatial distribution to the resulting material properties described by the elasticity tensor. This comprehensive

investigation covers an analytical treatment based on well-known material models for SFRC developed by

Halpin and Tsai [61, 62] and Tandon and Weng [170] as well as numerical analyses. In contrast to the state

of the art, both steps incorporate information about the probability density functions (PDF) of the main

microstructural characteristics like �ber length, �ber diameter, and �ber volume fraction. To derive the

in�uence of these characteristics on the elasticity tensor and the engineering constants each characteristic is

separately varied following its known PDFs before calculating �rst the engineering constants and subsequently

the elasticity tensor elements. To identify which microstructural characteristic in�uences which elasticity

tensor element most, the analytically obtained material properties are compared with each other.

The corresponding numerical analysis is based on two-dimensional numerical simulations. Here, the

numerical model is generated by randomly placing �bers concerning their microstructural characteristics and

their PDFs in a prede�ned area. As already done before, the impact of each characteristic is again analyzed

separately. In addition, to cover also interfering e�ects in separate simulations all parameters are varied. The

numerical simulations are conducted following Hill’s condition by applying Neumann and Dirichlet type

boundary conditions to derive an upper (Voigt) and a lower (Reuss) bound [150, 179].

With the knowledge about the microstructural characteristics and their PDFs in�uencing the resulting

material properties most representative arti�cial microstructures can be generated. This is necessary to analyze

the correlation structure of the material properties in a second step because the correlation structure of the

material properties is essential for the discretization of the random �elds for the representation of the spatially

distributed material properties by the KLE. At �rst, the linear elastic material properties are analyzed before

extending the approach to transversely-isotropic elastic-ideal plastic behavior. In both cases, the methodology
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Paper I

Analysis of the microstructural 
characteristics on a analytical and 
numerical basis to determine the 
decisive material properties

Chapter 3

Analysis of the microstructure and 
experimental characterization

Paper III

Characteriztaion of the spatial 
distribution of the material 
properties and the near field 
apparent overall material 
properties by indentation tests

Chapter 4

Paper II

Proposal of a modeling procedure 
based on random fields to 
incorporate the spatial distribution 
of the linear elastic material 
properties

Chapter 4+5

Linear elastic modeling

Paper IV

Correlation analysis of six 
individual material parameters 
that describe the elastic-ideal 
plastic material behavior

Chapter 5

Extension to elastic-ideal plastic 
material behavior

Paper V

Extension of the modeling 
approach to elastic-ideal plastic 
material behavior and application 
to SFRC with experimental 
validation

Chapter 5

Figure 1.1: Contribution of the Papers to the overall objective of the cumulative Habilitation thesis.

is based on the moving window method and the determination of the spatial distribution of the apparent

overall material properties. The correlation structure is obtained by a curve �t of the derived dimensionless

correlation parameter with well-known correlation functions.

The next step contains the representation of the individual material parameters by random �elds, which can

now be synthesized. With these representations, numerical simulations of uniaxial tensile tests are conducted

both on the mesoscale and the component level. To validate the results nanoindentation and component tensile

tests are carried out. By comparing the results the correlation lengths of the random �elds can be determined

in the �nal step of the proposed procedure.

Since this is a cumulative Habilitation thesis the work consists of two parts (A and B). Part A gives a summary

of the research that is presented in the papers collected in Part B. Subsequently, the research summary provided

in Part A is structured as follows. Chapter 2 gives an introduction to the research �elds of multi-scale modeling

for heterogeneous materials and probabilistic material modeling approaches leading to the main objectives of

this research. In Chapters 3 to 5 the main steps of the multi-scale modeling approach are summarized. First, the

probabilistic characteristics of the microstructure are analyzed in Chapter 3. Next, the modeling approach on

the mesoscale is presented in Chapter 4. In the last step, the gained knowledge is used to adapt the modeling

approach from the mesoscale to the component level in Chapter 5. The research summary is concluded by

Chapter 6. Part B comprises the publications of the cumulative thesis. Here, Figures 1.1 gives an overview of

the contribution of each Paper to this cumulative Habilitation thesis and how the key �ndings are combined to

the proposed modeling approach.

To preserve a consistent layout throughout the thesis the papers are reformatted. This includes a continuous

numbering of the �gures, tables, and equations as well as a uniform citation style and a combined bibliography

at the end. Furthermore, each publication starts with an overview holding the main bibliographic information

e.g. the title, authors, current status, journal, and abstract.
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Chapter 2

Fundamentals of probabilistic multi-scale material modeling

This section gives only a brief overview of the stochastic concept and multi-scale modeling approach used in

this work for the representation of spatially distributed material properties in the elastic and plastic domain of

SFRC. Beside the literature provided in this Chapter, the reader is kindly referred to the publications of this

cumulative Habilitation thesis [141–144, 146] for more details about the fundamental framework. Each paper

contains the relevant background of the presented aspects.

2.1 Techniques of probabilistic modeling

2.1.1 Random variables

Quantities that are derived from random experiments and thus, are subject to the rules of probability theory

are called random variables Z(!). The result of an experiment gives a realization z of the random variable

Z(!). The main functions to characterize these random variables are �rst, the cumulative distribution function

(CDF) holding information about the probability p of Z(!) ≤ z and second, its �rst derivative giving the PDF.

One well-known example is the Gaussian bell curve, describing the normal distribution. Besides these two

functions, the moments of the probability distribution are important quantities. In the context of continuum

mechanics and material modeling second-order or L2 theory is applied. This means that the �rst two moments

of a random variable, which give the expected value and the mean square deviation, respectively, are �nite

[180].

2.1.2 Random �elds

If random variables Z(!) are a continuous function of the spatial coordinates one speaks of random �elds

Z(!, x) [177]. Again the CDF and PDF as well as the moments of the probability distribution characterize this

probabilistic quantity. Subsequently, random �elds are fully described by the mean value �(x), the variance

�2(x) and the correlation coe�cient �(x, x′) [169, 176]. The correlation coe�cient holds the point-to-point

information [177], where the auto-correlation gives the information about two realizations of the same random

�eld at di�erent locations and the cross-correlation provides information about two realizations of di�erent

random �elds.

Assuming homogeneous second-order random �elds the mean value and the variance are independent

of the spatial coordinates and hence, become constant [176]. Furthermore, the correlation is invariant to a

translation and can, therefore, be described by relative coordinates. If the correlation is also independent of

any orthogonal transformation the random �eld is isotropic [37, 176].

Utilizing homogeneous second-order Gaussian random �elds in the context of continuum mechanics and

especially material modeling it is important to note that this implies a normal distribution of the corresponding

random variable. However, the assumption of a normal distribution allows negatively valued realizations [47,

169], which contradicts the parameter de�nition for most material properties since they are of positive nature.

Following this, the application of Gaussian random �elds to the multi-scale modeling of heterogeneous material

like SFRC is controversial [163]. One solution is the use of non-Gaussian random �elds, which guarantee a

stochastic solution of second-order by avoiding negative realizations [27, 54, 55, 97, 110, 172]. However, mostly

the PDF is unknown. In this case, the random �elds are represented by a discrete number of realizations !i
[132]. In addition, the stochastic modeling approach presented here is combined with FEM. In this context

also only discretized random �elds are used. In conclusion, the established modeling approach requires �nite
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Chapter 2 Fundamentals of probabilistic multi-scale material modeling

sampling. Subsequently, the resulting Gaussian random �elds di�er not signi�cantly from non-Gaussian

random �elds [141].

2.1.3 Synthesizing random �elds

Following the main characteristics of random �elds, a technique is required to generate a continuous represen-

tation of the correlation coe�cient to synthesize random �elds. One well-known approach is the KLE [106],

which is in essence a generalization of the Fourier transform to probabilistic processes [108] that may be a

function of time or the spatial coordinates. Thus, the KLE is a spectral decomposition of the known correlation

functions. The corresponding eigenvalues and eigenfunctions are obtained by solving a Fredholm integral

equation of the second kind. Following this approach, only auto-correlated random �elds are synthesized. An

extension to multiple cross-correlated random �elds is provided in [25]. Utilizing the multiple correlated KLE

(mcKL) �rst, di�erent sets of uncorrelated random variables are generated for each variable. In a subsequent

step, these sets are transformed into cross-correlated random variables. Hence, the procedure is suitable for

the representation of material properties, which are multi-variate and strongly cross-correlated [142, 144].

Adapting the synthesis of random �elds in the context of material modeling and numerical simulation a

discrete representation is required. Due to the fact that there are closed solutions of the Fredholm integral

equation only for a limited number of correlation functions and domain shapes usually, numerical integration

methods are necessary. Examples are the midpoint method [32, 182], the spatial averaging [177], and the shape

function method [88, 104, 105]. Besides these approaches, the main idea of the KLE was extended to spatial

decomposition in [165]. One technique is the expansion optimal linear estimate (EOLE) introduced in [101],

which is identical to the Nyström method [6] with a uniform integration point de�nition.

2.2 Multi-scale modeling

The approach of multi-scale modeling is based on the concept of the separation of scales [64]. This concept

follows the existence of an RVE [70], where the size of an RVE must be small compared to the macroscopic

dimension of the component. However, at the same time, it must be large enough to contain a statistically

representative amount of information about the microstructure [190]. Subsequently, the size d of an RVE is

much larger than the size l of e.g. an inclusion and much smaller than the dimension L on the macroscale [64],

see Figure 2.1.

Following this, e�ective material properties can be computed for an RVE on the mesoscale that are inde-

pendent of the boundary conditions [70]. However, as already indicated the homogenization of the material

properties is only possible if the separation of scales is ful�lled. If the size of the selected volume element is

too small, the e�ective material properties still depend on the boundary conditions, the microstructure and
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Fig. 1 Multiscale approach.

the used load case. This is equivalent to the fact, that

a RVE consists of a statistically sufficient amount of

inhomogenities to be represenative for the microstruc-

ture. Therefore, the material properties of this volume

can be replaced by a homogeneous representation. It

is obvious the the scale d must be much larger than

the size l of an inhomogenity and much smaller than

the component scale L. This approach is known as the

separation of scales, that is also formulated as [8,33,43]

l� d� L. (1)

The dimension l is assigned to the microscale, L to the

macroscale, and the edge length d of the RVE to the

mesoscale. The concept is also shown in Fig. 1.

3 Nanoindentation

3.1 Theory

For the experimental determination of the linear-elastic

quasi-static material properties by nanoindentation the
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Fig. 1 Scheme load cycle nanoindentation, [7,11].

on the mesoscale. (Main conclusion of this work in 1-2

sentences)

Keywords Short fiber-reinforced composites · nanoin-

dentation · local material properties

1 Introduction

Compared to standard tensile tests this procedure al-

lows one to measure the near surface material proper-

ties [3] and hence in combination with a projected in-

dentation area of approximately 9000 µm2 characterize

the material on the mesoscale.

2 Nanoindentation

2.1 Theory

For the experimental determination of the material prop-

erties by nanoindentation the slop of the force-displace-

ment curve of the unloading process is calculated, see

Fig. 1 (left). The indentation or reduced modulus is

obtained by [8,9]

Er =
dP

dh
=

1

β

√
π

2

S√
Ap(hc)

, (1)

where S is the stiffness of the contact, Ap the projected

area of the indentation tip for a contact depth hc, and

β an empirical correction factor of the indenter uni-

axial symmetry when using pyramidal indenter [4,12].

As done in [6] β is set to one in this analysis. This is

possible as the value of β usually varies between 1.02

and 1.08, which leads to a deviation of the indentation

modulus of up to 3 % [8,9]. The projected area of a per-

fectly sharp Berkovich tip, which is used in this study,

is usually approximated by [2]

Ap = πh2c tan2 ϕ = 24.5h2c , (2)

with an effective semi-angle of ϕ = 70.32° [1]. Due to

imperfections, a calibration of the projected surface is

mostly used. For this calibration the projected surface

Fig. 2 Scheme load cycle nanoindentation, [29,39].

slope of the force-displacement curve of the unloading

process is evaluated in order to derive the indentation

modulus, see Fig. 2. Hence, the indentation modulus,

which is also referred to as the reduced modulus, is

expressed by [32,35]

Er =
dP

dh
=

1

β

√
π

2

S√
Ap(hc)

, (2)

where S is the stiffness of the contact, Ap the projected

area of the indentation tip for a contact depth hc, and

β an empirical correction factor of the indenter uniaxial

symmetry when using pyramidal indenter [20,40].

The indentation or reduced modulus is not equal to

the Young’s modulus of the specimen’s material, be-

cause the measurement is affected by the material of

the indentation tip. Therefore, a correction of the ob-

tained indentation modulus is necessary. Regarding the

Poisson’s ration νi and the Young’s modulus Ei of the

Figure 2.1: Scale de�nition based on a tensile test specimen made of SFRC, taken from Paper III [146].
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Chapter 2 Fundamentals of probabilistic multi-scale material modeling

the contrast of the involved material phases [67, 81]. The corresponding volume is called statistical volume

element (SVE) [130]. Furthermore, instead of the e�ective material properties, one speaks of the apparent

overall material properties [79, 80].

To determine the e�ective material properties the Hill Mandel condition must be satis�ed [69], which

states the energy conservation for scale transition [70]. Additionally, compatible boundary conditions must

be selected. Among others, these are boundary conditions of Dirichlet type (pure displacement boundary

conditions) and Neumann type (pure traction boundary conditions). In the case of an SVE, these boundary

conditions lead to an upper and lower bound [150, 179], whereas the experimentally obtained properties lay in

between these two bounds.
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Chapter 3

Specimen de�nition and probabilistic characteristics of the microstructure

In this chapter �rst, the speci�cation of the specimens used in this work is introduced. This is followed by

the extraction methodology of the probabilistic microstructural characteristics induced by the manufacturing

process of the specimens and a discussion of the results. For detailed information about the obtained results, the

reader is kindly referred to Paper II of this cumulative Habilitation thesis provided in Part B [141]. Subsequently,

the in�uence of these characteristics on the apparent overall material properties is analyzed. Details about this

investigation can be found in Paper I of this cumulative Habilitation thesis [144].

3.1 Specimen de�nition

The numerical simulations and experimental investigations presented in this work are based on SFRC compo-

nents. In an initial step plates made from Ultradur B 4300 G6 [21] with a size of 300mm × 300mm × 3mm are

manufactured by mold injection. Ultradur B 4300 G6 is a polybutylene terephthalate (PBT) matrix material

�lled with glass �bers and a �ber mass fraction of 30 %. With respect to the density of the two constituents,

the �ber volume fraction is 18.22 %. The linear elastic material properties of the two phases are provided in

Table 3.1.

From this plate, specimens are cut out that are later used for nanoindentation and tensile tests. The

orientation and size of the di�erent specimens that are used during these investigations are depicted in

Figure 3.1. The tensile tests are limited to the melt �ow direction, whereas the nanoindentation tests are

conducted in the direction of the three major axes of the plate. These coincide with the melt �ow direction as

well as the thickness direction. The third axis is perpendicular to the melt �ow and thickness direction.

3.2 Extraction methodology

The microstructure of the SFRC is signi�cantly in�uenced by the melt �ow properties and the induced shear

forces during manufacturing [76]. Due to this not only the �ber distribution but also the �ber length and

�ber diameter show probabilistic characteristics. Therefore, to be able to incorporate these probabilistic

characteristics into a modeling approach microstructural information about the �ber length, orientation, and

diameter are derived from a micrograph as proposed in [158]. The image processing toolbox of Matlab
®

is utilized to extract the geometrical information of each �ber represented by an ellipsoid. The procedure

comprises three steps, which are depicted in Figure 3.2. First, the �bers are detected (see the second picture).

Young’s modulus Poisson’s ratio Yield strength Density

GPa - GPa kg/m3

Glass 72
1

0.22 4000 2500

PBT 2.6 0.41 3.5 1300

1
For the in�uence and correlation analysis in Paper I a Young’s modulus of 70GPa is used. However,

this does not a�ect the overall results, because the results are of qualitative nature.

Table 3.1: Linear elastic material properties of the �ber and matrix material.
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Figure 3.1: Specimen de�nition for the tensile and nanoindentation tests, cf. Paper II and Paper III [141, 146].A modeling approach for short fiber-reinforced composites with experimental verification 7

Original micrograph Fiber detection Binary image Pattern recognition

Fig. 4 Different stage of the image processing routine.

a size of 3370µm x 3000µm captured with a digital mi-

croscope KEYENCE VHX-5000. The panorama image

was generated by stitching 323 individual images with

an magnification of 1500. This leads to a resolution of

558 px per 100 µm.

The main steps for the extraction of the probabilis-

tic characteristics are depicted in Fig. 4. Based on the

original micrograph first the fibers are detected before
the image is transformed to a binary image. This binary

image is then further processed with the image process-

ing toolbox of Matlab R©. With the function regionprops

the orientation, the centroid as well as the major and

minor axis of each ellipse are determined. Using these

values the fiber orientation tensor Aij given in Eq. (52)

is calculated.

4.3 Probabilistic characteristics

4.3.1 General results

In total 9721 fibers are detected within the micrograph

cross-section. Only fibers are taken into account that

are within the boundaries. Fibers reaching over the mi-

crograph are neglected since a correct determination of

the major axis is not possible. Below the results of the

main fiber characteristics like fiber length (major axis),

fiber diameter (minor axis), fiber diameter, and fiber

volume fraction as well as their spatial distribution are

discussed. Fig. 5 shows the spatial distribution of the

obtained fiber length. As the probability of the detec-

tion for a single fiber depends strongly on the orienta-

tion of the fiber, in [11] a procedure is proposed that

weights the fiber length in respect to the probability of

detection. It is assumed, that fibers, that are parallel

to the micrograph section are less likley to be detected

in a micrograph than fibers perpendicular it. This ori-

entation of the fiber is given by the angle θ as defined

in Fig. 3 and Eq. (50). Using this angle the weighting

factor is given by [11]

wi =
1

cos θ
=

lma

lmin
. (53)

The results given in Fig. 5 already include the weight-

ing. Even then a profuse amount of short fibers is indi-

cated. The mean value of the fiber length is 46.6 µm.

Furthermore, the results lead to the conclusion of a

layered structure due to the mold injection process as

shown in []. This is discussed more in detail in Sect. 4.3.2

Next is the fiber orientation. The results are de-

picted in Fig. 5, that shows again the distribution over
the thickness. The distribution clearly shows a preferred

orientation of the fibers along the specimen. However,

this orientation seems to be independent of the location

of the fiber. The orientation is defined by the angle be-

tween the major axis and the horizontal axis as shown in

Fig. 3. The preferred orientation of the fibers and there-

fore, an orientation dependence of the material proper-

ties of the compound with respect to the overall speci-

men orientation is confirmed by the correlation analysis

of the fiber length and the fiber orientation. With an

increasing fiber length the fiber orientation shows a de-

creasing spreading around an orientation angle of 0◦,
see Fig. 3.

The fiber diameter corresponds with the minor axis

of the pattern recognition results. If the fibers are cut

perpendicular to the fiber length these two magnitudes

coincide very well. Only if the fiber is almost parallel to

the micrograph section there might be a significant de-

viation. However, since the probability of detection of

these fibers is small and there is no weighting considered

for the fiber diameter the influence is neglect-able. An-

other influence is more significant. Fig. 6 shows an en-

larged part of the micrograph, where a fiber is detected

that is almost perpendicular to the micrograph section.

Since the cross-section of the fiber is almost circular.

Between the fiber and the matrix material is a dark

shadow that cannot be clearly assigned to one of the

two components. However, the difference between the

inner and outer circle of the shadow is approximately

3 − 5 px. This leads to a deviation of up to 1 µm by a

resolution of 0.18 µm per px in vertical and horizontal

direction. The overall results of the fiber diameter are

given in Fig. 7. The mean value is 9.6 µm. Compared

to the results of other studies this value appears a little

bit low. Usually, the diameter of glass fibers is approxi-

Figure 3.2: Di�erent stages of image processing, taken from Paper II [141].

The image is then transformed into a binary picture, where black is assigned to the matrix material and white

to the �bers (see the third picture). Finally, with the function regionprops of the image processing toolbox all

relevant geometrical information of the �bers holding the orientation, coordinates of the centroid, and the

major and minor axes are extracted. A reconstruction of the results is illustrated in the last picture of Figure 3.2,

showing an excellent agreement between the results of the pattern recognition and the original micrograph.

From a theoretical prospective, the �ber orientation of a single �ber is described by the unity vector p
pointing in the direction of the �ber [100, 158]. Based on this vector p in [2] the second-order �ber orientation

tensor A is introduced. This tensor holds information about the PDF of the �ber orientation distribution

de�ned in [42]. Hence, with the information about the orientation of each �ber in the micrograph the tensor

A can be computed. Furthermore, the probability of �ber detection is directly linked to the �ber orientation.

Therefore, in [158] a weighting factor is proposed. It is assumed that a �ber orientation perpendicular to the

micrograph cross-section is very likely to be detected, whereas �bers parallel to the cross-section are only

very rarely detectable.

For the extraction of the microstructural characteristics a micrograph of the size 3370 µm × 3000 µm with a

resolution of 558 px per 100 µm is used, assuming ergodicity for the extracted microstructure. In the stochastic

framework, this means, that the extracted microstructure is representative of the whole specimen, which

subsequently holds also for the probabilistic characteristics [11, 181].

3.3 Probabilistic characteristics of the microstructure

Analyzing the microstructural characteristics of SFRC includes two main aspects. One is the overall structure

of the cross-section resulting from the melt �ow and the shear stresses [76]. The second deals with the deter-

mination of the PDFs for the main microstructural characteristics like �ber length, diameter, and orientation.

The results of both aspects are summarized below. Following the procedure proposed in [158] Figure 3.3 holds

the main results about the �ber length and �ber orientation with respect to the specimen thickness coordinate.
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Chapter 3 Specimen de�nition and probabilistic characteristics of the microstructure

(a) Distribution of the �ber length over

the specimen thickness.

(b) Distribution of the �ber orientation

over the specimen thickness.

(c) Correlation between �ber length

and �ber orientation.

Figure 3.3: Results of the microstructural characteristics, cf. Paper II [141].
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(c) Histogram �ber length core layer.

Figure 3.4: Histograms of the microstructural characteristics, cf. Paper II [141].

Furthermore, the correlation between �ber length and �ber orientation is given. Figure 3.4 illustrates the

histograms of the �ber diameter and �ber length. The plotted histograms reveal the main characteristics of the

microstructural cross-section properties, which can also be found in literature [19, 41, 43, 46, 58, 113, 154].

These can be summarized as follows:

- The results in Figures 3.3b and 3.3c indicate a preferred orientation of the �bers, which is induced by

the mold injection process. Over the thickness of the specimen, the �bers are mostly oriented in the

direction of the melt �ow.

- Following the length distribution presented in Figure 3.3a and subsequently computing the orientation

tensor components reveals that the cross-section of components made by mold injection can be divided

into di�erent layers. Here, in total �ve layers can be identi�ed. Corresponding to the literature these are

referred to as skin (at the upper and lower surface), core (in the center), and shell (between the skin and

core) [19, 41, 43, 46, 113, 154] layers, which are characterized by their main �ber orientations. Within

the shell layers, the �ber orientation mainly coincides with the melt �ow direction. In contrast to this,

the core layer shows a �ber orientation perpendicular to it. The �bers in the shell layers at the top

and the bottom are randomly orientated [154]. More information and a plot of the orientation tensor

components are provided in Paper II [141].

- The histogram of the �ber diameter in Figure 3.4a meets a normal distribution. The mean value is 9.6 µm.

This is a little bit below the expected value found in literature [58]. The reason for this are artifacts at the

�ber-matrix interface on the micrograph. Furthermore, the �ber diameter distribution is independent

of the layer scheme, because the �ber diameter is not a�ected by the mold injection. Instead, the �ber

production process is responsible for the �ber diameter [58].

- Due to the mold injection process, which causes �ber breakage, the �ber length distribution is best

described by a two-parameter Weibull distribution. However, even under the consideration of a weighting
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Figure 3.5: PDFs of the �ber length, �ber diameter, and orientation derived by �CT, cf. Paper I [144]. Data

taken from [58].

factor proposed in [158] an extensive amount of �bers is shorter than 20 µm, leading to a mean value of

46.6 µm. In comparison to the �ber length mean value of 260 µm obtained by �CT [58], these values appear

very low. The main reason lies in the di�erence between the two-dimensional and three-dimensional

analysis of the microstructure.

- The �ber mass fraction varies between the di�erent layers. For the shell layers, a �ber mass fraction of

0.28 is obtained, whereas the core layer has a �ber mass fraction of 0.33.

3.4 In�uence of the probabilistic characteristics on the apparent overall material
properties

The main objective of this work is the incorporation of spatially distributed material properties in a numerical

modeling procedure of SFRC on the component level. Since the spatial distribution is caused by the probabilistic

characteristics of the microstructure, the in�uence of the corresponding PDFs on the material properties is

investigated. With this information at hand, all necessary data can later be added to the modeling procedure.

As already presented in Section 3.3 the �ber length distribution is best described by a two-parameter Weibull

distribution, whereas the �ber diameter shows a normal distribution. In addition to this the �ber orientation

can be characterized by an elliptic probability function [58]. Given the �nal application on the component

level, the probabilistic information used here is derived by �CT and is taken from [58]. The corresponding

PDFs are depicted in Figure 3.5.

At �rst, the in�uence of the geometrical �ber properties on the material properties is analyzed analytically

by utilizing the well-known material model of Tandon and Weng [170]. This material model is based on the

mean-�eld theory in combination with Eshelby’s work [40] and �ts the experimental data best [60, 174]. With

the analytical framework, the engineering constants like Young’s modulus and Poisson’s ratio can be computed.

Therefore, 1e6 realizations of the �ber length and the �ber diameter are sampled following the corresponding

PDFs. For each realization, a set of engineering constants is calculated by combining the stochastic quantity

with the mean values of the remaining parameters. For example, the �ber length as a realization with respect to

the two-parameter Weibull distribution is combined with the mean �ber diameter of 10.9 µm, a �ber orientation

of 0°, and a �ber mass fraction of 30 %. The resulting distribution of the Young’s modulus in �ber direction is

plotted in Figure 3.6 (upper left diagram).

The in�uence of the �ber orientation requires additional computation because the material model of Tandon

and Weng gives only the engineering constants in a local ply coordinate system. Therefore, in an additional

step, the elasticity tensor elements are computed considering a two-dimensional system under plane stress

condition. Following the procedure introduced above the engineering constants are determined for a mean

�ber length of 260 µm and a mean �ber diameter of 10.9 µm. Subsequently, the �ber orientation is sampled

11



Chapter 3 Specimen de�nition and probabilistic characteristics of the microstructure

0 4 8 12 16

0

0.05

0.1

0.15

E1[GPa]

P
D
F

[-
]

Fiber length

11 12 13 14

0

0.05

0.1

0.15

E1[GPa]

Fiber diameter

5 10

0

0.1

0.2

0.3

0.4

E1[GPa]

Fiber orientation

5 10 15 20

0

0.05

0.1

0.15

C11[GPa]

P
D
F

[-
]

15 15.5 16 16.5 17

0

0.05

0.1

0.15

C11[GPa]

5 10 15 20

0

0.2

0.4

C11[GPa]

Figure 3.6: Results for the distribution of E1 and C11 for a varying �ber length, diameter, and orientation based

on the material model by Tandon and Weng, cf. Paper I [144].

with respect to the elliptic PDF, and the elasticity tensor elements are computed by a coordinate transformation.

Finally, the e�ective engineering constants for the given �ber orientation are derived.

The results of the Young’s modulus E1 and the elasticity tensor element C11 for a variation of the �ber

length (left), diameter (middle), and orientation (right) are provided in Figure 3.6. A detailed overview of all

parameters and constants is given in Paper I of this cumulative Habilitation thesis [144]. The histograms reveal

the resulting distribution of the material properties that are induced by the probabilistic characteristics of

the microstructure. Similar results are obtained by assuming a plane strain state. This analysis gives only a

preliminary insight into the in�uencing parameters because it is based on the assumption that all �bers have

identical lengths and diameters. Therefore, in a second step, the in�uence of these parameters is analyzed on a

numerical basis. The corresponding numerical models are derived from arti�cial microstructures with a size

of 2500 µm × 2500 µm, which are generated by a Poisson process. According to this, at �rst, the coordinates

of a new �ber centroid are sampled. The coordinates must be within the preset area of the microstructure.

Afterward, the �ber length, diameter, and orientation are sampled following their PDFs. If the new �ber does

not intersect with any already existing �ber and is within the preset area, the �ber is added to the arti�cial

microstructure otherwise it is withdrawn. More information about the modeling procedure is provided in

Paper I of this cumulative Habilitation thesis [144].

Starting from these arti�cial microstructures, small parts are extracted following the pattern depicted in

Figure 3.7. The extracted windows have an edge length of 250 µm, 500 µm, and 750 µm, respectively. Figure 3.7

gives all measures with respect to an edge length of 750 µm. Additionally, a two-dimensional numerical model

of the same size consisting of a structured mesh with rectangular elements is prepared. The information about

the microstructure and the numerical model are combined by assigning the material properties of the �ber

and the matrix to the corresponding integration points. By doing so explicit modeling of the microstructure

is avoided. This approach is described in detail in Paper I of this cumulative Habilitation thesis [144]. To

determine the apparent overall material properties pure displacement (KUBC) and pure traction boundary
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3.3 Results

In this section the results for the parameters of the strain energy density function, the yield
strength and the correlation analysis are presented.

3.3.1 Hyperelasticity

In Tab. ?? and Tab. ?? the mean value and the standard deviation for the parameters of
the strain energy density function are given. Since the numerical simulation are performed by
applying pure displacement boundary conditions the mean values show a decreasing tendency
with increasing windowsize. Furthermore, the standard deviation increases. These observations
meet the expectation simulations on the meso scale. In addition the Young’s Modulus in hor-
izontal direction is provided to validate the results with experimental investigations of tensile
tests performed with specimens made of PBT GF 30. The experimentally obtained mean value
based on ?? measurements is 10.25GPa, which fits very well to the numerical values. Hence,
the results for the parameters of the strain energy density function appears to be reasonable.

Table 2. Mean values strain density function coefficients.

Window size λ [GPa] µ [GPa] α [GPa] β [GPa] γ [GPa] E11 [GPa]
250 µm 5.62 1.34 -1.16 -0.20 1.35 11.9
500 µm 5.43 1.24 -1.13 -0.14 1.19 10.5
750 µm 5.38 1.20 -1.10 -0.13 1.13 10.0

7

Figure 3.7: Moving window method applied to the arti�cial microstructure. All measures in µm. Taken from

Paper IV [142], see also Papers I and II [141, 144].

BC C11 C12 C22 C66
GPa GPa GPa GPa

Tandon-Weng 13.0 1.59 4.18 1.31

250 µm KUBC 11.8 1.56 4.36 1.35
250 µm SUBC 6.43 1.48 3.91 1.16

500 µm KUBC 10.2 1.57 4.14 1.27
500 µm SUBC 7.11 1.53 3.92 1.18

750 µm KUBC 9.80 1.56 4.08 1.24
750 µm SUBC 7.59 1.59 3.93 1.18

Table 3.2: Comparison of the mean values for the engineering constants based on the analytical and numerical

analysis, cf. Paper I [144].

conditions (SUBC) consistent with the Hill Mandel condition are applied. Again, a plane stress state is assumed.

For statistical reasons the procedure is repeated 500 times [157, 164]. The resulting mean values of the elasticity

tensor elements are provided in Table 3.2. In addition Figure 3.8 illustrates the induced distribution of C11. The

main results can be brie�y summarized as follows:

- The results summarized in Table 3.2 meet the theoretical framework of mesoscale modeling. For KUBC

the mean value decreases with increasing window size. In contrast to this the mean value derived by

SUBC increases with increasing window size. This e�ect is most obvious for C11. Accordingly, the RVE

size must be larger than 750 µm.

- The shift of the mean value with an increasing window size is also indicated in Figure 3.8.

- As expected the distribution width characterized by the standard deviation decreases with increasing

window size.

- The window size signi�cantly in�uences the parameter distribution. With an increasing window size,

the Weibull distribution transforms into a normal distribution.
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Figure 3.8: Distribution of the values for the elasticity tensor elementC11 with respect to the boundary condition

and the window size, cf. Paper I [144].
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Chapter 4

Linear-elastic modeling on the mesoscale

The proposed modeling approach is validated by nanoindentation and tensile tests. Since the analysis of the

probabilistic characteristics of the microstructure reveals the production-induced layered cross-section for

components made from SFRC, it is important to know, whether this layered structure is signi�cant for the

numerical representation of the component under uniaxial tensile loading. Therefore, the in�uence of the

cross-section layout on uniaxial tensile loading is investigated in this chapter. This is done by carrying out

numerical simulations, which are subsequently validated by nanoindentation tests. The results are published

in the Papers II and III of this cumulative Habilitation thesis [141, 146].

4.1 Numerical simulations

With the knowledge of the probabilistic characteristics of the microstructure obtained in Chapter 3.2 arti�cial

microstructures are generated by a Poisson process as presented in Chapter 3.4. With respect to the micrograph

of Chapter 3.2 the numerical model has an identical �ber mass fraction and is of the same size. To be able to

analyze the in�uence of the microstructural layout on the structural response under uniaxial tensile loading

di�erent con�gurations are investigated:

- Con�guration I:

Global PDFs are assumed for each characteristic. The layering of the structure is not taken into account.

- Con�guration II:

Only the probabilistic information of the shell layers are used. Again, the layering of the structure is not

taken into account.

- Con�guration III:

Explicit modeling of the di�erent layers with the corresponding PDFs and variation of the �ber mass

fraction.

For each con�guration 500 arti�cial microstructures are generated and tensile tests are simulated to derive

the Young’s modulus in horizontal and vertical direction. The generation of the numerical model is identical

to the procedure introduced in Chapter 3.4. Furthermore, to include the restraint against transverse deformation

induced by the core layer a plane strain state is assumed. Besides the arti�cial microstructures, a numerical

simulation is conducted based on the original micrograph. The results for the Young’s modulus obtained by the

numerical simulation are summarized in Table 4.1, [141]. They lead to the conclusion that explicit modeling

of the layered structure is not necessary to represent the overall structural response under uniaxial tensile

loading, which meets the expectation from a mechanical point of view. Therefore, the subsequent numerical

modeling presented in this work is based on the probabilistic information of the shell layers only.

4.2 Experimental veri�cation

Since the numerical simulations in Chapter 4.1 are based on the probabilistic characteristics of the microstruc-

ture obtained by a micrograph, the results relate to the mesoscale and not the component level. Therefore,

the experimental veri�cation is limited to near-surface material properties, which can be determined by

nanoindentation tests [52]. Nanoindentation tests cover a load cycle consisting of elastic and plastic loading

and elastic unloading. Following this, the indentation modulus is obtained by the slope of the unloading curve
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Chapter 4 Linear-elastic modeling on the mesoscale

Value Unit Con�guration I Con�guration II Con�guration III Micrograph

Homogeneous Shell layers Layered structure

Ēh GPa 5.94 6.09 6.12 6.26

Std. GPa 0.4 0.4 0.4 -

Dev. to micrograph % 5.11 2.72 2.24 -

Dev. to Conf. II % 2.46 - 0.49 2.79

Ēv GPa 4.97 5.03 5.09 5.41

Std. GPa 0.1 0.1 0.1 -

Dev. to micrograph % 8.13 7.02 5.91 -

Dev. to Conf. II % 1.19 - 1.19 7.55

Table 4.1: Results of the cross section analysis, cf. Paper II [141].
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Fig. 12 Scheme load cycle nanoindentation (left), micrograph of the indentation location after unloading (right).

Table 5 Results of the indentation tests.

Direction Max. load Reduced modulus Standard deviation Young’s modulus

Horizontal 500 mN 6.78 GPa 1.07 GPa 5.84 GPa
(x - axis) 1500 mN 6.93 GPa 0.73 GPa 5.97 GPa

Vertical 1500 mN 4.95 GPa 0.44 GPa -
(y - axis)

Table 6 Comparison of the experimental and numerical obtained results.

Direction Analysis Young’s Modulus Standard deviation Dev. Mic. Dev. Exp.

Micrograph 6.26 GPa - - 7.18 %
Art. homogeneous 5.94 GPa 0.04 GPa 5.11 % 1.70 %

Horizontal Art. shell layers 6.09 GPa 0.04 GPa 2.72 % 4.27 %
(x - axis) Art. layered structure 6.12 GPa 0.04 GPa 2.24 % 4.78 %

Nanoindentation 500 mN 5.84 GPa 1.07 GPa 6.70 % -
Nanoindentation 1500 mN 5.97 GPa 0.73 GPa 4.62 % -

Micrograph 5.41 GPa - - 9.29 %
Art. homogeneous 4.97 GPa 0.01 GPa 8.13 % 0.40 %

Vertical Art. shell layers 5.03 GPa 0.01 GPa 7.02 % 1.62 %
(y - axis) Art. layered structure 5.09 GPa 0.01 GPa 5.91 % 2.83 %

Nanoindentation 1500 mN 4.95 GPa1 0.44 GPa 8.50 % -

equation given in Eq. (??) for an exponential, Gaus-

sian and triangle correlation function the use of one of

these kernels is preferable. Independent of the corre-

lation function the Karhunen-Loève expansion always

assume a linear correlation between to parameter. For

the numerical model of the elasticity tensor coeeficients

of SFRC this assumption is satisfied, as shown in Figure

??.

Table 7 gives the results of the correlation lengths

for these three correlation functions and the correspond-

ing root mean square error (RMSE). The results indi-

cate, that the triangle function is not appropriate to

describe the correlation behavior of the elasticity tensor

coefficients. The Gaussian and exponential correlation

function on the other hand approximate the resulting

correlation well. Due to this results and the common use

of the exponential correlation function in the literature,

this correlation function is selected for the following

generation of random fields using the Karhunen-Loève

expansion.

Figure 4.1: Scheme of a nanoindentation load cycle and a micrograph of the indentation area after unloading,

taken from Paper II [141]. See also [103, 146, 171].

with respect to the indentation depth [125, 135]. In a subsequent step, the Young’s modulus can be computed

from the indentation modulus by considering the material properties of the indentation tip. A scheme of the

load cycle and a micrograph of the indentation location after unloading are depicted in Figure 4.1.

For the experimental veri�cation of the numerical modeling di�erent test series are conducted regarding

the maximal indentation force and the load orientation with respect to the melt �ow direction. Following the

specimen de�nition provided in Chapter 3.1 the indentation tests are conducted in all three axis-directions with

a maximum indentation load of 500mN and 1500mN, respectively. For more details about the experimental

setup and the theoretical framework the reader is kindly referred to the Papers II and III of this cumulative

Habilitation thesis [141, 146]. The results are brie�y summarized and discussed below.

In Figure 4.2 the results of the indentation tests at 500mN and 1500mN are plotted over the spatial coordinates

for each load case. First of all the plots reveal the spatial distribution of the material properties. Furthermore,

the measurements perpendicular to the melt �ow con�rms the results of the microstructural analysis presented

in Chapter 3. The core layer can be clearly identi�ed in the center of the cross-section. When taking into

account the di�erent �ber volume fractions of each layer, the measurement in melt �ow direction also meets the

expectation of the layered cross-section. Finally, the measurement in the thickness direction is characterized
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Figure 4.2: Spatial distribution of the indentation modulus for each load case and loading direction, taken from

Paper III [146].

17



Chapter 4 Linear-elastic modeling on the mesoscale

Study Max. load Direction Mean Std. Min Max Range

mN GPa GPa GPa GPa GPa

Paper II 500 x 6.78 1.07 - - -

500 x 7.35 1.01 5.07 10.39 5.31

Paper III 500 y 5.64 0.72 3.10 9.03 5.94

500 z 6.83 1.61 1.87 12.06 10.18

Paper II

1500 x 6.93 0.73 - - -

1500 y 4.95 0.44 - - -

1500 x 7.44 0.75 5.69 9.69 4.00

Paper III 1500 y 5.68 0.38 4.68 6.96 2.28

1500 z 6.62 1.50 1.74 12.54 10.8

Table 4.2: Results of the experimentally obtained indentation modulus, cf. Papers II and III [141, 146].

Ēℎ Std. Ēv2
Std.

GPa GPa GPa GPa

Numerical simulation Con�g. I 5.94 0.4 4.97 0.1

Con�g. II 6.09 0.4 5.03 0.1

Indentation test at 500mN Paper II 5.84 1.07 - -

Paper III 6.33 0.88 5.64 0.72

Indentation test at 1500mN Paper II 5.97 0.73 4.95 0.44

Paper III 6.41 0.65 5.68 0.38

2
For the analysis in thickness direction the indentation modulus is given.

Table 4.3: Comparison of the experimentally and numerically obtained values, cf. Papers II and III [141, 146].

by an almost homogeneous material distribution caused by the random �ber orientation in the skin layers.

Following the measurement results, the obtained indentation modulus as well as the corresponding statistical

quantities are summarized in Table 4.2. As already discussed the results indicate the �ber-reinforcement of the

material and the induced direction-dependent material properties. To be able to compare the experimentally

obtained results with the numerical modeling the Young’s modulus is computed for the two directions that

coincide with the tensile test directions de�ned in Chapter 3.1. Comparing the values provided in Table 4.3

shows a very good agreement between the numerical and the experimental investigations. Furthermore, the

results are independent of the maximal load and therefore, also from the indentation depth and as already

indicated by the numerical simulations, the layered structure of the cross section must not necessarily be

incorporated into the probabilistic modeling approach of SFRC by random �elds to capture the structural

response under uniaxial tensile load su�ciently.

In the last step, the area is determined which is characterized by the nanoindentation test. Therefore, the

measurement point pattern is projected on the micrograph microstructures. At each measurement point, a

square is extracted with di�erent edge lengths. The edge length starts at 50 µm and is stepwise increased

by 50 µm up to an edge length of 500 µm. Following this procedure, uniaxial tensile tests are simulated and

the stochastic quantities are computed. The results, depicted in Figure 4.3, reveal that nanoindentation tests
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Figure 4.3: Results of the numerical simulation and comparison with the experimental results, taken from

Paper III [146].
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characterize an area, which is 25 times larger than the projected area of the indentation test. More details

about this analysis are provided in Paper III of this cumulative Habilitation thesis [146].
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Chapter 5

Adaption to the component level with elastic ideal plastic material behavior

In this chapter, the modeling approach is proposed that incorporates the spatially distributed material prop-

erties induced by the probabilistic characteristics of the microstructure on the component level. Since the

thermoplastic matrix material exhibits profound plastic deformation even at low stress levels the approach

comprises the elastic as well as the plastic domain. Numerical simulations are conducted and the results

are validated by experimental investigations. Details about the elastic modeling with small deformation are

provided in Paper II [141], the extension to �nite deformation and hence, the combination of elastic and plastic

deformation is introduced in the Papers IV and V of this cumulative Habilitation thesis [142, 143].

5.1 Experimental characterization by tensile tests

Before the modeling approach is presented tensile tests are conducted based on the specimens de�ned in

Chapter 3.1. The geometry of the specimens that are cut out of the initially manufactured plate is de�ned in

accordance with type 1B of DIN-ISO-527-1 [84]. Due to the plate dimensions, the total length of the specimen

is set to 140mm and the thickness is 3mm.

The tensile tests are carried out following DIN-ISO-527-1 [84]. With a maximal available load of 50 kN the

tensile test covers the elastic and plastic domain until the failure of the specimen. Since the specimen is tested

until failure, the deformation is captured by an external contactless laser extensometer. For the elastic domain,

the Young’s modulus is computed from the measurement data by evaluating the slope of the stress-strain

curve between a strain level of 0.1 % and 0.2 %. Besides this global observation, the measurement length is

divided into segments of 5mm each to analyze the local behavior. Based on this the spatial distribution of the

material properties is qualitatively analyzed for three segments of 15mm at one specimen.

For the analysis of the plastic deformation, the strain level at failure and the maximum stress level are

derived from the measurement data. All results are summarized in Table 5.1. For each parameter, the mean

value as well as the standard deviation is given. Furthermore, in addition to the measurement data information

from the datasheet provided by the manufacturer is provided [21].

Comparing the experimental results with the data sheet reveals a signi�cant deviation. This deviation is most

likely caused by the manufacturing of the specimens since this signi�cantly in�uences the �ber distribution,

�ber length, and �ber orientation of the specimen as well as the quality of the �ber-matrix bonding. This

deviation is also observable in the stress-strain curves plotted in Figure 5.1. The diagram on the left-hand

side holds the measured stress-strain curves for each specimen (gray) and the datasheet information (black).

Besides the discrepancies in the elastic as well as the plastic domain the plot reveals the prominent plastic

deformation of the material. The diagram on the right-hand side gives the spatial distribution of the material

Number of specimens Ē Std �̄failure Std �̄failure Std

GPa GPa MPa MPa % %

Data sheet 1 9.69 - 135 - 2.5 -

Experiments 8 7.95 0.87 96.1 6.22 1.97 0.14

Table 5.1: Experimental results obtained by tensile tests in the elastic and plastic domain, compare Paper IV

[142].
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Figure 5.1: Experimental results and comparison with data sheet, Paper V [143].

properties for one specimen. Therefore, the corresponding global stress-strain curve is highlighted in green. In

addition to this, the curves for three non-overlapping sections with a measurement length of 15mm each are

added to the diagram. The di�erent curves con�rm the spatial distribution of the material properties, which

was also detected during the nanoindentation tests provided in Chapter 4.2.

5.2 Modeling approach

The main idea of the probabilistic modeling approach is the representation of the material properties by

homogeneous second-order Gaussian random �elds. To be able to synthesize these �elds the correlation

structure must be known in order to solve the Fredholm integral and hence, utilize the KLE or other numerical

methods in case there is no closed solution. Therefore, the modeling approach proposed consists of six steps:

1. Probabilistic characteristics of the microstructure

The �rst step comprises the determination of the probabilistic characteristic of the microstructure. A

procedure for near �eld and hence, two-dimensional information is provided in Chapter 3. Since the

application on the component level requires three-dimensional information [141], PDFs derived from

�CT are taken from literature [58].

2. Arti�cial microstructures

Following the procedure presented in Chapter 3.4 arti�cial microstructures are generated by a Poisson

process. Based on the PDFs of the geometrical �ber properties �rst, the coordinates of the centroid

are sampled before the �ber length, diameter, and orientation are assigned. The overall size of the

microstructures are 2500mm × 2500mm.

3. Apparent overall material properties

Based on the pattern depicted in Figure 3.7 small windows are extracted from the arti�cial microstructure

to determine the apparent overall material properties. The windows have an edge length of 250mm,

500mm, and 750mm, respectively. Because the preliminary work, which focuses on the linear elastic

material behavior indicates that pure displacement boundary conditions are suitable for the computation

of the apparent overall material properties [141] pure traction boundary conditions are not considered

at this stage.

4. Correlation analysis

Based on the apparent overall material properties for each extraction, the correlation function is deter-

mined by computing the correlation coe�cient between the individual extractions and applying a curve

�t. For the curve �t exponential, Gaussian, and triangle correlation functions are considered.
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5. Synthesizing cross-correlated random �elds

With the information about the apparent overall material properties and the correlation structure at

hand cross-correlated random �elds are synthesized by utilizing a combination of the EOLE and the

mcKL to represent the spatial distribution of the material parameters.

6. Numerical simulation of tensile tests

The random �elds are used in the �nal step to incorporate the spatial distribution of the material

properties into the numerical modeling of a tensile test specimen under uniaxial tensile load in the

elastic and plastic domain.

5.3 Apparent overall material properties and correlation analysis of elastic-ideal plastic
material behavior

5.3.1 Apparent overall material properties

The numerical simulation of the elastic-ideal plastic material behavior of SFRC is based on �nite deformation.

Hence, a hyperelastic strain-energy density function in combination with a von Mises yield criterion is

used to describe the structural behavior. For transversely-isotropic material behavior, the strain-energy

density function is taken from [16], which makes use of �ve individual material parameters to represent

the transversely-isotropic material behavior. Since the elasticity tensor is a function of the deformation, the

elements are determined by a coe�cient comparison at zero strain. Due to this linearization, it is possible

to limit the determination of the apparent overall material properties representing the elastic response to

linear-elastic simulations.

The yield strength, which is required to characterize the plastic deformation, is obtained by utilizing a

homogenization procedure introduced in [83, 102, 138, 139]. Deriving the potential Ũ0 for a linear comparison

composite from numerical simulations allows one to compute �rst, the yield function and subsequently, the

yield strength [102]. Since the potential is taken from the linear comparison composite again linear-elastic

simulations are su�cient to obtain the yield strength.

The results of the apparent overall material properties are collected in Table 5.2. It holds the mean values as

well as the standard deviations of the hyperelastic strain-energy density function coe�cients and the yield

strength. In addition to this, the Young’s modulus is given to allow a comparison with experimental data. The

following conclusion can be derived:

- The mean values show a decreasing behavior for increasing window size. This meets the theoretical

framework of the apparent overall material properties for an SVE under pure displacement boundary

conditions. The same holds for the standard deviation.

- The experimentally obtained Young’s modulus is based on 13 di�erent specimens made from PBT GF 30.

With a mean value of 9.75GPa and a standard deviation of 0.27GPa it meets the results at a window

size of 750 µm best. However, all results are covered within the standard deviation.

- The results of the yield strength for a window size of 750 µm is also within the range of the data provided

by the manufacturer [21].

5.3.2 Correlation analysis

The next step is the correlation analysis of the strain-energy density function coe�cient and the yield strength.

Since the correlation functions and the cross-correlation parameters might depend on the window size [144]

Figures 5.2 and 5.3 hold the correlation lengths and the cross-correlation parameters for each parameter

pair and window size within the 95% con�dence interval. It is important to note, that the correlation length

cannot surely be determined by numerical simulations, because it is directly linked to the window size by the

correlation function. Therefore, the results presented in Figure 5.2 give the ratio of the correlation length to
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Λ � � � 
 E11 �y
GPa GPa GPa GPa GPa GPa MPa

Mean

250 µm 5.62 1.34 -1.16 -0.20 1.35 11.9 151.7

500 µm 5.43 1.24 -1.13 -0.14 1.19 10.5 130.0

750 µm 5.38 1.20 -1.10 -0.13 1.13 10.0 125.7

Experiment - - - - - 9.75

Std.

250 µm 0.492 0.192 0.239 0.081 0.475 3.85 57.1

500 µm 0.224 0.097 0.131 0.033 0.244 1.96 24.2

750 µm 0.140 0.064 0.090 0.020 0.148 1.26 14.7

Experiment - - - - - 0.27

Table 5.2: Mean values and standard deviations of the strain energy density function coe�cients as well as the

yield strength, cf. Paper IV [142].

the window size for the best curve �t based on the exponential, Gaussian, and triangle correlation functions.

The quality of the curve �t is measured by R2. The results are summarized below:

- The results of the curve �t for the auto-correlation indicate that the triangle correlation function is

the best �t for the parameters Λ, � , 
 , and �y , whereas the exponential correlation function �ts the

parameters � and � best. This is also the reason for the di�erent correlation lengths of these parameters.

- Consequently it is expected that the exponential correlation function is the best option for the cross-

correlation of these two parameters. The remaining parameter pairs should be approximated best by

the triangle cross-correlation function because the corresponding auto-correlation functions of these

parameters are given by a triangle correlation function, which is con�rmed by the R2 values of the

performed curve �ts.

- The results show, that with increasing window size, the distance between b1 and b2 decreases. Further-

more, for an approximation with the triangle function the values converge to the edge length of the

analyzed window. For the exponential function the value is 0.4lw .

- First, the dependence of the cross-correlation parameter a on the window size, as discussed before, is

observable. Furthermore, the parameter pairs Λ − � and � − � are only very weakly cross-correlated,

which is con�rmed in Figure 5.3.

5.4 Application to tensile test specimens

In the last step, the modeling approach is applied to tensile tests under uniaxial loading covering the elastic

and plastic domains. Following the proposed modeling procedure in Chapter 5.2 �rst, random �elds must

be synthesized before the structural response can be simulated. To incorporate the spatial distribution of

the material properties in both the elastic and plastic domain in combination with a reduced complexity of

the model only one parameter of the strain-energy density function and the yield strength are represented

by a homogeneous second-order Gaussian random �eld. The remaining parameters are deterministic and

hence, assumed to be homogeneous. Therefore, they are given by the mean value of the apparent overall

material properties. All values correspond to a window size of 750 µm because the obtained mean values �t

the experimental data best. The corresponding values of the di�erent parameters are collected in Table 5.3. As

indicated the parameter Λ of the strain-energy density function is represented by a random �eld. However,

the given standard deviation does not meet the results of the apparent overall material properties provided in

Table 5.2. Since the structural response under uniaxial stress is mostly characterized by the element C11 of

the elasticity tensor and C11 is a function of all �ve strain-energy density function parameters the standard
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Figure 5.2: Analysis of the correlation length for each auto- and cross-correlation, taken from Paper IV [142].
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Figure 5.3: Cross-correlation coe�cient a for all window sizes, taken from Paper IV [142].

Mean Std b1 b2
GPa GPa mm mm

Λ 5.38 1.2 5, 10, 15 0.3

� 1.12 0 - -

� 1.10 0 - -

� -0.13 0 - -


 1.13 0 - -

�y 0.13 0.02 5, 10, 15 0.3

Table 5.3: Material properties of numerical simulation.

deviation is signi�cantly increased to capture the �uctuation of the other parameters as well. The same hold

for the yield strength. As indicated by the strain-stress curve depicted in Figure 5.1 the used PBT-GF-30 shows

plastic deformation even at low stress levels. Therefore, the standard deviation is selected in such a way as to

allow early plastic deformation. As already discussed in Chapter 4.1 again a plane strain state is assumed.

Besides the mean value and the standard deviation, the numerical simulation and representation of the

structural response are signi�cantly in�uenced by the correlation length of the random �eld. As mentioned

before, the correlation length cannot be derived from analytical or numerical treatment but from experimental

results. The in�uence of the correlation length on the realization of the random �elds is depicted in Figure 5.4,

which gives realizations for Λ for a correlation length in horizontal direction of lx = 5mm, lx = 10mm, and

lx = 20mm. In analogy to the description of oscillations, the correlation length can be interpreted as the

wavelength of the dominant eigenfunction.

Since the material behavior is characterized by ideal plasticity the correlation length in the vertical direction

is required to be smaller than the thickness of the specimen. Otherwise, no localized plastic deformation is

achieved. Due to this, the vertical correlation length is set to 0.3mm, which leads to a resemblance of the

resulting stress-strain relation with experimental data for reinforced material. To allow comparability with

experimental results the numerical simulations are carried out for eight di�erent realizations per correlation

26



Chapter 5 Adaption to the component level with elastic ideal plastic material behavior

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

y
[m

m
]

lc = 20mm

4.5

5

5.5

6
GPa

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

y
[m

m
]

lc = 10mm

4.5

5

5.5

6
GPa

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

y
[m

m
]

lc = 5mm

4.5

5

5.5

6
GPa

Figure 5.4: Discretizations of cross-correlated homogeneous second-order Gaussian random �elds to represent

the spatially distributed material parameter Λ for di�erent values of lx , taken from Paper V [143].

length. The results of in total 24 simulations are illustrated in Figure 5.5. Besides the overall behavior for a

measurement length of 50mm also the spatial distribution is provided by evaluating the simulation for three

non-overlapping paths of 15mm. In addition to this, the diagrams also hold the stress-strain curve taken from

the data sheet (black) [21] and the experimental data (gray).

To give more insights on the in�uence of the correlation length on the numerically obtained data Table 5.4

holds the mean stress as well as the standard deviation for a strain level of 0.2 %, 0.5 %, 1.0 %, 1.5 %, and 2.0 %.

This also includes the experimental data.

The main results are brie�y discussed below.

- The diagrams provided in Figure 5.5 reveal that the numerical obtained stress-strain curves clearly

show the expected elastic-plastic behavior. Despite the fact, that the nonlinear material behavior is

modeled based on the assumption of ideal plasticity the resulting stress-strain curves show an overall

good agreement with the experimental data. This is related to the spatially limited plastic deformation

and the rearrangement of the applied loading.

- With a decreasing correlation length the numerical results show a better agreement with the experimental

data. This is also indicated by the values provided in Table 5.4. For a decreasing correlation length, the

mean stress state converges to the experimentally obtained values and for a correlation length of 5mm
the results show an overall good agreement.

- The modeling approach is endorsed by the results on the right-hand side of Figure 5.5 by two important

aspects. First, the modeling approach leads to a plastic deformation covering the whole specimen and

hence, is not limited to small areas. Second, when dividing the measurement length into small sections,

each section shows slightly di�erent behavior. Both phenomena are con�rmed by the experimental

investigation.
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Figure 5.5: Results of the numerical simulation in comparison with the experimentally obtained results and a

stress-strain curve provided by the manufacturer [21], taken from Paper V [143].
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lx = 15mm lx = 10mm lx = 5mm Experimental data

Strain level mean std mean std mean std mean std

% MPa MPa MPa MPa MPa MPa MPa MPa

0.2 16.6 0.1 16.6 0.1 16.6 0.1 16.1 1.8

0.5 41.6 0.3 41.4 0.3 41.3 0.2 38.7 3.7

1.0 80.0 1.2 78.6 1.6 76.9 1.7 70.0 5.8

1.5 99.2 5.2 97.7 2.6 92.0 3.9 88.5 6.8

2.0 102.3 7.2 101.8 2.4 94.7 4.9 95.8 6.3

Table 5.4: Deviation of the single simulations at di�erent strain levels and comparison with experimental data.
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Chapter 6

Concluding remarks

In this cumulative Habilitation thesis, a new modeling approach is proposed, which incorporates the spatial

distribution of the material properties in the elastic and plastic domain on the component level. The work

comprises the �ndings of �ve Papers [141–144, 146] that have passed a peer-review process or are still under

review.

Since the main objective of this work is the incorporation of the spatially distributed material properties

due to the probabilistic characteristics of the microstructure by homogeneous second-order Gaussian random

�elds, these characteristics were analyzed on an analytical and numerical basis �rst. Therefore, the in�uence

of the probabilistic distribution of the microstructural characteristics of the �ber length, �ber diameter, and

�ber orientation on the engineering constants and the elasticity tensor elements is determined analytically

by utilizing the material models of Tandon-Weng and Halpin-Tsai. This is followed by a numerical analysis.

The analytical treatment reveals the impact of the probabilistic microstructure on the material properties.

Most signi�cant is the in�uence of the �ber length, �ber volume fraction, and �ber orientation on the Young’s

modulus E11. Besides this, the remaining engineering constants are not a�ected by the geometrical �ber

properties, only the �ber volume fraction and the �ber orientation contribute signi�cantly. Following these

�ndings, the elasticity tensor components are in�uenced by the same microstructural characteristics as the

engineering constants. The resulting engineering constants and elasticity tensor component distributions

are of the same kind as the microstructural characteristics. The subsequent numerical analysis includes not

only the determination of the apparent overall material properties as a function of the in�uencing parameters,

boundary conditions, and window size but also a correlation analysis. This is important because the correlation

structure is essential for the synthesis of homogeneous second-order Gaussian random �elds used later. In

contrast to the analytical treatment now each �ber has its individual geometrical properties and all elements

of the elasticity tensor can be computed individually. The results reveal the symmetry of the elasticity tensor

as well as the transversely isotropy of the reinforced material and con�rm the analytical results. Besides this,

it is shown that with an increasing window size the distribution of the elasticity tensor components shifts

from the microstructural induced to a normal distribution.

Following the gained knowledge the modeling approach for the spatially distributed material properties

of SFRC based on second-order Gaussian random �elds is introduced. The modeling approach comprises

three steps. First, the microstructural characteristics of the material are derived from micrographs and �CT

images, respectively. Afterward, the apparent overall material properties and the correlation structure of the

material properties are determined. Finally, the mcKL is used to synthesize cross-correlated random �elds,

which represent the spatial distribution of the material properties on the component level and are passed to

the numerical simulation on the component level.

The analysis of the microstructure based on a two-dimensional micrograph reveals the layered structure of

the material. Due to the shear forces in the melt �ow, the �ber orientation varies over the thickness. They are

randomly orientated at the surfaces and perpendicular to the melt �ow in the center. Between these layers, the

shell layers are located, which show a �ber orientation with the melt �ow direction. This well-known structure

can also be found in literature [41, 46]. Integrating the information about the layered structure in combination

with the probabilistic characteristics of the �ber length, �ber diameter, �ber orientation, and �ber volume

fraction into the modeling approach shows that it is su�cient to incorporate only the shell layer information

when dealing with uniaxial tensile loading. To validate the results based on a two-dimensional micrograph

experimentally, nanoindentation tests are conducted, because they provide near-�eld properties only. The

tests are carried out in the direction of the three major axes (along the melt �ow direction, perpendicular to
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it, and in the thickness direction) and con�rm the layered structure of the material as well as the results of

the numerical simulations based on the two-dimensional probabilistic characteristics. In addition to these

results, numerical simulations of di�erent window sizes reveal that nanoindentation tests characterize an area

25 times larger than the indentation area. This is independent of the applied indentation load.

A comparison with experimental data on the component level by tensile tests, however, leads to signi�cant

deviations. Further investigations show that for the modeling approach on the component level the full three-

dimensional microstructural characteristics derived by �CT are required. Incorporating these characteristics

the numerical results and the experimental data show an excellent agreement with a deviation of only 1.5 %
for the linear elastic domain.

In a �nal step, the proposed approach is extended to the nonlinear domain by including ideal plasticity

and �nite deformation. Therefore, the material behavior is described in the linear domain by a transversely-

isotropic strain-energy density function. This is combined with a classical J2-plasticity formulation utilizing a

von Mises criterion with an associate �ow rule, which requires the de�nition of a yield strength. Following

this, the material behavior is represented by six individual material parameters. To be able to describe these

properties by random �elds, at �rst, the correlation structure must be determined. It is shown that by the

linearization of the strain-energy density function at zero strain and the use of a homogenization procedure

for the yield strength only linear elastic simulations are necessary to compute the apparent overall material

properties and to derive the correlation structure by the moving window method. The apparent overall

material properties are validated by experimental data, which shows a good agreement. Furthermore, the

analysis reveals the link between the �ber mass fraction and the yield strength, which meets the expectation.

Besides this, the obtained results reveal a complex auto- and cross-correlation structure that also includes a

distinct cross-correlation between the yield strength and the parameters of the strain-energy density function.

Furthermore, the correlation structure is a�ected by the window size, which is supported by the results

for the cross-correlation parameter a. For the approximation of the correlation in most cases, the triangle

correlation function shows the best �t. However, the auto-correlations of the parameters � and � as well as

the corresponding cross-correlation are best described by an exponential correlation function. Subsequently,

the correlation lengths for these parameters di�er. For an increasing window size lw the correlation length

converges to lw for a triangle correlation function and to 0.4lw for the exponential correlation function. Since

the correlation length can be interpreted as an individual material parameter the �nal value must be derived

from experimental data.

With this knowledge at hand, subsequently, cross-correlated second-order homogeneous Gaussian random

�elds are synthesized to represent the strain-energy density function coe�cient Λ and the yield strength.

With this procedure, it is ensured that in both the elastic and plastic domain the probabilistic information

is included. Since, the yield strength and the elastic material behavior are spatially distributed, simulated

tensile test specimens show localized plastic deformation even though elastic-ideal plastic material behavior is

assumed. This leads to the expected strain-dependent reduction of the material sti�ness.

Finally, the numerically obtained data and hence, the proposed probabilistic multi-scale modeling approach

are validated by conducting uniaxial tensile tests in the elastic and plastic domain of specimens made from

PBT-GF-30. This step is also essential to derive the �nal correlation length because it can be interpreted as

an individual material parameter. Therefore, the numerically computed stress-strain curves are compared

to the experimental results. The comparison reveals that with a decreasing correlation length the numerical

data matches the experimental data quite well. However, the assumption of ideal plasticity leads to some

deviations at large strains. Furthermore, the reduction of the complexity limits the �uctuation at low strains.

Furthermore, the limitation to Gaussian random �elds causes an underestimation of low values for the yield

strength to avoid negative realizations.

Concluding the presented work, the spatially distributed material properties are experimentally detected by

nanoindentation tests on the mesoscale and by tensile tests until failure on the component level. Following

this, the presented comprehensive probabilistic multi-scale modeling approach is su�cient to incorporate

spatially distributed material properties for the linear-elastic and elastic-ideal plastic material behavior. For the
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required correlation analysis numerical simulations on the mesoscale are appropriate to derive the complex

cross-correlation structure of the material properties covering the elastic and plastic domain. Even for

nonlinear behavior, linear-elastic simulations are su�cient to derive the correlation structure. If the correlation

analysis is related to a subsequent simulation on the component level, the probabilistic characteristics must be

derived from �CT. Otherwise, the probabilistic characteristics computed from a micrograph are su�cient for

subsequent modeling on the mesoscale. The comparison with experimental data con�rms the suitability of

the proposed modeling approach for linear-elastic and elastic-plastic material behavior of SFRC including its

spatial distribution on the component level without the need for explicit microstructural modeling.

In future work, the approach can be extended in di�erent ways. At �rst, this comprises the representation

of all material parameters for the elastic-ideal plastic modeling by random �elds. Besides this, the use of

non-Gaussian random �elds is worthwhile to avoid negative realizations. Additionally, the implementation of

hardening and visco-plasticity are to be discussed. Last but not least, for an extension within the probabilistic

domain the approach can be integrated into a Markov chain Monte Carlo algorithm to derive the probability

distribution of several material properties.
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Abstract: The present work provides a profound analytical treatment and numerical analysis of

the material properties of SFRC on the mesoscale as well as the resulting correlation

structure taking into account the probabilistic characteristics of the �ber geometry.

This is done by calculating the engineering constants using the analytical framework

given by Tandon and Weng as well as Halpin and Tsai. The input parameters like �ber

length, diameter and orientation are chosen with respect to their probability density

function. It is shown, that they are signi�cantly in�uenced by the �ber length, the �ber

orientation and the �ber volume fraction. The veri�cation of the analytically obtained

values is done on a numerical basis. Therefore, a two-dimensional microstructure is

generated and transferred to a numerical model. The advantage of this procedure is,

that there are several �bers with di�erent geometrical properties placed in a preset

area. The results of the numerical analysis meet the analytically obtained conclusions.

Furthermore, the results of the numerical simulations are independent of the assumption

of a plane strain and plane stress state, respectively. Finally, the correlation structure of

the elasticity tensor is investigated. Not only the symmetry properties of the elasticity

tensor characterize the correlation structure, but also the overall transversely-isotropic

material behavior is con�rmed. In contrast to the in�uencing parameters, the correlation

functions vary for a plane strain and a plane stress state.
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I.1 Introduction

Short �ber-reinforced composites (SFRC) are widely used in the automotive and aeronautical industry. One

main advantage is the suitability of thermoplastic-based compounds for an automated serial production like

mold injection, which allows high production rates with reasonable prices per piece. However, due to the

�nite �ber length and varying �ow velocities and directions during the injection processes, the components

show spatially distributed mechanical properties. Due to this the corresponding numerical simulation of

the components is challenging and expensive. For an adequate material description, representative material

properties need to be established.

From an analytic perspective in contrast to continuous �ber-reinforced composites, the local e�ects on

stress and strain states due to microscopic inclusions must be taken into account. One approach for an analytic

description of the resulting mechanical properties of SFRC is based on the mean-�eld theory in combination

with Eshelby’s work [40]. Mori and Tanaka [121] and later Tandon and Weng [170] expanded this. As a second

approach self-consistent models are introduced. One very common representation of this group was developed

by Halpin and Tsai [61, 62]. A detailed overview of the analytic modeling is given in [174]. It is concluded that

the approach by Tandon and Weng shows the best results for the prediction of the elastic properties. This is

also con�rmed in [60]. However, as these material models are based on homogeneous material they are not

capable of representing the spatial dependence of the material properties.

There are various analyses of the in�uencing parameters based on analytical material models. In [60] it

is shown that for example the spatial �ber distribution must be taken into account. The e�ect of the �ber

orientation on an analytical basis is given in [45]. Finally, in [78] a comprehensive analysis including not only

the �ber orientation and �ber distribution but also the aspect ratio of the �ber is taken into account. However,

these studies don’t include the probability properties of the �ber characteristics.

Following the analytical treatment of the in�uencing parameters, the resulting �uctuation of the �ber volume

fraction and �ber orientation should be added to numerical models of SFRC. To represent the spatial �ber

distribution the �ber itself must be added to the model. However, as the �ber length is very small compared to

component dimensions a multi-scale approach is required for numerical modeling. One possibility here is

the use of second-order random �elds, that represent spatial varying information on the mesoscale [57] and

therefore, allow the modeling of inhomogeneous material properties [126]. For example in [189] this technique

is used to simulate numerically the continuous mode conversion of Lamb waves in �ber reinforced composite

structures, which is induced by the random distribution of the �bers on the microscale.

Other approaches for the numerical modeling of SFRC are based on the representative volume element

(RVE). For example, in [68] the suitability of randomly generated characteristic volume elements using XFEM

is analyzed to capture the local material response in concrete. XFEM is also used in [137] in combination with

a cohesive zone model. In [183] micro-mechanical modeling of randomly oriented �ber polymer composites is

presented. Furthermore, an overview of studies deriving a micromechanical model for randomly orientated

�bers is given. The suitability of the orientation tensor is discussed in [9, 123].

The main goal of this research is to evaluate profoundly the microstructural properties of SFRC with respect

to the probabilistic characteristic on both an analytical as well as on a numerical basis. These properties can

later be used to generate second-order random �elds for an adequate representation of the material properties

on the component level. In a �rst step the analytic models of SFRC are used to analyze the in�uence of the

main material characteristics like �ber length, �ber orientation, �ber diameter, and �ber volume fraction on

the elasticity properties. Therefore, each characteristic is separately varied following its known probability

density functions (PDF) and the elasticity parameters are calculated. Afterward, the results of all analytically

obtained material properties are compared with each other to identify the characteristics in�uencing the

material properties most. This analytic analysis is extended to two-dimensional numerical simulations, which

is based on a prede�ned area containing randomly placed reinforcing �bers. The analytically obtained results

are used to verify the numerical model by comparing the calculated engineering constants and elasticity

coe�cients.
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For investigating the in�uence of the main characteristics again each characteristic is analyzed separately.

Besides this, an additional simulation is carried out where all parameters are considered as varying. The

simulations are performed under boundary conditions of Neumann and Dirichlet type, which allows to

obtain an upper (Voigt) and a lower (Reuss) bound. From these analyses, the in�uence of the main material

characteristics on the elasticity properties for SFRC are derived. Based on these results further numerical

simulations are carried out. Now the main focus lies on the spatial dependence of the material properties. This

behavior can be expressed by correlation functions. Therefore, the moving window method is used to obtain

the correlation nature of the elasticity properties. A �rst analysis of the correlation analysis of the elasticity

parameters is done in [157]. However, that analysis is limited to a checkerboard pattern and therefore, does not

include e�ects based on the varying geometrical properties of the reinforcing �bers as well as their orientation.

Therefore, in this study this approach is extended to randomly placed �bers in a prede�ned area.

The structure of the paper is as follows. Section 2 gives an overview of the theoretical background for

multi-scale modeling of �ber-reinforced composites. This includes the determination of e�ective material

properties as well as the framework of correlated second-order random �elds. This is followed by a profound

analysis of the microstructure in Section 3, which includes �rst an overview of probabilistic properties of the

main geometrical characteristics of SFRC followed by the description of the microstructure generation and

the corresponding numerical model. Furthermore, the in�uence of the geometrical characteristics and their

probabilistic nature on the mechanical properties is presented. In Section 4 the veri�cation of the analytical

results by numerical simulations is presented. Moreover, the numerical simulation is used to investigate the

correlation structure of the elasticity tensor. Finally, Section 5 gives a summary and conclusion of the presented

work.

I.2 Theoretical Framework

In this section a brief overview of the main theoretical framework used in this study is given, which covers the

multi-scale modeling based on the principle of separation of scales. Regarding this approach de�nitions of

boundary conditions are presented, that are used to determine the e�ective material properties of SFRC on the

mesoscale. Next is a short summary of the analytical modeling of SFRC and the resulting elasticity coe�cients.

Finally, this section is concluded by a short introduction of second-order random �elds that can be used to

represent the spatial �uctuation of �ber properties on the mesoscale.

I.2.1 Numerical multi-scale modeling

I.2.1.1 RVE

SFRC consists of two di�erent components, namely the matrix material and randomly distributed embedded

�bers. On this microscopic scale, reinforced materials are therefore heterogeneous. This contradicts the

traditional continuum mechanics approach, which is based on homogeneous material properties independent

of the volume size. Therefore, suitable techniques for the representation of microstructural inhomogeneities

are necessary. One technique here is the homogenization, which takes heterogeneous properties from the

microstructure into account. The goal is to de�ne a RVE, for which the heterogeneous material properties can

be replaced by homogeneous e�ective material properties. For the edge length d of a RVE

l ≤ d ≤ L (I.1)

holds. Here, l is the size of an inclusion and therefore, is assigned to the microscale, whereas L represents the

dimension of the macroscale [64]. This approach is also known as separation of scales. It states that on the

macroscale the size d can be seen as a material point, however with respect to the size of the inclusion d must

contain statistically representative information about the microstructure [190].

A well known de�nition of RVE can be found in [70]. Accordingly, the dimensions of a RVE must be selected

in such a way that the resulting e�ective material properties are independent of the boundary conditions. If the
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used scale is smaller than the corresponding RVE, the boundary conditions as well as the microstructure and

the contrast of the di�erent phases must be taken into account [67, 81]. In this case one speaks of a statistical

volume element (SVE) [130]. The corresponding material properties are called apparent overall properties [79,

80].

I.2.1.2 E�ective material properties

The homogeneous e�ective material properties of a RVE can be written as

⟨�⟩ = ℂe� ∶ ⟨�⟩ (I.2)

and

⟨�⟩ = Se� ∶ ⟨�⟩ (I.3)

respectively. Here, the strains � and stress � provide information about the microscale, whereas ⟨⋅⟩ indicates

the volume average, which is de�ned as

⟨⋅⟩ =
1
V ∫

V
⋅ d V , (I.4)

and therefore, represent the whole RVE. This integral relation leads to the fact, that Equations (I.2) and (I.3)

can not be inverted. Furthermore, ℂe�
describes the e�ective elasticity tensor, whereas Se�

is the e�ective

compliance tensor.

For the determination of these e�ective material properties the Hill’s condition is essential [69]. It states,

that the conservation of energy for the scale transition can be written as

⟨� ∶ �⟩ = ⟨�⟩ ∶ ⟨�⟩. (I.5)

The corresponding boundary conditions for the determination of the e�ective material properties must

therefore, satisfy Equation (I.5). Beside others there are two boundary condition formulations that can be used

for the determination of the e�ective material properties. Following the average strain theorem based on linear

elastic material behavior as well as the average stress theorem [190] these boundary conditions can be written

as

u = �0 ⋅ x (I.6)

and

t = t0 ⋅ x. (I.7)

Here Equation (I.6) gives the pure displacement boundary condition, where �0 is a constant macroscopic

strain. In contrast to this, Equation (I.7) gives the pure traction boundary condition, with t0 being a constant

macroscopic stress. As both boundary conditions are de�ned on the complete surface of the RVE, Equation (I.6)

is a boundary condition of Dirichlet type and Equation (I.7) gives a boundary condition of Neumann type.

Considering a SVE on the mesoscale, the structure response depends on the boundary conditions as well

as the contrast of the material components. The size of the SVE is usually described by the dimensionless

parameter � , that is given by

� =
d
l
. (I.8)

With respect to �ber-reinforced composites the contrast is given by

� =
Ef

Em

, (I.9)

where Ef represents the Young’s modulus of the �ber and Em of the matrix material, respectively. It can be

shown that the application of the presented boundary conditions on the mesoscale does not lead to identical

elasticity tensors. In accordance with upper and lower bounds of e�ective material properties by Voigt [179]
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and Reuss [150] pure displacement boundary conditions lead to a sti�er response than the application of pure

traction boundary conditions. As shown by [53] the experimentally obtained e�ective material properties lay

between these two bounds. Therefore,

⟨St�⟩
−1 ≤ ℂe�

� ≤ ⟨ℂu�⟩ (I.10)

holds [69, 127, 190]. The index � indicates the scale dependence, whereas u and t represent the displacement

and traction boundary conditions, respectively.

I.2.2 Analytical modeling of SFRC

I.2.2.1 Mean �eld theory approach

The �rst analytic approach for the homogenization of a microstructure was presented by Voigt [179] and

Reuss [150] who introduced an upper and lower bound for the e�ective material properties. Voigt formulated

these material properties based on a constant strain �eld, whereas Reuss used a uniform stress �eld. These

approaches belongs to the mean-�eld theory.

Many approaches that are recently used in this context are based on the work of Eshelby, who analyzed the

in�uence of an elliptic inclusion [40]. This initial work was then used by Mori and Tanaka. They extended

the original work adding in�uencing e�ects if more than one inclusion is added to the material [121]. Based

on this framework, Tandon and Weng derived explicit formulations for the elastic constants. However, the

formulation of the Poisson’s ratios are coupled and therefore, needs to be determined by an iterative procedure.

This was solved by Tucker and Liang [174], who found a decoupled formulation, which is also used in this

study. The complete framework of the material parameter determination by Tandon and Weng is given in

[170, 174].

I.2.2.2 Self-consistent method

A second approach for the formulation of the engineering constants for heterogeneous material is based on

the self-consistent method by Hill [71]. One well-known material model in this context is given by Halpin and

Tsai, who developed a semi-empiric material model for SFRC [61, 62]. Due to the simple implementation, this

material model is widely in use [72]. In contrast to the material model by Tandon and Weng, only the Young’s

Modulus E1 is formulated as a function of the �ber geometry. All other engineering constants remain constant

for a variation of the �ber length and �ber diameter. Besides this, the �ber volume fraction in�uences all

engineering constants. Detailed information about the determination of the engineering constants is provided

in [61, 174].

I.2.2.3 Elasticity tensor for transversely-isotropic material behavior

There are many di�erent possibilities to de�ne a coordinate system in the context of �ber-reinforced materials.

Commonly used is a so-called local or lamina coordinate system. Here, the �rst axis coincide with the �ber

direction, whereas the second and third axes are perpendicular to the �ber direction. The �rst and second axes

are in-plane with the lamina and the third axis points into the lamina thickness direction.

Based on this local coordinate system de�nition the elasticity tensor of transversely-isotropic material is

given by

ℂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 1

2 (C22 − C23) 0 0
0 0 0 0 C66 0
0 0 0 0 0 C66

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (I.11)
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It consists of �ve independent coe�cients, that can be calculated by �ve independent engineering constants

E1, E2, G12, �12, and �23. Instead of �23 the out-of-plane shear modulus G23 can be used as well. Using these

engineering constants the reduced elasticity coe�cients for a plane stress state can be obtained by [4]

C11 =
E1

(1 − �21�12)
, (I.12)

C12 =
�21E1

(1 − �21�12)
=

�12E2
(1 − �21�12)

, (I.13)

C22 =
E2

(1 − �21�12)
, (I.14)

C66 = G12. (I.15)

For the plane strain state the framework is more complex as the material parameters characterizing the

properties in thickness direction are involved, too. The elasticity coe�cients are calculated by [187]

C11 =
(1 − �223)E1

(1 + �23)(1 − �23 − 2�12�21)
, (I.16)

C12 =
�21E1

(1 − �23 − 2�12�21)
, (I.17)

C22 =
(1 − �12�21)E2

(1 + �23)(1 − �23 − 2�12�21)
, (I.18)

C66 = G12. (I.19)

The in�uence of a varying �ber orientation is introduced by a transformation from the local to a global

coordinate system. This can be written in matrix form as

ℂ
′
= TℂTT (I.20)

with the transformation matrix for a elasticity matrix reduced to a two-dimensional case

T =
⎡
⎢
⎢
⎢
⎣

cos2 � sin2 � 2 cos � sin �
sin2 � cos2 � −2 cos � sin �

− cos � sin � cos � sin � cos2 � − sin2 �

⎤
⎥
⎥
⎥
⎦

, (I.21)

where the angle between the local and global coordinate system is given by � . To analyze the in�uence of the

�ber orientation on the engineering constants these parameters need to be extracted from the elasticity tensor

de�ned in the global coordinate system. In case of a plane strain state this is not possible without a further

assumption as there are only four independent equations containing �ve engineering constants. Due to the

two dimensional modeling the material properties in thickness direction may be assumed constant and not

a�ected by the �ber orientation.

I.2.3 Correlated second-order random �elds

Random variables Z can be used to describe quantities whose values are determined by a random experiment,

which is subject to the rules of probability theory. A realization of the random variable Z is given by z. If a

random variable is furthermore, assigned to spatial coordinates, one speaks of a random �eld Z(x). In the

context of the continuum mechanics and for the synthesis of such random �elds by using the Karhunen-Loève

expansion, it is necessary that the variance of the random �eld as well as the random variable is �nite. In this

case the following de�nition for a realization ! holds

Z(x) = Z(!, x) ∈ L2(Ω; ℝ) (I.22)
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and one speaks of second-order random �elds and second-order random variables, respectively [13]. Their

main properties are brie�y presented below.

Random variables are characterized by two functions. First the probability of Z ≤ z is expressed by the

cumulative distribution function

P(Z ≤ z) = FZ (z) = F (z). (I.23)

The second characteristic function is the �rst derivative of the cumulative distribution function called probability

density function

f (z) =
d F(z)
d z

. (I.24)

A well-known function here is the Gaussian bell curve, which represents a normal distribution.

Like random variables, random �elds are characterized by a cumulative probability distribution and proba-

bility density function as well. Furthermore, both random variables and random �elds are characterized by

moments of probability distribution [169, 176]. In general the n-th moment of a single random variable Z is

de�ned as

E[Z n] = ∫
∞

−∞
znfZ (z) d z. (I.25)

Based on this de�nition the �rst moment, also called expected value, is given by

E[Z] = �Z = ∫
∞

−∞
zfZ (z) d z. (I.26)

The second moment of a random variable is known as the mean-square of Z . In addition to moments of the

probability distribution so called central moments can be formulated considering the expected value. By using

the second central moment the deviation of the values with respect to the expected values can be measured,

which is also known as the variance. Reformulating Equation (I.25) leads �rst to the general de�nition of

central moments

E[(Z − �Z )n] = ∫
∞

−∞
(z − �Z )nfZ (z) d z (I.27)

and therefore,

E[(Z − �Z )2] = ∫
∞

−∞
z2fZ (z) d z − �2z (I.28)

holds for the variance of the random variable Z . In addition, the standard deviation is often used, which can

be derived from the variance by

�Z =
√
Var(Z). (I.29)

The de�nitions provided in Equations (I.25) to (I.29) can be easily transferred to random �elds by replacing

Z with Z(x). Therefore, in general the expected value as well as the variance are functions of the spatial

coordinates x. However, in case of a homogeneous random �eld both the expected value and the variance

become constants [176].

The observation of a random �eld at di�erent locations xi is described by the corresponding random variables

Z = Zi . In this case the relation between these random variables is expressed by the covariance, which is

de�ned for two random variables Z1 and Z2 as

Cov(X1, X2) = E[(X1 − �1)(X2 − �2)] (I.30)

= E[X1X2] − �1�2. (I.31)

Usually this expression is reduced to a dimensionless parameter. Therefore, Equation (I.31) is divided by �1
and �2, which leads to

�(X1, X2) =
Cov(X1, X2)

�1�2
. (I.32)
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E � �
GPa - kg/m3

Glass 70 0.22 2500
PBT 2.6 0.41 1300

Table I.1: Material properties of PBT and Glass �bers.

Here �(X1, X2) is the dimensionless correlation parameter. If the two random variables Z1 and Z2 are part of the

same random �eld Z(x), Equations (I.31) and (I.32) give the auto-covariance and auto-correlation, respectively.

In case they belong to two di�erent random �elds Y (x) and Z(x) the results of Equations (I.31) and (I.32) are

the cross-covariance and cross-correlation, respectively.

Usually the probability density function is unknown and hence, the random �eld is represented by a discrete

number realizations !i [132]. In this case the mean of the discrete values

Z(x) =
1
N

N
∑
i=1

Z(!i , x) (I.33)

can be used as expected value of the random �eld. In addition the variance is rewritten as

s2(x) = Z(x)2 − Z(x)2. (I.34)

Finally the dimensionless correlation coe�cient for two random variables Z1 and Z2 is given by

�(X1, X2) =
[Z1 − Z1][Z2 − Z2]

s1s2
. (I.35)

I.3 Analytical treatment

In this section, the in�uence of geometrical �ber properties, as well as �ber volume fraction and �ber orientation

on the engineering constants and the elasticity coe�cients of the material, is analyzed analytically using the

material models by Tandon and Weng as well as Halpin and Tsai. The goal is to identify those parameters that

in�uence the material properties signi�cantly and therefore, must be taken into account when analyzing the

microstructural e�ect on the overall mechanical behavior of SFRC on a numerical basis. First, the material

properties and their probabilistic characteristics are presented. This is followed by a detailed description of the

analytical treatment procedure. At the end of this section, those parameters are identi�ed that in�uence the

mechanical properties of SFRC signi�cantly.

I.3.1 Material properties and their probabilistic characteristics

All presented analyses are based on a polybutylene terephthalate (PBT) matrix reinforced with glass �bers. The

engineering constants and densities for these two components are given in Table I.1. For SFRC the amount of

reinforcing �bers is usually expressed by the �ber mass fraction 'm. However, within the analytical framework

of material properties the �ber volume fraction ' is used. Between these two parameters the following relation

holds

'm =
�f '

�f ' + �m(1 − ')
. (I.36)

In this study an overall �ber mass fraction of 'm = 30% is assumed, which equals a �ber volume fraction of

' = 18.22%.
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For the investigation of the in�uence of SFRC characteristics like �ber length, �ber orientation, �ber

diameter, and �ber volume fraction their probabilistic properties must be known. For the analytical as well

as the consecutive numerical analysis in Section I.4 the probability distributions of these characteristics are

taken from [58]. Like the material used in this study, the probability density functions are based on a SFRC

consisting of a thermoplastic material reinforced with glass �bers and a �ber mass fraction of 'm = 30%. The

characteristics are determined for tensile test specimens made by mold injection.

The probability density function of the �ber length l is usually approximated by a two-parameter Weibull

distribution, that can be written as [24, 44]

f (l|a, b) =
b
a (

l
a)

b−1

exp(−
l
a)

b

. (I.37)

For the chosen material the Weibull parameter a and b are set to

a = 292 b = 1.96. (I.38)

The corresponding mean of the �ber length is l̄ = 260 µm. In contrast to the �ber length, the �ber diameter d
shows a normal distribution. The corresponding probability density function reads

f (d) =
1

�
√
2�

exp
[
−
1
2 (

d − �
� )

2

]
(I.39)

with a mean value � = 10.9 µm and a standard deviation � = 0.9 µm. The main reason why these two

parameters show di�erent probabilistic characteristics lays in the production process. While the �ber diameter

is mostly in�uenced by the production process of the �ber itself the �ber length is not only a�ected by the

�ber production but also by the mold injection process [58].

The �ber orientation is described by an elliptic probability density function [58]. Therefore,

f (�) =
ℎ2√

1 − ℎ21−ℎ22
ℎ21

cos2(�)
(I.40)

holds. Here, ℎ1 and ℎ2 are the semi-minor and semi-major axis, respectively. The semi axes ratio for this

probability density function measured by �CT is 22.1.

Based on these probability density functions the distribution of the three main characteristics, �ber length,

�ber diameter, and �ber orientation are obtained. Figure I.1 gives an overview of the presented probability

density functions.

The spatial distribution of the �ber volume fraction depends strongly on the window size and is therefore,

not described by a probability density function [156].

I.3.2 Procedure

For the analytic analysis, the in�uence of the geometrical �ber properties on the engineering constants

and elasticity coe�cients is investigated based on the material model by Tandon and Weng, which �ts

experimentally obtained values best [60, 174]. As a second approach the material model by Halpin and Tsai is

used. This material model is commonly used due to the simple implementation process [72]. Both material

models provide equations for the engineering constants of SFRC as a function of the �ber length, �ber diameter

and the �ber volume fraction.

The in�uence of the di�erent geometrical �ber properties on the elasticity coe�cients is analyzed separately

on an analytical basis. Therefore, the engineering constants are calculated based on the mean values given for

the �ber length and �ber diameter. The chosen �ber volume fraction equals a �ber mass fraction of 30%. In
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Figure I.1: Probability density functions.

E1 E2 G12 G23 �12
GPa GPa GPa GPa -

Tandon-Weng 12.4 3.99 1.31 1.26 0.379
Halpin-Tsai 11.2 4.12 1.30 1.25 0.375

Deviation 1.2 0.13 0.01 0.01 0.004

Table I.2: Results of the engineering constants for Tandon-Weng and Halpin-Tsai.

addition one of these parameters is varied. This is done by generating 1e6 values of the varying parameter

following the probability density function. For each value �rst the engineering constants using the material

model of Tandon and Weng are calculated. Based on the material model by Halpin and Tsai only the varying

Young’s Modulus E1 is considered. The remaining engineering constants are independent of the �ber geometry.

Based on these engineering constants the elasticity coe�cients are calculated assuming a plane stress state

and hence, using Equations (I.12) to (I.15).

A determination of the �ber orientation in�uence can only be made indirectly by �rst determining the

elasticity tensor based on the engineering constants for the local coordinate system. This elasticity tensor can

then be related to a �ber orientation by a coordinate transformation using Equation (I.20). By calculating the

e�ective material properties based on the resulting elasticity tensor referring to a global coordinate system, it

is �nally possible to determine the engineering constants concerning a varying �ber orientation. All presented

analyses consider a two-dimensional representation under plane stress assumption. However, an analytical

treatment based on a plane strain state show similar results.

As there is no probability density function describing the �ber volume fraction, the resulting values are

plotted for the range of 10% to 30%. This �ts the results of an analysis for a spatial �ber volume fraction

�uctuation based on the moving window method presented in [156].

I.3.3 Results

First of all Table I.2 gives the engineering constants calculated for both material models using the mean values

for the �ber length of 260 µm and for the �ber diameter of 10.9 µm. The �ber mass fraction is set to 30% and the

�bers are assumed to be all aligned in the 0◦ direction. The values of the shear moduli and Poisson ratios are

almost identically, whereas the Young’s moduli show a deviation of up to 8%. This meets the results presented

in [174].

As an example, Figure I.2 shows the results of the engineering constants based on the material model by
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Tandon and Weng with a varying �ber length. It can be seen that the �ber length in�uences the Young’s

modulus E1 signi�cantly, whereas the shear moduli are almost independent. The Young’s modulus E2 as well

as the Poisson ratio �12 react only slightly to a variation of the �ber length. Following this only the coe�cient

C11 is signi�cantly in�uenced by the �ber length. A minor in�uence can be recognized for the coe�cient C12
as this coe�cients depends also on E1. The remaining coe�cients C22 and C66 are nearly independent (see

Figure I.3). Furthermore, the distribution of the engineering constants as well as the elasticity coe�cients can

be approximated by a Weibull distribution, which also describes the distribution of the �ber length itself.

The analysis based on the material model by Halpin and Tsai leads to identical conclusions. As only E1
is formulated as a function of the �ber length, the remaining constants are independent and only C11 is

signi�cantly in�uenced by the �ber length. Again, the distribution of E1 as well as the resulting elasticity

coe�cients can be approximated by a Weibull distribution.

Based on these results the following analyses of the �ber diameter in�uence, as well as the �ber orientation,

are concentrated on E1 and C11. The full results of the analytic analysis for both material models regarding

the �ber diameter and �ber orientation can be found in I.A. In Figures I.4 and I.5 the results of E1 and C11 are

given based on the material model by Tandon and Weng and Halpin and Tsai, respectively. Starting from left

to right they show the results for the �ber length, �ber diameter, and �ber orientation, respectively. It can be

observed, that both material models lead to similar results. The engineering constants as well as the elasticity

coe�cients are signi�cantly in�uenced by the �ber length and �ber orientation. However, the �ber diameter

has just little impact on the material properties. Furthermore, the �ber orientation shows very high values for

angles close to zero. As the �ber angle increases the values are dropping rapidly. This is indicated by a second

local maximum at the lower spectrum of the values, which corresponds to �ber orientation of 60◦ up to 90◦.
Finally Figure I.6 gives the results of main material properties as a function of the �ber volume fraction for

both material models. As shown in [156] the �ber volume fraction in�uences signi�cantly the parameters E1
and C11. Furthermore, the in�uence on E2 and G12 and the corresponding elements of the elasticity tensor is

still signi�cant for both material models in the range of 10% to 30% �ber volume fraction.

Based on the results of this analytical treatment it can be concluded that the �ber length as well as the �ber

orientation and �ber volume fraction in�uence the material properties of SFRC signi�cantly, whereas the �ber

diameter shows only a minimal in�uence. This corresponds to the results presented in [134]. Furthermore, it

can be observed that the distribution of the engineering constants, as well as the elasticity coe�cients, can be

approximated with the same type of probability density function as the varied parameter itself. This also holds

when assuming a plane strain state.

I.4 Numerical analysis

The numerical analysis covers the in�uence of the microstructure properties of SFRC on the mechanical

behavior as well as the correlation structure of the resulting elasticity tensor. First, the numerical procedure is

presented. This is followed by the determination of a su�cient element size for the numerical model. Finally,

the in�uence of the microstructure on the mechanical properties is analyzed and the correlation structure of

the elasticity tensor is presented.

I.4.1 Generation of the microstructure

For all numerical analyses �rst, a microstructural model is generated representing randomly placed �bers in a

preset area. Later this microstructure is transferred to a numerical model. The generation of the microstructure

is based on an adapted Poisson process. First, a set of two integers within the preset area is randomly chosen.

These integers represent the midpoint of the new �ber. Next, the �ber length, �ber diameter and the �ber

orientation of this �ber are determined following their probability density functions. With all the necessary

information about the �ber, it is checked if there are any overlaps with other �bers. Only if there are no

overlaps the �ber is �nally added to the area, which is represented by a two-dimensional array with a step

size of 1 µm along both axes. In comparison with an average �ber diameter of 10 µm and an average �ber
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Figure I.2: Engineering constants due to a varying �ber length for the material model by Tandon and Weng.
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Figure I.3: Elasticity coe�cients due to a varying �ber length for the material model by Tandon and Weng.
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Figure I.4: Results for the distribution of E1 and C11 with respect to a varying �ber length, diameter, and

orientation based on the material model by Tandon and Weng.
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Figure I.5: Results for the distribution of E1 and C11 with respect to a varying �ber length, diameter, and

orientation based on the material model by Halpin and Tsai.
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Figure I.6: In�uence of the �ber volume fraction on the material properties of SFRC.

length of 260 µm the grid size of 1 µm is su�cient. The procedure is repeated until a prede�ned �ber volume

fraction is reached. Figure I.7 shows an exemplarily generated microstructure with a size of 2500 µm× 2500 µm.

Here, a signi�cant di�erence between the analytical prediction and the numerical modeling is getting obvious.

In contrast to the analytical description, the numerical model can consist of several �bers with di�erent

geometrical properties. Furthermore, the �ber orientation, as well as the �ber volume fraction, can show

spatial �uctuations. Regarding the analytical modeling all �bers are assumed to have identical geometrical

properties as well as orientations.

Below microstructures with di�erent varying characteristics are analyzed numerically. In comparison to

the analytical modeling �rst besides one parameter, all remaining are set to the mean value. By doing so the

in�uence of a varying �ber length, �ber diameter, and �ber orientation can be investigated separately. In a

further step, a microstructure is generated, that is much larger than the analyzed window size. Extracting

a smaller window from a larger microstructure enables one, to analyze a varying �ber volume content, as

depicted in Figure I.7. In a �nal step, a microstructure is generating where all characteristics are set with

respect to their probabilistic characteristic.

I.4.2 Finite Element Model

After implementing the microstructure a numerical model is generated using Comsol. The numerical model

consists of a square in plane stress state discretized by a structured mesh consisting of squared Lagrange

elements with quadratic shape functions. In the last step, the material properties (see Table I.1) are passed to

the numerical model. This is done by �rst saving the material properties in arrays that have the same structure

as the array representing the microstructure itself. As both components show isotropic material behavior, these

arrays provide the distribution of the Young’s Modulus as well as the Poisson’s ratio of the two materials over
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Figure I.7: SFRC microstructure of 2500 µm × 2500 µm with a over all �ber volume fraction of 18.2%.

the microstructure. Finally, to each integration point the corresponding material properties are passed. This

procedure is depicted in Figure I.8. However, assigning the material properties to the integration points leads

to a mesh dependent representation of the microstructure. Therefore, to ensure a su�cient representation of

the resulting material properties, the in�uence of the element size is analyzed in detail in Section I.4.3.

To determine the elasticity coe�cients the boundary conditions are de�ned in accordance with Equations (I.6)

and (I.7). Usually, individual simulations for each elasticity tensor component are performed [127, 190].

However, in [188] it is shown that it is also possible to use just three independent load cases to be able to

calculate all nine elasticity coe�cients of a two-dimensional model individually. This is done by formulating

three independent boundary conditions, where always just one strain component is not equal zero. Table I.3

gives an overview of all load cases used to determine the elasticity coe�cients for pure kinematic as well as

pure traction boundary conditions in accordance with the Hill condition given by Equation [I.5].

I.4.3 Analysis of the element size

One crucial aspect of this approach is the element size. Hence, before the in�uence of the microstructure is

analyzed by numerical simulations, a su�cient element size must be determined. This is done by performing

numerical simulations based on a microstructure of 250 µm × 250 µm with di�erent element sizes. For each

con�guration, the pure displacement and pure traction boundary conditions are applied and the elasticity

coe�cients are determined based on the framework given in I.B.1. For statistical reasons, the simulation is

carried out for 500 di�erent microstructures [157, 164]. Table I.4 provides the mean values of the elasticity

coe�cients �rst for pure displacement and afterward for pure traction boundary conditions.

First of all the values indicate, that the symmetry of the elasticity tensor is still valid. However, there is a

small deviation between the elasticity coe�cients C12 and C21. Furthermore, the dependence on the boundary

conditions of the results and hence the scale dependence of C11, C22 and C66 is clearly observable. As presented

in Section I.2.1 the displacement boundary conditions lead to an upper bound whereas the traction boundary
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Figure I.8: Procedure to generate a numerical model representing a SFRC microstructure.

BC Load case Left edge Right edge Upper edge Lower edge

x = 0 x = d y = 0 y = d

1

u1 = 0 u1 = u0 u1 = u0x u1 = u0x
u2 = 0 u2 = 0 u2 = 0 u2 = 0

Pure

2

u1 = 0 u1 = 0 u1 = 0 u1 = 0
displ. u2 = u0y u2 = u0y u2 = u0 u2 = 0

3

u1 = 0 u1 = 0 u1 = 0 u1 = 0
u2 = 0 u2 = u0 u2 = u0x u2 = u0x

1

t1 = t0
2 t1 = − t02 t1 = 0 t1 = 0

t2 = 0 t2 = 0 t2 = 0 t2 = 0
Pure

2

t1 = 0 t1 = 0 t1 = 0 t1 = 0
trac. t2 = 0 t2 = 0 t2 = t0

2 t2 = − t02

3

t1 = 0 t1 = 0 t1 = t0
2 t1 = − t02

t2 = − t02 t2 = t0
2 t2 = 0 t2 = 0

Table I.3: Load cases for the determination of the elasticity coe�cients in accordance with the Hill condition

[188].
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Element size C11 C12 C21 C22 C66 'm
µm GPa GPa GPa GPa GPa -

KUBC

16.7 12.0 1.62 1.51 4.67 1.47 0.302

10 11.7 1.56 1.49 4.36 1.35 0.303

5 11.6 1.53 1.48 4.21 1.30 0.302

2.5 11.6 1.51 1.48 4.06 1.26 0.302

SUBC

16.7 6.34 1.49 1.60 4.01 1.20 0.302

10 6.42 1.49 1.58 3.91 1.16 0.303

5 6.46 1.51 1.56 3.89 1.15 0.302

2.5 6.51 1.52 1.54 3.83 1.14 0.302

Table I.4: Results of the elasticity coe�cients with respect to the element size.

conditions lead to a lower bound. Therefore, these results con�rm Equation (I.10).

Comparing the values for the di�erent element sizes with each other show only minor variations for an

element size of 10 µm or less. In this case the obtained results for the elasticity coe�cients of a window with

a size of 250 µm × 250 µm does not depend on the element size. Therefore, for all following simulations the

element size is set to 10 µm × 10 µm.

I.4.4 In�uence of the microstructure

I.4.4.1 Overall properties of the elasticity tensor

Before analyzing the in�uencing geometrical properties in detail the overall characteristics of the elasticity

tensor with respect to the window size and the boundary condition is presented. This is done based on a

microstructure where all main properties are assumed to show probabilistic behavior. This ensures an overall

realistic representation of the microstructure.

Figure I.9 gives the minimal and maximal value of each elasticity coe�cient for both types of boundary

conditions and a window size of 250 µm, 500 µm, and 750 µm. First of all the scale dependence of the elasticity

coe�cients can be found as the range of the coe�cients decreases with increasing window size. In addition,

the symmetry properties of the elasticity tensor are observable. Not only C12 and C21 show an almost identical

behavior, but also C16 and C61 as well as C26 and C62 coincide very well. However, in contrast to C12 the mean

values of C16 and C26 are approximately zero. As their �uctuation starts to vanish with an increasing window

size the overall assumption of transversely-isotropic material behavior holds. This is also independent of the

boundary condition. The overall transversely-isotropic material behavior is also indicated by the elements C11
and C22. Due to the aligned characteristic of the �bers predicted by the corresponding PDF, see Figure I.1, the

value of C11 is greater than the value of C22.
Finally, the results of the elasticity coe�cients show that the values for pure kinematic boundary conditions

are higher compared to pure traction boundary conditions, which meets the theoretical framework of the

multiscale modeling.

For taking a closer look at the distribution of the individual coe�cients Figure I.10 shows the histogram

of each elasticity coe�cient for a window size of 250 µm and pure displacement boundary conditions based

on 16.500 data sets. Again the symmetry properties of the elasticity tensor, as well as the anisotropic e�ect

due to the limited window size, can be observed. However, not all coe�cients can be approximated best with

the same probability distribution type. Whereas C11, C12, C22, and C66 seem to meet a Weibull distribution

best, the remaining parameters are most likely normal distributed. Observing this over an increasing window

size reveals that the distribution of the elasticity coe�cients depends on the window size of the analyzed
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Figure I.9: Symmetry analysis of the elasticity tensor.

microstructure as depicted in Figure I.11. In this �gure the histogram of C11 is given for both boundary

condition types as well as all window sizes. The histogram indicates, that the distribution of C11 equals a

Weibull distribution for small window sizes whereas for an increasing window size the distribution starts to

meet a normal distribution. This observation is independent of the boundary condition. Therefore, it can be

concluded that the distribution of the elasticity coe�cients is signi�cantly in�uenced by the microstructural

properties on the mesoscale. However, when the SVE gets close to the RVE the microstructure does not a�ect

the distribution any longer.

I.4.4.2 Parameter identi�cation

For the analysis of the geometrical parameters in�uencing the material properties of SFRC on the mesoscale,

�rst, the di�erent parameters are observed individually. Finally, all parameters are combined. For the analysis

of the �ber length, orientation, and diameter in�uence, the microstructure is generated with respect to the

varying parameter and the window size. The remaining parameters are set to the mean value according to

their probabilistic characteristics. Considering a locally distributed �ber volume fraction a microstructure is
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Figure I.10: Distribution of the elasticity coe�cients under pure displacement boundary conditions with respect

to a 250 µm window size.
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Figure I.11: Distribution of the values for the elasticity tensor element C11 with respect to the boundary

conditions and the window size.
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generated that is larger than the actual window size. By extraction a window from a greater microstructure,

the corresponding �ber volume fraction is not constant, see Figure I.7.

Again for statistical reasons, the simulations for each analysis are carried out for 500 di�erent microstructures

[157, 164]. Furthermore, as the material properties on the mesoscale depend on the window size the procedure

is done for a window size of 250 µm, 500 µm, and 750 µm.

Figure I.12 and I.13 show the mean value and the standard deviation of each elasticity coe�cient with

respect to the boundary conditions as well as the window size for each analyzed con�guration. The coe�cients

can be divided into two groups, those who have a mean value of zero (C16, C26, C61, C62) and the remaining

coe�cients. The coe�cients with a mean value of zero show a signi�cant scattering mainly induced by a

varying �ber orientation. This is not only indicated by the standard deviation but also by the mean values of

these elasticity coe�cients. This �ts the analytic description of composite materials. As long as the �bers are

all aligned with the symmetry axis

C16 = C26 = C61 = C62 = 0 (I.41)

holds. However, when rotating the �ber orientation by a coordinate transform these elements are no longer

equal to zero.

The sensitivity to the orientation of the �ber can also be found for the remaining elasticity coe�cients.

Here again, not only the mean values are signi�cantly in�uenced, but also the standard deviation increases

signi�cantly. Furthermore, the standard deviation of these coe�cients is also sensitive to the �ber volume

fraction. Finally, there is only a slight in�uence of the �ber length as well as the �ber diameter.

I.4.5 Comparison of the analytical and numerical results

First of all the numerical results of the reference elasticity tensor are compared to the analytical results of the

elasticity tensor based on the engineering constants given in Table I.2. For both analyses, the �ber geometry

equals the mean value of the �ber length and �ber diameter. The �ber mass fraction is set to 30% and the

�ber orientation is 0◦. The results of the numerical analysis are provided in Table I.5. As the coe�cients C12
and C21 can be calculated individually in this case, the given value of C12 represents the mean of C12 and

C21. The comparison of the numerical and analytical results agrees very well for the coe�cients C12, C22,
and C66. This is independent of the boundary condition as well as the window size. In contrast to this, the

coe�cient C11 is approximated higher by using the analytical models of Tandon and Weng as well as Halpin

and Tsai than the numerical simulations indicate. Finally, the mean values of C16, C26, C61, and C62 based on

the numerical simulations are close to zero. This �ts the analytical results for �bers aligned with the symmetry

axis. Therefore, the analytical and numerical results show an overall good agreement.

I.4.6 Correlation analysis

I.4.6.1 Moving window

The moving window method is used to characterize the random local properties of composites [8, 51, 157]. In

this context, a window of a microstructure is moved to di�erent locations and marks a rectangular part of the

microstructure. The procedure is depicted in Figure I.14b for a microstructure with a size of 2500 µm× 2500 µm
and window sizes of 500 µm × 500 µm. With respect to the correlation analysis, this technique can be used to

analyze the local dependence of the material properties by evaluating overlapping windows. If the windows

do not overlap the correlation should be zero, as their microstructures are independent of each other.

In this study the basis of the correlation analysis is a microstructure of 2500 µm × 2500 µm. To analyze the

scale dependence of the correlation structure the window size is varied. Here, the maximum possible window

size regarding a microstructure edge length of 2500 µm is 833 µm. In this case, it is possible to place three

windows next to each other without any overlap. With a maximum window size of 833 µm and in accordance

with the analysis presented so far the correlation analysis is done using again window sizes of 250 µm, 500 µm,

and 750 µm. With respect to an average �ber length of 260 µm this domain can be assigned to the mesoscale.
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Figure I.12: Mean values of the elasticity coe�cients in dependence of the geometrical �ber properties as well

as the �ber volume fraction and �ber orientation on the elasticity coe�cients.
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Figure I.13: Standard deviation of the elasticity coe�cients in dependence of the geometrical �ber properties

as well as the �ber volume fraction and �ber orientation on the elasticity coe�cients.
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BC C11 C12 C22 C66
GPa GPa GPa GPa

Tandon-Weng 13.0 1.59 4.18 1.31
Halpin-Tsai 12.0 1.63 4.34 1.30

250 µm KUBC 11.8 1.56 4.36 1.35
250 µm SUBC 6.43 1.48 3.91 1.16

500 µm KUBC 10.2 1.57 4.14 1.27
500 µm SUBC 7.11 1.53 3.92 1.18

750 µm KUBC 9.80 1.56 4.08 1.24
750 µm SUBC 7.59 1.59 3.93 1.18

Table I.5: Comparison of the mean values for the engineering constants based on the analytical and numerical

analysis.

(a) Created microstructure with a

size of 2500 µm × 2500 µm.

(b) Extracting windows of

500 µm × 500 µm from the

original microstructure at

di�erent locations.

(c) Location of the center points of

each window that is used to

analyze the correlation of the

elasticity coe�cients.

Figure I.14: Moving window procedure

This is also indicated by the results of the elasticity tensor properties presented in Section I.4.4.1 which clearly

show a scale dependence of the elasticity coe�cients for window sizes up to 750 µm.

To determine the correlation structure the dimensionless correlation parameter is calculated by evaluating

Equation (I.35) based on 33 extracted windows at di�erent locations from the same microstructure, see Figure

I.14c. Starting from the center point of the microstructure the window is moved to the left and right as well

as to the top and bottom four times. The distance between the equidistantly arranged center points of the

extracted windows in the same direction is a quarter of the current window size. Therefore, the outer windows

and the window in the center of the microstructure do not overlap. In the same way, windows are placed

along the diagonals of the microstructure. Here, the distance between two center points is

√
2lwindow. This

procedure is repeated for a total of 500 microstructures to ensure convergence of the dimensionless correlation

parameters [157, 164].
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Figure I.15: Symmetry analysis of the elasticity tensor.

I.4.6.2 Cross-correlation

In this section, the correlation structure of the elasticity tensor is analyzed in detail. The main focus lays on

the cross-correlation of the elasticity coe�cients with respect to the boundary condition and the window

size. First, the symmetry of the elasticity tensor is analyzed. Of particular interest are the elements C12 and

C21. Furthermore, as the varying �ber orientation leads to the anisotropy of the material the elements C16
and C61 as well as C26 and C62 are taken into account as well. Therefore, Figure I.15 shows the results of

each simulation, where C12 is plotted against C21, C16 is plotted against C61, and C26 is plotted against C62,
respectively. The correlation between these elasticity coe�cients is clearly indicated by a strong alignment

of the points. Furthermore, the values of C16, C26, C61, and C62 �uctuate around zeros, which leads to the

conclusion that the mean value of these elements is close to zero. This behavior is independent of the boundary

condition. However, the anisotropic e�ect (C16, C26, C61, C62 ≠ 0) starts to vanish with an increasing window

size. This meets the assumption of overall transversely-isotropic material properties.

For analyzing the correlation structure of the anisotropic e�ect more in detail, Figure I.16 depicts the
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Figure I.16: Correlation analysis of the elasticity tensor based on the element C16 for a window size of 250 µm.

correlation structure of C16 with respect to a window size of 250 µm. Here, the lower index gives the reference

for the dimensionless correlation parameter and the upper index refers to the elasticity coe�cient that is

calculated based on the moving window. Therefore, for �1116 C16 is calculated for the window extracted of the

microstructure center and C11 is determined for the extract of the moving window. Furthermore, |� | gives the

distance between the moving window and the center point of the microstructre.

The following essential characteristics can be derived. First, the correlation structure with respect to C16 is

independent of the boundary condition. Second, the symmetry properties of the elasticity tensor can also be

found within the correlation structure as �1616 is almost identical to �6116 . The same holds for �2616 and �6216 . Finally,

there are only cross-correlations between the elements C16 and C61 due to the symmetry as well as between

C16 and C26 and C16 and C62, respectively. All other elements are uncorrelated to C16. As indicated by Figure

I.17, that shows the dimensionless correlation parameter between C16 and C26 for all three window sizes as

well as both boundary conditions, these conclusions are also independent of the window size. Furthermore,

the dimensionless correlation parameter is calculated in two di�erent ways. First, the reference is C16 and C26
is calculated for the moving window. Subsequently, the values are exchanged, which means that the reference

is C26 and C16 is calculated for the moving window. Based on the identical correlations for both variants,

�2616 = �
16
26 (I.42)
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Figure I.17: Comparison of �2616 and �1626 .

holds under the condition, that a su�cient number of realizations is taken as a basis. This leads to the

conclusion that the correlation structure shows the same symmetry properties as the elasticity tensor and

therefore,

�ba = �
a
b (I.43)

can be assumed. Hence, the remaining number of independent correlation parameters can be reduced to

�1211 , �
22
11 , �

66
11 , �

22
12 , �

66
12 , �

66
22 . (I.44)

These conclusions are also valid for the correlation structure based on a plane strain state as shown in Figures

I.26 and I.27.

The results of the cross-correlation for the remaining elasticity coe�cients are presented in Figures I.18 and

I.19. Here, the dimensionless correlation parameter is again divided into two groups. For one the correlation is

independent of the window size (Figure I.18). The other group shows a decreasing correlation for an increasing

window size, which is indicated by a decreasing value for |� | = 0. The overall shape of the correlation is not

necessarily a�ected. One example is �6611 . If the correlation depends on the window size, it is only relevant as

long as the structure is represented by a SVE. In the case of a RVE the correlation vanishes.

These results also meet the theoretical framework as there is a clear connection between C11 and C12 via the

Poisson ration �12. However, the two elasticity coe�cient C11 and C66 are independent on the macroscale.

The same correlation structure can be also derived on the basis of a plane strain assumption, see Figures I.28

and I.29. However, the correlation functions can not be approximated by the same function. Therefore, when

using second-order random �elds for numerical simulations of components the correlation functions must be

determined with respect to the overall load assumption.
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Figure I.18: Dimensionless correlation parameters that are independent of the window size.

I.5 Conclusion

In the presented work �rst, an analytical treatment is performed. Based on the material models by Tandon

and Weng as well as Halpin and Tsai the in�uence of the di�erent geometrical properties like �ber length,

�ber diameter, �ber orientation, and �ber volume fraction on the material properties is investigated. The

results show that the Young’s Modulus E1 is the most a�ected material property by the geometrical properties.

This is supported by the material model of Halpin and Tsai, where only E1 is modeled as a function of the

�ber length and �ber diameter. The main in�uencing parameters of E1 are the �ber length, �ber orientation,

and �ber volume fraction. The remaining engineering constants are only slightly a�ected by the geometrical

�ber properties. However, the �ber orientation, as well as the �ber volume fraction, also have a signi�cant

e�ect on these constants. This can also be found when analyzing the elasticity coe�cients. Furthermore, the

distribution of the resulting elasticity tensor, as well as the elasticity coe�cients, can be approximated by the

same function as the probability density function of the in�uencing parameter itself.

In the next step, this analysis is repeated on a numerical basis. However, there is one important di�erence

between the numerical analysis and analytical treatment. The numerical model consists of several �bers

of di�erent length, diameter, and orientation. In contrast to that the analytical treatment is based on the

assumption that all �bers have the same length, diameter, and orientation. Furthermore, by evaluating the

numerical model each element of the elasticity tensor can be calculated individually. Therefore, the symmetry

of this tensor is not presupposed, but the numerical results clearly con�rm the symmetry of the resulting

elasticity tensor. Furthermore, the overall transversely-isotropic material properties are a�rmed by the

numerical simulations as the mean of the elasticity coe�cients C16 and C26 equals zero and the standard

deviation decreases with increasing window size.

Summarizing the numerical simulations show a good agreement with the results of the analytical investi-

gation. The material properties of the microstructure is in�uenced signi�cantly by the �ber orientation and
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Figure I.19: Dimensionless correlation parameters that depend on the window size.
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the �ber volume fraction. Furthermore, on the mesoscale, the distribution of the elasticity coe�cients can

be approximated with the same probability distribution as the in�uencing parameter itself. However, with

increasing window size, the distribution starts to shift to a normal distribution.

Regarding the numerical correlation analysis, the symmetry of elasticity tensor can also be found within the

correlation structure of the elasticity coe�cients. In addition, the dimensionless correlation parameters can be

divided into two independent groups. The �rst group gives the correlation between the non zero elasticity

coe�cients of transversely-isotropic material behavior. The second group comprises only a correlation of C16
and C26.

It can be concluded, that the correlation structure of the elasticity tensor for SFRC can be approximated by

numerical simulations on the mesoscale and the results are independent of the chosen boundary conditions.

However, the results depend not only on the window size but also on the overall assumption of a plane stress

and a plane strain state in case of a two-dimensional model, respectively.

I.A Analytical results

Below the remaining results of the analytical treatment are shown. This includes the in�uence of the �ber

diameter and �ber orientation on the engineering constants as well as the elasticity coe�cients based on the

material model by Tandon and Weng. Furthermore, the results based on the material model by Halpin and

Tsai are given. This covers the Young’s Modulus E1 as well as the elasticity coe�cients, both in dependence of

the �ber length, diameter and �ber orientation.

63



Paper I Correlation structure in the elasticity tensor for short �ber-reinforced composites

11 12 13 14

0

0.05

0.1

0.15

E1[GPa]

P
D
F

[-
]

3.97 3.98 3.99 4 4.01

0

0.05

0.1

0.15

E2[GPa]

1.3 1.305 1.31

0

0.05

0.1

0.15

G12[GPa]

1.25 1.255 1.26

0

0.05

0.1

0.15

G23[GPa]

P
D
F

[-
]

0.375 0.38 0.385

0

0.05

0.1

0.15

ν12[GPa]

Figure I.20: Engineering constants due to a varying �ber diameter calculated with the Tandon-Weng material

model.
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Figure I.21: Elasticity coe�cients due to a varying �ber diameter calculated with the Tandon-Weng material

model.
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Figure I.22: Engineering constants due to a varying �ber orientation calculated with the Tandon-Weng material

model.
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Figure I.23: Elasticity coe�cients due to a varying �ber orientation calculated with the Tandon-Weng material

model.
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Figure I.24: Engineering constants due to a varying �ber orientation calculated with the Halpin-Tsai material

model.
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Figure I.25: Elasticity coe�cients due to a varying �ber orientation calculated with the Halpin-Tsai material

model.
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I.B Numerical analysis

I.B.1 Determination of the elasticity tensor elements

To calculate the elasticity coe�cients a system of equations can be formulated based on the three independent

load cases. Hooke’s law for a �nite volume element reads

⟨�⟩ = ℂe� ∶ ⟨�⟩. (I.2)

Reducing this formulation to the 2D case and using Voigt notation leads to
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Each stress component can be written in an individual equation

[⟨�1⟩] = [C
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which can be rearranged to

[⟨�1⟩] = [⟨�1⟩ ⟨�2⟩ 2⟨�6⟩]
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Now the individual load cases can be summarized in this system of equations

⎡
⎢
⎢
⎢
⎣

⟨�LC1

1 ⟩
⟨�LC2

1 ⟩
⟨�LC3

1 ⟩

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

⟨�LC1

1 ⟩ ⟨�LC1

2 ⟩ 2⟨�LC1

6 ⟩
⟨�LC2

1 ⟩ ⟨�LC2

2 ⟩ 2⟨�LC2

6 ⟩
⟨�LC3

1 ⟩ ⟨�LC3

2 ⟩ 2⟨�LC3

6 ⟩

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

Ce�

11

Ce�

12

Ce�

16

⎤
⎥
⎥
⎥
⎦

(I.48)

which can be solved by
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Expanding this procedure to the remaining stress components ⟨�2⟩ and ⟨�6⟩ the elasticity coe�cients can be

derived from
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(I.50)

with n = 1, 2, 6.
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I.B.2 Results based on a plane strain assumption

The following �gures show the results for the correlation analysis assuming a plane strain state.
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Figure I.26: Comparison of the dimensionless correlation parameters based on C16 assuming plane strain and

plane stress states for a window size of 250 µm at x = 1250 µm.
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Figure I.27: Comparison of �2616 and �1626 assuming plane strain and plane stress states at x = 1250 µm.
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Figure I.28: Comparison of the dimensionless correlation parameters that are independent of the window size

assuming plane strain and plane stress states at x = 1250 µm.
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Figure I.29: Comparison of the dimensionless correlation parameters that depend on the window size assuming

plane strain and plane stress states at x = 1250 µm.
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Abstract: In this study a modeling approach for short �ber-reinforced composites is presented

which allows one to consider information from the microstructure of the compound

while modeling on the component level. The proposed technique is based on the determi-

nation of correlation functions by the moving window method. Using these correlation

functions random �elds are generated by the Karhunen-Loève expansion. Linear elastic

numerical simulations are conducted on the mesoscale and component level based on

the probabilistic characteristics of the microstructure derived from a two-dimensional

micrograph. The experimental validation by nanoindentation on the mesoscale shows

good conformity with the numerical simulations. For the numerical modeling on the

component level the comparison of experimentally obtained Young’s modulus by tensile

tests with numerical simulations indicate that the presented approach requires three-

dimensional information of the probabilistic characteristics of the microstructure. Using

this information not only the overall material properties are approximated su�ciently,

but also the local distribution of the material properties shows the same trend as the

results of conducted tensile tests.
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II.1 Introduction

The compatibility of thermoplastic material for automated serial production like mold injection allows high

production rates with a reasonable price per piece. Adding short �bers or nanoparticles to the base material

of pure plastics leads to a signi�cant increase of the sti�ness and strength of the material without losing the

ability to process the material by automated serial production. Hence, this combination results into a high

interest in short �ber-reinforced composite (SFRC) not only in the automotive industry.

The main disadvantage due to the reinforcing elements is the spatial �uctuation of the material properties.

The representation of the non-equally distributed material properties is hence, challenging and connected

with high computational costs due to the use of probabilistic methods. This consequently is worthwhile

to represent the probabilistic characteristics of the microstructure on the component level by appropriate

stochastic methods without extensive computational costs.

The spatial distribution of the material properties is mainly assigned to the �nite �ber length as well

as a production process induced variation of the �ber orientation due to di�erent melt �ow velocities and

shear forces over the cross-section [95]. Since the �ber length is usually much smaller in comparison to

the component the microstructural information must be transferred from the micro- and mesoscale to the

component level. Therefore, a multi-scale approach appears advantageous for a su�cient modeling procedure

for SFRC.

In the literature many di�erent approaches are presented for the modeling of the probabilistic character-

istics of reinforced materials. One approach is based on the orientation tensor introduced in [2]. In [9] the

orientation tensor is implemented directly in the material description. An extended approach is used in [33],

where the orientation tensor is combined with a material model based on a coupled micro-mechanical and

phenomenological approach. The suitability is also discussed in [123]. A second approach is based on the

extended �nite element method (XFEM), which was developed for the numerical simulation of crack growth

and interfaces [122]. In [68] the method is applied to reinforced concrete. It is also used in [137], where it is

combined with a cohesive zone model. All these approaches have in common the lack of a scale transition. A

�rst attempt for a scale transition is presented in [156] where XFEM is combined with a Monte Carlo simulation

to estimate the size of a representative volume element (RVE) for random composites.

One technique for the representation of spatial varying parameters with a scale transition is the use of random

�elds [176] and hence, allow the modeling of inhomogeneous material properties [126]. For the discretization

of random �elds for the use in a numerical simulation the Karhunen-Loève expansion is a suitable tool. This

allows a separation of the deterministic numerical modeling and the probabilistic representation of the material

properties. In context of structural mechanics this approach is also referred to as the stochastic �nite element

method (SFEM) [112, 131]. In [86] SFEM is combined with cohesive zone models for the analysis of crack

growth in �ber reinforced cementitious composites. The �uctuation of the volume fraction is represented by

random �elds in [57]. The in�uence of the �ber mass fraction, the window size, and the contrast between the

phases on the correlation structure is discussed in [157]. Finally, a combination of the SFEM with the concept

of RVE is presented in [56, 164].

The main objective of this research is to establish a robust computational modeling approach for components

made of SFRC using homogeneous second-order random �elds discretized by the Karhunen-Loève expansion.

In this study a tensile test specimen is used exemplary. First the microstructural properties of the material are

extracted from a two-dimensional micrograph as shown in [158]. Using the probabilistic characteristics of the

�ber length, �ber orientation, �ber diameter, and the information about the layered structure of the tensile

test specimen, cross-sections with di�erent micromechanical representations of the specimen are analyzed

and compared with each other. This is done by linear elastic numerical simulations that are validated by

experimental investigations. For the numerical simulation arti�cial microstructures are generated on the

basis of the derived microstructural characteristics. Using these arti�cial microstructures, a numerical model

is established and the Young’s modulus is determined by simulating tensile tests. In addition, the Young’s

modulus is also experimentally obtained by nanoindentation. This allows one to reduce the three-dimensional
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e�ects on the results and hence, to determine the near surface material properties [52]. Based on the results of

the numerical and experimental investigations on the mesoscale the best approach is derived by taking also

into account the aspect of computational costs. The selected approach is then used to expand the procedure

to a representation of the material on the component level by taking into account the spatial distribution of

the material properties induced by the microstructural characteristics. This is achieved by representing the

components of the elasticity tensor by homogeneous second-order random �elds. Therefore, the material

properties are still modeled probabilistically and not deterministically. This also indicates that there is no

scale transition to the macroscale. For the discretization of these �elds the Karhunen-Loève expansion is used,

which requires the determination of correlation functions �rst.

Finally, the in�uence of the probabilistic microstructure characteristics on material properties obtained on

the component level is analyzed. This is done by simulating tensile tests on a numerical basis. Again the

numerically obtained values for the Young’s modulus are compared with experimental results. Consequently,

this study gives a comprehensive analysis of a computational modeling approach for components made of

SFRC by numerical simulation, that is validated by experimental investigations.

The structure of the presented work is as follows. Section II.2 gives a brief overview of the most important

theoretical background including homogeneous second-order random �elds, the Karhunen-Loève expansion

for the discretization of random �elds as well as the main aspects of the multi-scale modeling with respect to

Hill’s condition. In Section II.3 the di�erent specimens used in this study are presented. This is followed by the

extraction of the probabilistic characteristics from a micrograph in Section II.4. The numerical simulations and

experimental investigations on the mesoscale and the impact of the resulting microstructural characteristics

on the component level are shown in Section II.5 and Section II.6, respectively. Finally, Section II.7 gives a

summary and a conclusion of the presented work.

II.2 Karhunen-Loève expansion

II.2.1 Second-order random �elds

Among others probabilistic quantities are described by random variables Z(!). A realized value, e.g. of a

material parameter, is denoted by z. In context of random �elds Z(!, x) the random variables are also assigned

to spatial coordinates x. For the synthesis of random �elds by using the Karhunen-Loève expansion, it is

necessary that the variance of the random �eld as well as the random variable are �nite. In this case the

following de�nition for random �elds holds

Z(x) = Z(!, x) ∈ L2(Ω; ℝ) (II.1)

and one speaks of second-order random �elds [13]. Their main properties are brie�y presented below.

Random �elds are characterized by moments of their probability distribution [169, 176]. In general, the n-th

moment of a single random variable Z is de�ned as

E[Z n] = ∫
∞

−∞
znfZ (z) d z, (II.2)

where fZ (z) is the probability density function. Based on this de�nition the �rst moment of a random �eld,

also called expected value, is given by

E[Z(x)] = �Z (x) = ∫
∞

−∞
z(x)fZ (z, x) d z. (II.3)

The mean square of Z(x) is given by the second moment. Besides these two moments central moments with

respect to the expected value are introduced. The deviation of a value to the expected value is given by the

second central moment, also known as the variance. Reformulating Equation (II.2) provides the de�nition for
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the variance of a random �eld Z(x)

Var[Z(x)] = ∫
∞

−∞
z(x)2fZ (z, x) d z − �z(x)2. (II.4)

In addition, the standard deviation is often used, which is derived from the variance by

�Z (x) =
√
Var[Z(x)]. (II.5)

Hence, the expected value as well as the variance are functions of the spatial coordinates x. However, in case

of a homogeneous random �eld both the expected value and the variance become constants [176].

The observation of a random �eld at di�erent locations xi is described by corresponding random variables

Z = Zi . Besides the relation between an observation and the expected value of the random �eld the relation

between observations at di�erent points of a random �eld is of great interest. This relation is expressed by the

covariance and reads for two random variables Z1 and Z2

Cov[Z1, Z2] = E[Z1Z2] − �1�2. (II.6)

Usually this expression is reduced to a dimensionless correlation parameter �12 by dividing Equation (II.6) by

�1 and �2
�12 = �Z1,Z2 =

Cov[Z1, Z2]
�1�2

. (II.7)

Equations (II.6) and (II.7) are referred to as the auto-covariance and auto-correlation, respectively, if Z1 and

Z2 are part of the same random �eld Z(x). Otherwise, Equations (II.6) and (II.7) are the cross-covariance and

cross-correlation, respectively.

Since the probability density function is unknown for most times the random �eld is represented by a

discrete number of realizations !i [132]. In this case the mean of the discrete values

Z(x) =
1
N

N
∑
i=1

Z(!i , x) (II.8)

is used as expected value of the random �eld. In addition, the variance is rewritten as

s2(x) = Z(x)2 − Z(x)2. (II.9)

Finally, the dimensionless correlation coe�cient for two random variables Z1 and Z2 is given by

�Z1,Z2 =
[Z1 − Z1][Z2 − Z2]

s1s2
. (II.10)

II.2.2 Auto-correlated random �elds

The Karhunen-Loève expansion is a generalization of the Fourier transform to probabilistic processes. A

commonly used formulation for the expansion of a stochastic process X(!, x) is given by [25]

X(!, x) =
∞
∑
n=0

√
�n�n(x)Zn(!), (II.11)

where Zn are a set of uncorrelated random variables and �n and �n(x) are an eigenpair of a Fredholm integral

equation of the second kind. The derivation of the integral equation is brie�y summarized below by using the

analogy to the Fourier transform as done in [108]. Hence, stochastic processes X(x) are represented by a series
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expansion of orthonormal functions �n(x) as

X(!, x) =
∞
∑
n=1

Zn�n(x). (II.12)

With this series expansion the position-dependent part is separated from the probabilistic component of the

stochastic process, where the functions �n(x) are orthonormal. Furthermore, it is bene�cial to split the random

�eld additively into a deterministic and a stochastic �eld. This separation can be written as

Z(!, x) = �(x) + �(!, x),
= � + X(!, x) (II.13)

where the mean of the random �eld �(x) represents the deterministic part and �(!, x) gives a random �eld

with an expected value of zero. Due to this separation the expected value of the series expansion E[X(x)] and

the expected value of the random variables Zn equal zero. In addition to the expected value the variance of the

random variable is given by

�2Zn = E[Z 2n ] = �n > 0 (II.14)

In context of random variables orthogonality is equivalent to independent and uncorrelated random variables,

respectively. In this case the covariance reads for values of the same homogeneous random �eld X(x) at the

two locations x and x′
Cov[X(x), X (x′)] = E[X(x)X (x′)] − ��′ (II.15)

Introducing � = 0 and the independence of the random variables leads to

E[Xm(x)Xn(x′)] = �n�mn. (II.16)

In addition, combining the series expansion in Eq. (II.12) with the orthogonality provides

Zn = ∫
x

0
X(x)�n(x) d x (II.17)

for the random variables, where �n(x) are the eigenfunctions of the auto-correlation. The corresponding

eigenvalues are given by �n. Therefore, before generating random �elds by using the Karhunen-Loève

expansion the auto-correlation must be determined. Expressing X(x) and X(x′) by using Eq. (II.12) and taking

into account the independence of the random variables the auto-correlation is written as

E[X(x)X (x′)] =
∞
∑
m=1

�m(x)�m(x′)�m (II.18)

which leads �nally to the following eigenvalue problem

∫
X

0
Cov[Z1, Z2]�n(x) d x =

∞
∑
n=1

�n�n(x′). (II.19)

For a known correlation function the eigenvalues �n and eigenfunctions �n(x) can be calculated by solving

the Fredholm integral equation of the second kind in Eq. (II.19). A closed solution is only possible for a

few correlation functions. One example here is the exponential correlation function, which is given for

homogeneous random �elds by [47, 128, 169]

Cov[X(x), X (x′)] = �(x)�(x′) exp(−
|xi − x ′i |
bi ) , (II.20)
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with the correlation length bi . An important property is the multiplicative decomposition of the di�erent

directions, which is used for the generation of two-dimensional random �elds, as shown in Section II.2.3.

Introducing the correlation function the eigenvalue problem in Eq. (II.19) is rewritten for a one-dimensional

�eld [−l, l] as

∫
l

−l
exp(−

x − x ′

b )�n(x
′) d x ′ =

∞
∑
n=1

�n�n(x). (II.21)

The solution of this eigenvalue problem is given by [169]

�i =
2b

1 + !2i b2
(II.22)

�i = �i cos !ix (II.23)

with

�i =
1√

l + sin 2!i l
2!i

(II.24)

for odd i and

�i =
2b

1 + !2i b2
(II.25)

�i = �i sin !ix (II.26)

with

�i =
1√

l − sin 2!i l
2!i

(II.27)

for even i. The values of !i are obtained by solving

1
l
− !i tan !il = 0 in [(i − 1)

�
l
, (i −

1
2
)
�
l ]

(II.28)

and

1
l
tan !il + !i = 0 in [(i −

1
2
)
�
l
, i
�
l ]

(II.29)

for odd and even values of i, respectively.

The computational solution of Eqs. (II.28) and (II.29) is not trivial since the range boundaries are poles with

a transition from a positive to a negative sign. Usually, algorithms for the determination of zeroing are based

on a sign transition. However, precision limitations may lead to an inaccurate evaluation of the boundary

values. Therefore, these algorithms require a manually de�ned o�set to ensure a correct calculation of the

zeroing, see Figure II.1. In [25] a di�erent approximation for !i is given with

(!i − c2i ) tan(!il) − 2ci!i = 0. (II.30)

This approach does not require a case di�erentiation between odd and even values of i. However, the problem

regarding the sign transition at poles is still not solved, resulting in a missing sign transition. Therefore, in this

work a further approach for a robust determination of zeroing is achieved by multiplying Eqs. (II.28) and (II.29).

In this case there is no sign transition at the poles but within the interval for the determination of !. Hence, a
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Figure II.1: Evaluation of the transcendental equation for !i .
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manually de�ned o�set is no longer necessary. Figure II.1 shows a comparison of the di�erent approaches, for

a correlation length of b = 5mm and a �eld length of l = 200mm.

II.2.3 Two-dimensional random �elds

Applying random �elds to problems in the �eld of mechanical engineering mostly requires the representation

of two-dimensional or even three-dimensional components. The Karhunen-Loève expansion is adapted to

two-dimensional components by separating the correlation structure of the di�erent directions following the

multiplicative decomposition of the correlation functions. Hence, the two-dimensional eigenfunctions and

eigenvalues are expressed by the product of the eigenfunctions and eigenvalues of each direction

�n(x1, x2) = �1i (x1)�
2
j (x2) (II.31)

and

�n = �1i �
2
j . (II.32)

For a rectangular component of the dimension l1 x l2 and an exponential correlation function this leads to [48]

�1i �
2
j �

1
i (x1)�

2
j (x2) = ∫

l1
2

−l1
2

exp(−
|x1 − x ′1|
b1 )�1i (x

′
1)dx

′
1 ∫

l2
2

−l2
2

exp(−
|x2 − x ′2|
b2 )�1i (x

′
2)dx

′
2 (II.33)

with the individual solution of each direction

�1i �
1
i (x1) = ∫

l1
2

−l1
2

exp(−
|x1 − x ′1|
b1 )�1i (x

′
1)dx

′
1 (II.34)

and

�2j �
2
j (x2) = ∫

l2
2

−l2
2

exp(−
|x2 − x ′2|
b2 )�1i (x

′
2)dx

′
2, (II.35)

respectively. The eigenvalues and eigenfunctions of these two individual equations are identical to the those

presented in Section II.2.2.

II.2.4 Apparent material properties

One technique to extract the relation between information of di�erent locations xi is the moving window

method [8, 51]. Within this method a window of prede�ned size is used to extract segments of a larger

microstructure. For these extractions the material properties are determined by numerical simulation. With

the material properties available at di�erent locations the correlation functions are obtained by a curve �t.

The numerical simulations for the determination of the material properties are conducted in accordance

with Hill’s condition [69]

⟨� ∶ �⟩ = ⟨�⟩ ∶ ⟨�⟩. (II.36)

This procedure ensures the correct calculation of the e�ective material properties.

For a RVE [70] the homogeneous material properties are written as

⟨�⟩ = ℂe� ∶ ⟨�⟩ (II.37)

and

⟨�⟩ = Se� ∶ ⟨�⟩ (II.38)

respectively. Here, ℂe�
and Se�

are the e�ective sti�ness and compliance tensor. The strains � and stresses �
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hold information about the microstructure. In contrast to this ⟨⋅⟩ gives the volume average, de�ned by

⟨⋅⟩ =
1
V ∫

V
⋅ d V . (II.39)

For the determination of the e�ective material properties among others the following two kinds of boundary

conditions can be derived from Hill’s condition. Based on the average strain theorem with linear elastic

material properties as well as the average stress theorem [190] these boundary conditions read

u = �0 ⋅ x (II.40)

and

t = t0 ⋅ x, (II.41)

respectively. Here Eq. (II.40) holds a boundary condition of Dirichlet type, because only pure displacement

boundary conditions with the constant macroscopic strain �0 are de�ned on the complete surface. In contrast

to this Eq. (II.41) holds a boundary condition of Neumann type, since only pure traction boundary conditions,

with a constant macroscopic stress t0 are de�ned on the complete surface. In case of a RVE the material

properties obtained for these two boundary conditions are equal and hence, the material is assumed to be

homogeneous. If the used volume is smaller than the RVE one speaks of apparent overall properties [66, 67, 81].

To determine these properties, the same procedure is used as for the e�ective material properties. However, in

this case the results depend on the size of the extracted volume as well as the boundary conditions. Such kind

of extraction on the mesoscale is referred to as a statistically volume element (SVE) [130].

II.3 Specimen speci�cation

Figure II.2 gives an overview of all specimens and their orientations used in this research. The raw material of

the conducted analyses is a polybutylenterephthalat (PBT) �lled with glass �bers. The �ber mass fraction is

speci�ed with 30% (PBT GF 30). The initial component is a plate with the dimensions of 300mm x 300mm
x 3mm fabricated by an injection mold process (1). With this plate a coordinate system is introduced that

is used throughout the whole investigation. The main objective of this research is the implementation of

a linear elastic numerical modeling procedure for the numerical simulation of components made of SFRC

that provides not only the global material behavior but also information about the spatial distribution of the

material properties on the mesoscale. This is done exemplary for a tensile test specimen. Therefore, in a �rst

step tensile test specimens are cut out of the plate, while the orientation of the tensile test specimen coincides

with the main �ow direction of the melt front (2). The tensile test specimens are used to obtain the global

Young’s modulus on the component level in Section II.6.2 of the material for a validation of the presented

procedure. As the numerical model should also conclude information about the material microstructure a

cross-section is de�ned (3), for which the microstructural properties are determined based on a micrograph

(4). The selected cross-section of 3.37mm x 3mm is parallel to the main �ow direction and hence, coincide

with the load direction of the tensile test in Section II.6.2 (2). By doing so, the cross-section is used to analyze

the Young’s modulus of the specimen’s microstructure on a numerical basis in Section II.5.1 (5). Afterwards,

the results are validated experimentally by nanoindentation in Section II.5.2. Here, the specimens are small

cuboids, where one side of the cuboid is perpendicular to the micrograph cross-section (6). The surface of the

plate is the second side. This allows one to conduct indentation tests in the main �ow direction as well as

in thickness direction of the plate and specimens, respectively. The cuboids have an edge length of 20mm x

5mm x 3mm.

The numerical simulation on the component level assuming linear elastic material behavior refers to the same

cross-section as the microstructural analysis. Here, the dimensions coincide with the standard measurement

length of a tensile test specimen de�ned in [84]. Therefore, the edge length is 50mm x 3mm.

The material properties of the two components used for the numerical simulations are provided in Table II.1
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Fig. 2 Specification of the experimental and numerical specimens.

Table 1 Material properties of the fiber and matrix material.

Young’s modulus Poisson ratio Density

Glass 72 GPa 0.22 2500 kg m−3

PBT 2.6 GPa 0.41 1300 kg m−3

The numerical simulation on the macroscale refers
to the same cross-section as the microstructural anal-

ysis. Here, the dimensions coincide with the standard
measurement length of a tensile test specimen defined
in [27]. Therefore, the edge length is 50 mm x 3 mm.

The material properties of the two components used

for the numerical simulations are provided in Tab. 1

4 Extraction of the probabilistic characteristics

4.1 Theoretical description of the fiber orientation

The orientation of a single fiber is expressed by the

unity vector p, that points in the direction of the fiber
axis as shown in Fig. 3. The components of this vector
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4 Extraction of the probabilistic characteristics

4.1 Theoretical description of the fiber orientation

The orientation of a single fiber is expressed by the
unity vector p, that points in the direction of the fiber

axis as shown in Fig. 3. The components of this vector
are written by using the angles introduced in Fig. 3 as
[14,21]

p =




sin θ cosϕ
sin θ sinϕ

cos θ


 (48)

To derive the orientation from the micrograph the com-
ponents of the orientation vector are expressed in terms
of the geometrical properties of the fiber cross section.
In this case the minor and major axis of the ellipse as

well as its horizontal and vertical dimensions with re-
spect to the coordinate system are used, which leads to
the following expressions for the trigonometrical func-

tions of ϕ

sinϕ =
∆h

lma
cosϕ =

∆v

lma
(49)
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Fig. 3 Angle and cross section definition for the description
of the fiber orientation and fiber length, see also [13,14,21].

and θ

sin θ =

√
1− l2min

l2ma

cos θ =
lmin

lma
. (50)

Here ∆h and ∆v are the projection of the elliptic cross-

section on the x− and y−axis, respectively. The param-
eters lmin and lma are introduced in Fig. 3.

Fig. 3 Angle and cross-section definition for the description
of the fiber orientation and fiber length, see also [19,30,44].

expressed by the angles introduced in Fig. 3 as [30,44]

p =




sin θ cosϕ
sin θ sinϕ

cos θ


 (63)

To derive the orientation from the micrograph the com-
ponents of the orientation vector are expressed in terms

of the geometrical properties of the fiber cross-section.
In this case the minor and major axis of the ellipse as

Figure II.2: Speci�cation of the experimental and numerical specimens.

II.4 Extraction of the probabilistic characteristics

II.4.1 Theoretical description of the �ber orientation

The orientation of a single �ber is expressed by the unity vector p, that points in the direction of the �ber axis

as shown in Figure II.3. The components of this vector are expressed by the angles introduced in Figure II.3 as

[100, 158]

p =
⎡
⎢
⎢
⎢
⎣

sin � cos '
sin � sin '
cos �

⎤
⎥
⎥
⎥
⎦

(II.42)

Young’s modulus Poisson’s ratio Density

GPa - kg/m3

Glass 72 0.22 2500

PBT 2.6 0.41 1300

Table II.1: Material properties of the �ber and matrix material.
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To derive the orientation from the micrograph the components of the orientation vector are formulated in

terms of the geometrical properties of the �ber cross-section. In this case the minor and major axis of the

ellipse as well as its horizontal and vertical dimensions with respect to the coordinate system are used, which

leads to the following expressions for the trigonometrical functions of '

sin ' =
Δh

lma

cos ' =
Δv

lma

(II.43)

and �

sin � =

√

1 −
l2
min

l2
ma

cos � =
lmin

lma

. (II.44)

Here Δh and Δv are the projection of the elliptic cross-section on the x− and y−axis, respectively. The

parameters lmin and lma are introduced in Figure II.3.

For a group of �bers, the orientation is given by the second order orientation tensor A introduced in [2] as

A = ∮
S
Ψ(p)pp d S =

⎡
⎢
⎢
⎢
⎣

A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤
⎥
⎥
⎥
⎦

. (II.45)

Here, Ψ(p) is the probability density distribution function for the �ber orientation de�ned in [42] and S the

surface of the unit square. In context of a component made by mold injection and with respect to the introduced

coordinate system the elements on the diagonal represent a �ber orientation in the melt �ow direction (A11),
perpendicular to the melt front (A33), and in thickness direction (A22). The sum of these three elements equals

one [186]. With the �ber orientation vector de�ned in Eq. (II.42) the elements of the orientation tensor is

written as

Aij = ⟨pipj⟩

=
⎡
⎢
⎢
⎢
⎣

⟨sin2 � cos2 '⟩ ⟨sin2 � sin ' cos '⟩ ⟨sin � cos � cos '⟩
⟨sin2 � sin ' cos '⟩ ⟨sin2 � sin2 '⟩ ⟨sin � cos � sin '⟩
⟨sin � cos � cos '⟩ ⟨sin � cos � sin '⟩ ⟨cos2 �⟩

⎤
⎥
⎥
⎥
⎦

. (II.46)

In terms of the geometrical properties of the elliptic cross-section this leads to [158]

Aij = ⟨pipj⟩

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⟨Δ2
v (

1
l2
ma

− l2
min

l4
ma

)⟩ ⟨ΔvΔh (
1
l2
ma

− l2
min

l4
ma

)⟩ ⟨Δ2
v

√
1
l2
ma

− l2
min

l4
ma

⟩

⟨ΔvΔh (
1
l2
ma

− l2
min

l4
ma

)⟩ ⟨Δ2
h (

1
l2
ma

− l2
min

l4
ma

)⟩ ⟨Δ2
h

√
1
l2
ma

− l2
min

l4
ma

⟩

⟨Δ2
v

√
1
l2
ma

− l2
min

l4
ma

⟩ ⟨Δ2
h

√
1
l2
ma

− l2
min

l4
ma

⟩ ⟨ l
2
min

l2
ma

⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (II.47)

II.4.2 Methodology

For the numerical simulation of SFRC the probabilistic characteristics of the microstructure are required. In

[158] a procedure is presented, that allows one to derive the second-order orientation tensor of the �bers from

a micrograph. This procedure is adapted to obtain the probabilistic characteristics and their spatial distribution

of the �ber length, diameter, and orientation as well as the second-order orientation tensor from a micrograph

in this study. All presented results are based on a micrograph with a size of 3370 µm x 3000 µm captured with a
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4 Extraction of the probabilistic characteristics

4.1 Theoretical description of the fiber orientation

The orientation of a single fiber is expressed by the
unity vector p, that points in the direction of the fiber

axis as shown in Fig. 3. The components of this vector
are written by using the angles introduced in Fig. 3 as
[14,21]

p =




sin θ cosϕ
sin θ sinϕ

cos θ


 (48)

To derive the orientation from the micrograph the com-
ponents of the orientation vector are expressed in terms
of the geometrical properties of the fiber cross section.
In this case the minor and major axis of the ellipse as

well as its horizontal and vertical dimensions with re-
spect to the coordinate system are used, which leads to
the following expressions for the trigonometrical func-

tions of ϕ

sinϕ =
∆h

lma
cosϕ =

∆v

lma
(49)
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Fig. 3 Angle and cross section definition for the description
of the fiber orientation and fiber length, see also [13,14,21].

and θ

sin θ =

√
1− l2min

l2ma

cos θ =
lmin

lma
. (50)

Here ∆h and ∆v are the projection of the elliptic cross-

section on the x− and y−axis, respectively. The param-
eters lmin and lma are introduced in Fig. 3.

Figure II.3: Angle and cross-section de�nition for the description of the �ber orientation and �ber length, see

also [59, 100, 158].A modeling approach for short fiber-reinforced composites with experimental verification 7
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Fig. 4 Different stage of the image processing routine.

a size of 3370µm x 3000µm captured with a digital mi-
croscope KEYENCE VHX-5000. The panorama image

was generated by stitching 323 individual images with
an magnification of 1500. This leads to a resolution of
558 px per 100 µm.

The main steps for the extraction of the probabilis-

tic characteristics are depicted in Fig. 4. Based on the
original micrograph first the fibers are detected before
the image is transformed to a binary image. This binary

image is then further processed with the image process-
ing toolbox of Matlab R©. With the function regionprops
the orientation, the centroid as well as the major and

minor axis of each ellipse are determined. Using these
values the fiber orientation tensor Aij given in Eq. (52)
is calculated.

4.3 Probabilistic characteristics

4.3.1 General results

In total 9721 fibers are detected within the micrograph

cross-section. Only fibers are taken into account that
are within the boundaries. Fibers reaching over the mi-
crograph are neglected since a correct determination of

the major axis is not possible. Below the results of the
main fiber characteristics like fiber length (major axis),
fiber diameter (minor axis), fiber diameter, and fiber
volume fraction as well as their spatial distribution are

discussed. Fig. 5 shows the spatial distribution of the
obtained fiber length. As the probability of the detec-
tion for a single fiber depends strongly on the orienta-

tion of the fiber, in [11] a procedure is proposed that
weights the fiber length in respect to the probability of
detection. It is assumed, that fibers, that are parallel

to the micrograph section are less likley to be detected
in a micrograph than fibers perpendicular it. This ori-
entation of the fiber is given by the angle θ as defined
in Fig. 3 and Eq. (50). Using this angle the weighting

factor is given by [11]

wi =
1

cos θ
=

lma

lmin
. (53)

The results given in Fig. 5 already include the weight-

ing. Even then a profuse amount of short fibers is indi-
cated. The mean value of the fiber length is 46.6 µm.

Furthermore, the results lead to the conclusion of a
layered structure due to the mold injection process as
shown in []. This is discussed more in detail in Sect. 4.3.2

Next is the fiber orientation. The results are de-
picted in Fig. 5, that shows again the distribution over
the thickness. The distribution clearly shows a preferred

orientation of the fibers along the specimen. However,
this orientation seems to be independent of the location
of the fiber. The orientation is defined by the angle be-

tween the major axis and the horizontal axis as shown in
Fig. 3. The preferred orientation of the fibers and there-
fore, an orientation dependence of the material proper-
ties of the compound with respect to the overall speci-

men orientation is confirmed by the correlation analysis
of the fiber length and the fiber orientation. With an
increasing fiber length the fiber orientation shows a de-

creasing spreading around an orientation angle of 0◦,
see Fig. 3.

The fiber diameter corresponds with the minor axis
of the pattern recognition results. If the fibers are cut
perpendicular to the fiber length these two magnitudes

coincide very well. Only if the fiber is almost parallel to
the micrograph section there might be a significant de-
viation. However, since the probability of detection of
these fibers is small and there is no weighting considered

for the fiber diameter the influence is neglect-able. An-
other influence is more significant. Fig. 6 shows an en-
larged part of the micrograph, where a fiber is detected

that is almost perpendicular to the micrograph section.
Since the cross-section of the fiber is almost circular.
Between the fiber and the matrix material is a dark

shadow that cannot be clearly assigned to one of the

two components. However, the difference between the
inner and outer circle of the shadow is approximately
3 − 5 px. This leads to a deviation of up to 1 µm by a

resolution of 0.18 µm per px in vertical and horizontal
direction. The overall results of the fiber diameter are
given in Fig. 7. The mean value is 9.6 µm. Compared

to the results of other studies this value appears a little
bit low. Usually, the diameter of glass fibers is approxi-

Figure II.4: Di�erent stages of the image processing routine.

digital microscope KEYENCE VHX-5000. The panorama image is generated by stitching 323 individual images

with a magni�cation of 1500. This leads to a resolution of 558 px per 100 µm. Hence, the procedure implies

ergodicity for the extracted microstructural properties with respect to the manufactured plate with an edge

length of 300 µm.

The main steps for the extraction of the probabilistic characteristics are depicted in Figure II.4. Based on the

original micrograph �rst the �bers are detected before the image is transformed to a binary image. This binary

image is then further processed with the image processing toolbox of Matlab
®

. Using the function regionprops
the orientation, centroid as well as major and minor axes of each ellipse are determined. With these values the

elements of the orientation tensor Aij given in Eq. (II.47) are calculated.

II.4.3 Probabilistic characteristics

II.4.3.1 General results

For the determination of the probabilistic characteristics only �bers are taken into account that are within

the boundaries of the micrograph. Fibers reaching over the micrograph edges are neglected since a correct

determination of the major axis is not possible. In total 9721 �bers are detected within the micrograph

cross-section. Below the results of the main �ber characteristics like �ber length (major axis), �ber diameter

(minor axis), �ber orientation, and �ber volume fraction as well as their spatial distribution are discussed.

Figure II.5 a) shows the spatial distribution of the obtained �ber length. As the probability of detection for a

single �ber depends strongly on the orientation of the �ber, in [158] a procedure is proposed that weights the

�ber length with respect to its probability of detection. It is assumed, that �bers parallel to the micrograph

cross-section are less likely to be detected in a micrograph than �bers perpendicular to it. In context of the

presented framework this component of the �ber orientation is given by the angle � as de�ned in Figure II.3
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a size of 3370µm x 3000µm captured with a digital mi-
croscope KEYENCE VHX-5000. The panorama image

was generated by stitching 323 individual images with
an magnification of 1500. This leads to a resolution of
558 px per 100 µm.

The main steps for the extraction of the probabilis-

tic characteristics are depicted in Fig. 4. Based on the
original micrograph first the fibers are detected before
the image is transformed to a binary image. This binary

image is then further processed with the image process-
ing toolbox of Matlab R©. With the function regionprops
the orientation, the centroid as well as the major and

minor axis of each ellipse are determined. Using these
values the fiber orientation tensor Aij given in Eq. (52)
is calculated.

4.3 Probabilistic characteristics

4.3.1 General results

In total 9721 fibers are detected within the micrograph

cross-section. Only fibers are taken into account that
are within the boundaries. Fibers reaching over the mi-
crograph are neglected since a correct determination of

the major axis is not possible. Below the results of the
main fiber characteristics like fiber length (major axis),
fiber diameter (minor axis), fiber diameter, and fiber
volume fraction as well as their spatial distribution are

discussed. Fig. 5 shows the spatial distribution of the
obtained fiber length. As the probability of the detec-
tion for a single fiber depends strongly on the orienta-

tion of the fiber, in [11] a procedure is proposed that
weights the fiber length in respect to the probability of
detection. It is assumed, that fibers, that are parallel

to the micrograph section are less likley to be detected
in a micrograph than fibers perpendicular it. This ori-
entation of the fiber is given by the angle θ as defined
in Fig. 3 and Eq. (50). Using this angle the weighting

factor is given by [11]

wi =
1

cos θ
=

lma

lmin
. (53)

The results given in Fig. 5 already include the weight-

ing. Even then a profuse amount of short fibers is indi-
cated. The mean value of the fiber length is 46.6 µm.

Furthermore, the results lead to the conclusion of a
layered structure due to the mold injection process as
shown in []. This is discussed more in detail in Sect. 4.3.2

Next is the fiber orientation. The results are de-
picted in Fig. 5, that shows again the distribution over
the thickness. The distribution clearly shows a preferred

orientation of the fibers along the specimen. However,
this orientation seems to be independent of the location
of the fiber. The orientation is defined by the angle be-

tween the major axis and the horizontal axis as shown in
Fig. 3. The preferred orientation of the fibers and there-
fore, an orientation dependence of the material proper-
ties of the compound with respect to the overall speci-

men orientation is confirmed by the correlation analysis
of the fiber length and the fiber orientation. With an
increasing fiber length the fiber orientation shows a de-

creasing spreading around an orientation angle of 0◦,
see Fig. 3.

The fiber diameter corresponds with the minor axis
of the pattern recognition results. If the fibers are cut
perpendicular to the fiber length these two magnitudes

coincide very well. Only if the fiber is almost parallel to
the micrograph section there might be a significant de-
viation. However, since the probability of detection of
these fibers is small and there is no weighting considered

for the fiber diameter the influence is neglect-able. An-
other influence is more significant. Fig. 6 shows an en-
larged part of the micrograph, where a fiber is detected

that is almost perpendicular to the micrograph section.
Since the cross-section of the fiber is almost circular.
Between the fiber and the matrix material is a dark

shadow that cannot be clearly assigned to one of the

two components. However, the difference between the
inner and outer circle of the shadow is approximately
3 − 5 px. This leads to a deviation of up to 1 µm by a

resolution of 0.18 µm per px in vertical and horizontal
direction. The overall results of the fiber diameter are
given in Fig. 7. The mean value is 9.6 µm. Compared

to the results of other studies this value appears a little
bit low. Usually, the diameter of glass fibers is approxi-

Fig. 4 Different stage of the image processing routine.

a) b) c)

Fig. 5 Results of the fiber length, fiber orientation and correlation between fiber length and fiber orientation based on the
micrograph.

by the correlation analysis of the fiber length and the
fiber orientation. With an increasing fiber length the
fiber orientation shows a decreasing spreading around

an orientation angle of 0◦, see Fig. 5 c).

The overall results of the fiber diameter are given

in Fig. 6. The mean value is 9.6 µm and meet the ex-
paction of a normal distribution. Compared to the re-

sults of other studies this value appears a little bit low.
Usually, the diameter of glass fibers is approximated

with 10 µm. The fiber diameter corresponds with the
minor axis of the pattern recognition results. If the

fibers are cut perpendicular to the fiber length these

two magnitudes coincide very well. Only if the fiber is

almost parallel to the micrograph section there might
be a significant deviation. However, since the probabil-
ity of detection of these fibers is small and there is no

weighting considered for the fiber diameter the influ-
ence is neglectable. Another influence is more signifi-
cant. Between the fiber and the matrix material is a

dark shadow that cannot be clearly assigned to one of

the two components, Fig. 4 left. However, the difference

between the inner and outer circle of the shadow is ap-

proximately 3−5 px. This leads to a deviation of up to
1 µm by a resolution of 0.18 µm per px in vertical and
horizontal direction.

Finally the overall fiber volume fraction is 16.7%,

which equals a fiber mass fraction of 28%. Compared to
the raw material with a fiber mass fraction of 30% this

is a little bit below the specification. Here, the main rea-
son might be the spatial fluctuation due to the produc-

Fig. 6 PDF fiber diameter.

tion process. In Fig. 7 two different approximations of

the fiber volume fraction of the micrograph are shown.
On the left hand side the cross-section is divided into

squares with an edge length of 50 µm, on the right hand
side the squares are used with an edge length of 100 µm.
In both cases the spatial fluctuation of the fiber volume

fraction is clearly recognizable. This leads to the con-

clusion that the micrograph is not representative for the

whole specimen in terms of the fiber volume fraction.

4.3.2 Analysis of the layered structure

During the injection mold process the fiber orientation
varies over the specimen thickness due to different flow

velocities and shear forces. With respect to the fiber
orientation the cross-section of the component made by

Figure II.5: Results of the �ber length, �ber orientation, as well as correlation between �ber length and �ber

orientation based on the micrograph.

and Eq. (II.44). Using this angle the weighting factor is given by [158]

wi =
1

cos �
=
lma

lmin

. (II.48)

The results given in Figure II.5 a) already include the weighting. Even then a profuse amount of short �bers

with a length of less than 20 µm is indicated. This is also supported by a mean �ber length of 46.6 µm. Besides

this, the results lead to the conclusion of a layered structure due to the mold injection process as shown in [19,

41, 43, 46, 113, 154]. This is discussed more in detail in Section II.4.3.2.

Next is the �ber orientation ', that describes the angle between the major axis of the ellipse and the

horizontal axis as shown in Figure II.3. The results are depicted in Figure II.5 b). Again the distribution is

plotted against the specimen thickness coordinate. The distribution clearly shows a preferred orientation of

the �bers along the specimen and therefore, with the melt �ow direction. In contrast to the �ber length, the

orientation is independent of the location of the �ber. The preferred orientation of the �bers and therefore,

an orientation dependence of the material properties of the compound with respect to the overall specimen

orientation is further con�rmed by the correlation analysis of the �ber length and the �ber orientation. With

an increasing �ber length, the �ber orientation shows a decreasing spreading around an orientation angle of

0°, see Figure II.5 c).

The overall results of the �ber diameter are given in Figure II.6. The probability density function of the

�ber diameter meets the expectation of a normal distribution with a mean of 9.6 µm. Compared to the results

of other studies this value appears a little bit low. Usually, the diameter of glass �bers is approximated with

10 µm [58]. The �ber diameter corresponds with the minor axis of the pattern recognition results. If the �bers

are cut perpendicular to the �ber length these two magnitudes coincide very well. Only if the �ber is almost

parallel to the micrograph cross-section there might be a signi�cant deviation. However, since the probability

of detection of these �bers is small and there is no weighting considered for the �ber diameter the in�uence

is neglectable. Another in�uence is more signi�cant. As shown in Figure II.4 (left) there is a dark shadow

between the �ber and the matrix material that cannot be clearly assigned to one of the two components. The

di�erence between the inner and outer circle of the shadow is approximately 3 − 5 px. This leads to a deviation

of up to 1 µm by a resolution of 0.18 µm per px in vertical and horizontal direction. Hence, the deviation of the

obtained �ber diameter and the values taken from the literature can be assigned to this phenomenon.

Finally, the overall �ber volume fraction is 16.7%, which equals a �ber mass fraction of 28% based on the

material properties provided in Table II.1. For the raw material a �ber mass fraction of 30% was speci�ed.

Therefore, the overall �ber mass fraction appears a little bit below the speci�cation. The �ber mass and

�ber volume fraction are connected by the density of the matrix and �ber material, respectively. The precise

density of the two components is unknown and the data provided in Table II.1 are taken from literature, which

usually gives only approximated values since the speci�c values vary between di�erent charges. Taking these

variations into account a �ber volume fraction of 16.7% leads to a �ber mass fraction in a range of 27% up to
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Figure II.6: PDF �ber diameter.
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Fig. 8 Spatial fluctuation of the fiber mass fraction based on squares with an edge length of 50µm (left) and 100 µm (right).
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Fig. 9 Fiber orientation schemes due to mold injection process.

Table 2 Results of the numerical simulation based on the
micrograph analyzed in Sect. 4.

Direction Main Strain Young’s Modulus

Horizontal 1.597 % 6.26 GPa
Vertical 1.847 % 5.41 GPa

with the findings in [15]. With these arrays the material

properties are passed to the integration points.
Table 2 contains the results of the Young’s modulus

in horizontal and vertical direction.

5.1.3 Numerical simulation based on the artificial

microstructure

Layered structure The analysis of the microstructure
revels a layered structure of the cross section. As pre-

sented in Table ?? the cross section can be divided into
five layers. Based on these finding in this numerical
analysis based on artificial microstructures three dif-

ferent configurations are investigated. For the first con-
figuration the probabilistic characteristics of the fiber

properties in layer 2 and 4 are used for the whole cross
section. Hence, the influence of the boundary layers as

well as the layer in the middle of the cross section are
neglected. In a second step the layer in the middle of the
cross section is taken into account as well. Therefore, in

this case the numerical consists of three different lay-
ers. In a last step the probabilistic characteristics of all
layers are combined and used for the whole cross sec-

tion. This leads to a some kind of homogenization of
the material properties. The thin layers at the upper
and lower surface of the cross section are not taken into
account due to their very small thickness compared to

the whole cross section. furthermore, they contain only
a small amount of fiber. Hence, the probabilistic infor-
mation of the fiber properties in these layers is hence

not sufficient.

Generation of the microstructure
The microstructure of the SFRC is generated in ac-

cordance with the procedure presented in [14]. In ad-

dition the correlation between the fiber length, fiber
orientation and fiber diameter is taken into account.

Figure II.7: Fiber orientation schemes due to mold injection process, compare [154].

30%, which meets the speci�cations.

II.4.3.2 Analysis of the layered structure

During the injection mold process, the �ber orientation varies over the specimen thickness due to di�erent

�ow velocities and shear forces [95]. With respect to the �ber orientation the cross-section of the component

made by mold injection is divided into di�erent layers. Figure II.7 gives an overview of the two commonly

used orientation schemes [19, 41, 43, 46, 113, 154].

The results of the �ber length distribution over the thickness indicates that the used specimen shows this

kind of layered structure as well. To analyze the layered structure more in detail the components A11 and A33
of the orientation tensor introduced in Eq. (II.47) are calculated and plotted over the cross-section thickness. As

discussed in Section II.4.1 the probability of detection of a �ber orientation parallel to the molt �ow direction

is given by A11 (' = 0◦, � = 90◦). Perpendicular to the melt �ow direction the probability is expressed by A33
(' = � = 0◦). The results depicted in Figure II.8 con�rm the assumption based on the �ber length distribution.

Five individual layers are recognizable. Furthermore, the values of A11 and A33 indicate also that the orientation

component in thickness direction A22 is small compared to the other two components. This supports the

overall assumption of mainly horizontally aligned �bers, since high values of A22 would indicate vertically

orientated �bers.

In the following sections a numerical modeling procedure for SFRC is presented. Since the main objective

is the representation of the microstructural e�ects on the component level the layered structure must also

be taken into account. Therefore, the layer thicknesses are determined based on the obtained orientation

tensor as well as the distribution of the �ber length. The �ber length is an indirect measurement of the

�ber orientation as short �bers with an almost circular cross-section are orientated perpendicular to the

micrograph cross-section (� = 0◦ → A33), whereas long �bers are parallel to the micrograph cross-section

(� = 90◦ → A11). Based on the results shown in Figure II.8 for the orientation tensor elements A11 and A33 as
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Figure II.8: Results for the elements A11 and A33 of the orientation tensor based on the micrograph.
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Figure II.9: Histogram of the �ber length for the shell and core layers.

well as the results for the �ber length distribution Figure II.5 a) the cross-section consists of �ve layers. The

thickness of the skin layers at the top and bottom of the cross-section is approximated with 100 µm, the core

layer in the middle of the cross-section is 300 µm thick. Therefore, the shell layers between the skin and core

layers have a thickness of 1250 µm each.

To determine the probabilistic characteristics of the numerical simulation in Section II.5 the layers are

analyzed individually and the results are compared with each other. However, due to the limited number of

�bers within the skin layers these are not taken into account. In Figure II.9 the histogram of the �ber length is

shown for the two shell layers (left) and the core layers (right). The results of the two shell layers (colored

in red and blue) coincide very well. Therefore, these two layers can be modeled using the same probabilistic

characteristics for the �ber length.

The �ber diameter distribution is independent of the layer scheme as the �ber diameter is only minimally

a�ected by the mold injection process. The main in�uence is the initial �ber production [58]. Therefore, no

further analysis is conducted regarding the �ber diameter.

For the �ber orientation both aspects the information about the layer as well as the correlation with the �ber

length as depicted in Figure II.5 b) and II.5 c) are taken into account. As already derived from Figure II.5 b) the

�ber orientation distribution described by ' does not vary signi�cantly between the di�erent layers. However,

as indicated in Figure II.5 c) the correlation between ' and the �ber length must be considered for the modeling

of arti�cial SFRC microstructures.

The presented results seem to contradict the assumption of ergodicity of the micrograph at �rst, because the

probabilistic characteristics of the �ber length depends on the spatial coordinates due to the layered structure

of the cross-section. This means that the microstructural properties are no longer homogeneous or stationary,

which implies that they cannot be ergodic. But as shown in Figure II.9 and discussed before the �ber length

characteristics for the two analyzed shell layers show almost identical characteristics. The same holds for the

orientation of the �bers as depicted in II.8. Based on this and the fact that the �ber diameter characteristics are
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independent of the layered structure, each layer is assumed to be homogeneous and hence, layer-wise ergodic

estimators appear appropriate.

II.5 Modeling on the mesoscale

In this section a procedure is introduced for the numerical modeling of SFRC on the mesoscale. The �rst

approach is based on the micrograph used in Section II.4 to extract the probabilistic characteristics of the

microstructure. This is followed by the use of arti�cial microstructures. Here, the numerical model still

represents the microstructure and hence, shows the same probabilistic properties on the microscale as the

micrograph.

II.5.1 Numerical simulations

II.5.1.1 Model description

The numerical model on the mesoscale represents the micrograph used in Section II.4 to extract the probabilistic

properties of the microstructure. It has a rectangular shape with an edge length of 3370 µm x 3000 µm. The

material de�nition and mesh generation follow the results presented in [145]. Therefore, the model is discretized

by a mapped mash consisting of second order Lagrange elements with an edge length of 10 µm x 10 µm and the

material properties are passed to the integration points by arrays that represent the underlying microstructure.

In contrast to the results presented in [145] a plain strain state is assumed as the micrograph is a cross-section

of a larger tensile test specimen. An overview of the specimen’s geometry as well as the material properties of

the two components are provided in Section II.3, Figure II.2 (3) and Table II.1.

For the numerical simulation of the tensile test, the horizontal displacement is �xed at the left edge and the

vertical displacement is �xed at the lower edge of the numerical model. Two load cases are analyzed with

this model. First a load of 100MPa is applied at the right edge, second is a load of 100MPa at the upper edge.

Using these two load cases the Young’s modulus in horizontal and vertical direction are obtained by extracting

the horizontal (x) and vertical (y) displacement components at the right and upper edges, respectively. The

Young’s modulus is then calculated by

Eh =
�r

⟨uh⟩
lh and Ev =

�u

⟨uv⟩
lv, (II.49)

where the indices h and v represent the horizontal and vertical component and the indices r and u the right

and upper edge, respectively. All numerical simulations are based on linear theory. Finite deformations are not

taken into account.

II.5.1.2 Numerical simulation based on the micrograph

In a �rst step the material properties of the micrograph cross-section itself are analyzed. This is done by

generating three di�erent arrays, one for each material parameter. The arrays represent the micrograph

cross-section with a resolution of 1 µm x 1 µm. This is in accordance with the �ndings in [145]. With these

arrays the material properties are passed to the integration points.

Table II.2 contains the results of the mean strain as well as Young’s modulus in horizontal and vertical

direction.

II.5.1.3 Numerical simulation based on the arti�cial microstructure

Below the analyzed con�gurations, the generation process of the microstructure as well as the numerical

results are presented
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Direction Mean strain Young’s modulus

% GPa

Horizontal 1.597 6.26

Vertical 1.847 5.41

Table II.2: Results of the numerical simulation based on the micrograph.

Layer Conf. I Conf. II Conf. III

Homogeneous Shell layers Layered structure

1 0.28 0.28 0.28

2 - - 0.33

3 - - 0.28

Table II.3: Fiber mass fraction for each layer of the arti�cial microstructure.

Analyzed con�gurations
The analysis of the microstructure emanates from a layered structure of the cross-section. As presented

in Section II.4.3.2 the cross-section can be divided into �ve layers. Based on this �nding three di�erent

con�gurations are investigated here. With this approach the in�uence of the layered structure on the material

properties is analyzed. This is important for the representation of the microstructure by random �elds in

Section II.6. The following, three di�erent con�gurations are under investigation. (I) For the �rst con�guration

the probabilistic characteristics of the microstructural properties of the whole cross-section are used. This leads

to some kind of homogenized material properties. (II) Next is the generation of an arti�cial microstructure

based on the probabilistic characteristics of the microstructural properties of the shell layers only. Therefore,

the in�uence of the skin layers as well as the core layer are neglected. (III) In a last step the core layer is

taken into account as well. Therefore, in this case the numerical model consists of three di�erent layers.

As discussed in Section II.4.1 the probabilistic properties of the skin layers are not su�cient to derive the

probabilistic characteristics of these layers. Due to this an arti�cial �ve-layer microstructure is not investigated.

Furthermore, the representation of all layers contradicts a compact and cost saving approach of modeling

SFRC.

Generation of the microstructure
The microstructure of the SFRC is generated in accordance with the procedure presented in [145]. In addition,

the correlation between the �ber length and �ber orientation is taken into account. Hence, the generation

of the microstructure comprises the following steps. First the �ber centroid is generated by a Monte Carlo

sampling. If necessary, the coordinates are then assigned to one of the layers and the �ber length is sampled

based on the corresponding layer characteristics. The layer identi�cation is only required for con�guration III,

though. The overall characteristics are used to set a �ber diameter due to the missing correlation as shown

in Section II.4.3. For the assignment of the �ber orientation however, the correlation with the �ber length is

essential. Finally, the �ber is added to the preset area if there is no overlap with an already existing �ber. The

procedure is repeated until a prede�ned �ber volume fraction is reached. Since the �ber volume fraction of the

di�erent layers are not equal, the threshold varies for each con�guration and the di�erent layers. Table II.3

gives an overview of the �ber mass fraction for each con�guration and layer. In Figure II.10 the shell layers

of the microstructure and an arti�cial microstructure are mapped one above the other. There are no major

di�erences between the images recognizable.

The generated microstructures are analyzed in the same way as the numerical model of the micrograph.
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Figure II.10: Comparison of shell layers of the micrograph (upper two images) and an arti�cial microstructure

(lower image). All measures in µm.
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Value Unit Conf. I Conf. II Conf. III Micrograph

Homogeneous Shell layers Layered structure

Eh GPa 5.94 ± 0.04 6.09 ± 0.04 6.12 ± 0.04 6.26

Dev. to micrograph % 5.11 2.72 2.24 -

Dev. to Conf. II % 2.46 - 0.49 2.79

Ev GPa 4.97 ± 0.01 5.03 ± 0.01 5.09 ± 0.01 5.41

Dev. to micrograph % 8.13 7.02 5.91 -

Dev. to Conf. II % 1.19 - 1.19 7.55

Table II.4: Results of the numerical simulation based on the arti�cial microstructures.

Instead of the micrograph cross-section the arrays represent now the arti�cial microstructure. For statistical

reasons the simulation is done for 500 di�erent microstructures of each con�guration.

Results of the numerical simulation
Table II.4 gives an overview of the numerical results for the arti�cial microstructures. In addition to the mean

value and standard deviation of the Young’s modulus for the horizontal and vertical direction the deviation to

the results of the micrograph are calculated. The results of the arti�cial microstructures meet the results based

on the micrograph within a maximal deviation of 5% for the horizontal and 8% for the vertical direction. In

both directions the highest deviations are observed for con�guration I, where the di�erent layers and their

probabilistic characteristics are not distinguished. The deviation to the micrograph decreases for con�guration

II and III. The impact of modeling three di�erent layers instead of only one is marginal compared to the

computational costs. Hence, it appears to be convenient to reduce the modeling of the microstructure to the

shell layers for the determination of the correlation structure, that is required for the numerical simulation

on the component level in Section II.6. This assumption is veri�ed experimentally �rst. Furthermore, the

numerical results indicate only a minor anisotropy of the material. This can be assigned to the derived aspect

ratio of 4.9 based on the mean values of the �ber length and �ber diameter.

II.5.2 Experimental validation

The results of the numerical simulation presented in Section II.5.1 are veri�ed by an experimental investigation

of the Young’s modulus based on the material, that was characterized in Section II.4. As the presented results

and the probabilistic characteristics of the material are based on a two-dimensional analysis of the cross-section

the Young’s modulus is experimentally determined by nanoindentation. Compared to standard tensile tests

this procedure allows one to measure the near surface material properties [52] and hence, in combination with

a projected indentation area of approximately 7000 µm2
characterize the material on the mesoscale.

II.5.2.1 Framework nanoindentation

For the experimental determination of the material properties by nanoindentation the slope of the force-dis-

placement curve of the unloading process is calculated, see Figure II.11 (left). The indentation or reduced

modulus is obtained by [125, 135]

Er =
d P
d ℎ

=
1
�

√
�
2

S√
Ap(ℎc)

, (II.50)

where S is the sti�ness of the contact, Ap the projected area of the indentation tip for a contact depth ℎc , and �
an empirical correction factor of the indenter uniaxial symmetry when using pyramidal indenter [65, 173]. As
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Fig. 12 Scheme load cycle nanoindentation (left), micrograph of the indentation location after unloading (right).

Table 5 Results of the indentation tests.

Direction Max. load Reduced modulus Standard deviation Young’s modulus

Horizontal 500 mN 6.78 GPa 1.07 GPa 5.84 GPa
(x - axis) 1500 mN 6.93 GPa 0.73 GPa 5.97 GPa

Vertical 1500 mN 4.95 GPa 0.44 GPa -
(y - axis)

Table 6 Comparison of the experimental and numerical obtained results.

Direction Analysis Young’s Modulus Standard deviation Dev. Mic. Dev. Exp.

Micrograph 6.26 GPa - - 7.18 %
Art. homogeneous 5.94 GPa 0.04 GPa 5.11 % 1.70 %

Horizontal Art. shell layers 6.09 GPa 0.04 GPa 2.72 % 4.27 %
(x - axis) Art. layered structure 6.12 GPa 0.04 GPa 2.24 % 4.78 %

Nanoindentation 500 mN 5.84 GPa 1.07 GPa 6.70 % -
Nanoindentation 1500 mN 5.97 GPa 0.73 GPa 4.62 % -

Micrograph 5.41 GPa - - 9.29 %
Art. homogeneous 4.97 GPa 0.01 GPa 8.13 % 0.40 %

Vertical Art. shell layers 5.03 GPa 0.01 GPa 7.02 % 1.62 %
(y - axis) Art. layered structure 5.09 GPa 0.01 GPa 5.91 % 2.83 %

Nanoindentation 1500 mN 4.95 GPa1 0.44 GPa 8.50 % -

equation given in Eq. (??) for an exponential, Gaus-

sian and triangle correlation function the use of one of

these kernels is preferable. Independent of the corre-

lation function the Karhunen-Loève expansion always

assume a linear correlation between to parameter. For

the numerical model of the elasticity tensor coeeficients

of SFRC this assumption is satisfied, as shown in Figure

??.

Table 7 gives the results of the correlation lengths

for these three correlation functions and the correspond-

ing root mean square error (RMSE). The results indi-

cate, that the triangle function is not appropriate to

describe the correlation behavior of the elasticity tensor

coefficients. The Gaussian and exponential correlation

function on the other hand approximate the resulting

correlation well. Due to this results and the common use

of the exponential correlation function in the literature,

this correlation function is selected for the following

generation of random fields using the Karhunen-Loève

expansion.

Figure II.11: Scheme load cycle nanoindentation [103, 171] (left), micrograph of the indentation location after

unloading (right).

done in [93] � is set to one in this analysis. This is possible as the value of � usually varies between 1.02 and

1.08, which leads to a deviation of the indentation modulus of up to 3 % [125, 135]. The projected area of a

perfectly sharp Berkovich tip, which is used in this study, is usually approximated by [35]

Ap = �ℎ2c tan
2 ' = 24.5ℎ2c , (II.51)

with an e�ective semi-angle of ' = 70.32° [23]. Due to imperfections, a calibration of the projected surface is

mostly used. For this calibration the projected surface is approximated with the function [125]

Ap(ℎc) = 24.56ℎ2c + C1ℎ
1
c + C2ℎ

1/2
c + C3ℎ1/4c + ⋯ + C8ℎ1/128c (II.52)

In Figure II.11 (right) the indentation mark of a Berkovich tip is depicted. Finally, between the indentation

modulus and the Young’s modulus of the specimen material the following relation holds

Er =
1 − �2

E
+
1 − nu2i
Ei

. (II.53)

Here, Ei and �i are the Young’s modulus and Poisson’s ratio of the indentation material, respectively. In this

study the indentation tip is made of diamond with a Young’s modulus of 1143GPa and a Poisson’s ratio of

0.0691 [91].

II.5.2.2 Setup and Results

For the experimental veri�cation of the numerical simulation on the mesoscale the indentation modulus is

measured at the surfaces of the cuboid. First is the measurement in x-direction. The measurement points

are arranged in a grid of 37 x 9 points, that cover an area of 9000 µm x 1600 µm. Consequently, the distance

between the measurement points is 200 µm in z- and 250 µm in y-direction, respectively. For this con�guration

the indentation modulus is measured with a maximum indentation force of 500mN and 1500mN. The results

are given in Table II.5. The indentation modulus for both load cases match within the standard deviation.

Hence, the indentation modulus is independent of the maximum indentation force in a range of 500mN to

1500mN. As in the numerical simulations, the indentation modulus is also determined experimentally in

a second direction. Therefore, the indentation test is repeated in y-direction. Here only one load case is
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Direction Max. load Indentation modulus Standard deviation Young’s modulus

mN GPa GPa GPa

Horizontal 500 6.78 1.07 5.84

(x - axis) 1500 6.93 0.73 5.97

Vertical 1500 4.95 0.44 -

(y - axis)

Table II.5: Results of the indentation tests.

Direction Analysis Young’s modulus Std. Dev. Mic. Dev. Exp. 1500mN
GPa GPa % %

Micrograph 6.26 - - 4.86

Art. homogeneous (I) 5.94 0.04 5.11 0.50

Horizontal Art. shell layers (II) 6.09 0.04 2.72 2.01

(x - axis) Art. layered structure (III) 6.12 0.04 2.24 2.51

Nanoindentation 500mN 5.84 1.07 6.60 2.18

Nanoindentation 1500mN 5.97 0.73 4.62 -

Micrograph 5.41 - - 9.29

Art. homogeneous (I) 4.97 0.01 8.13 0.40

Vertical Art. shell layers (II) 5.03 0.01 7.02 1.62

(y - axis) Art. layered structure (III) 5.09 0.01 5.91 2.83

Nanoindentation 1500mN 4.95
1

0.44 8.50 -

Table II.6: Comparison of the experimental and numerical obtained results.

conducted with a maximum load of 1500mN. The result is also provided in Table II.5.

In Table II.5 not only the results of the indentation tests are summarized, but also the calculated values

of the Young’s modulus are given. This is done be evaluating Eq. (II.53). For this the Poisson’s ratio of the

analyzed cross-section is obtained by using the analytical material model introduced by Halpin and Tsai [61,

62, 174] and the probabilistic characteristics provided in Section II.4.1. Besides a Poisson’s ratio of 0.379 a

Young’s modulus of 6.21GPa is calculated. As this value meets the numerical results of the micrograph with a

deviation of less than 1 % for the Young’s modulus, this Poisson’s ratio is used to derive the material Young’s

modulus from the reduced modulus obtained by indentation in x-direction. However, the obtained Poisson’s

ratio for the correction in x-direction cannot be used for a correction in y-direction, because the assumption

of transversally isotropic material behavior is not applicable for the analyzed cross-section. The main reason

is the varying orientation of the �bers. This holds not only when considering the layered structure of the

cross-section, but also when reducing the representation of the cross-section to the shell layers only. This

conclusion is supported by the mismatch of the Young’s modulus in x- and y-direction, as shown in Table II.4.

II.5.2.3 Comparison with numerical results

Table II.6 gives an overview of the experimentally and numerically obtained values of the Young’s modulus on

the mesoscale. For both directions the results of the numerical simulations meet the results of the experimental
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investigation within the standard deviation. Consequently, the presented modeling approach on the mesoscale

is veri�ed by the conducted experiments. Furthermore, the reduction of the cross-section representation to the

shell layers, as suggested in Section II.5.1.3, appears to be valid.

II.6 Modeling on the component level

So far the modeling process is based on the microstructural properties of the analyzed cross-section (see

Section II.4) given by the mean and standard deviation of the �ber length, �ber diameter, and �ber orientation.

The aim of this section is to provide a numerical modeling approach on the component level including the

microstructural properties of short �ber-reinforced material.

This is done by representing the material properties by homogeneous random �elds. Since random �elds

also involve information about local correlation between the realization at each point the correlation structure

and correlation function are determined �rst. In this context the arti�cial microstructures, introduced in

Section II.5 are used to derive the correlation functions of the elasticity tensor coe�cients.

The procedure for the generation of the arti�cial microstructures for SFRC introduced in Section II.5.1 leads

to almost identical mechanical properties as the microstructure of the micrograph of Section II.4.1. This is not

only found on a numerical basis, but also veri�ed experimentally by nanoindentation in Section II.5.2. Hence,

in this section the procedure is used to expand the modeling approach to the component level.

A crucial issue for the representation of material properties is their positive nature. Since Gaussian random

�elds assume normal distributed underlying random variables, negative realizations are possible [47, 169].

Therefore, due to the elliptic property of the elasticity partial di�erentiation operator the use of Gaussian

random �elds for the representation of material properties is not suitable in context of multi-scale modeling of

heterogeneous material [163]. Hence, the use of non-Gaussian random �elds is required to ensure a stochastic

solution of second-order and the positive nature of the elasticity coe�cients, which is also state of the art [27,

54, 55, 97, 110, 172].

A non-Gaussian random �eld M(!, x) is given by

M(!, x) = {X(!, x)}, (II.54)

where  is a non-linear mapping operator and X(!, x) a centered, homogeneous Gaussian random �eld as

introduced in Section II.2 [55]. In this study discretized random �elds are used. Although the stochastic

solution obtained here (using a Gaussian �eld) is not of second-order, computational (sample-wise) results

may not be strongly impacted given the choice of model parameters and are thus presented below.

II.6.1 Numerical simulation

II.6.1.1 Correlation structure

As shown in Section II.2.1 to Section II.2.3 random �elds describe the spatial distribution of random variables.

The main characteristic is the correlation function which gives an information about the dependence of values

at di�erent locations. Hence, the correlation functions of the elasticity tensor elements must be determined

�rst.

The correlation analysis is done in accordance with the procedure presented in [145] and hence, is based

on the assumption of a SVE. As homogeneous second-order random �elds are used to represent the material

properties of a tensile test specimen, the correlation analysis as well as all remaining numerical simulations

are based on the plain strain assumption. Using pure displacement and pure traction boundary condition as

introduced in [188] the auto- and cross-correlation lengths of the elasticity tensor coe�cients are calculated,

respectively. Taking into account that the elasticity tensor coe�cients for a plain strain state depend not

only on the in-plane material properties but also on �23 it is not possible to derive the engineering constants

1
Indentation modulus
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Correlation

function

Value Unit C11 C12 C22 C66

Exponential b1 µm 183.9 145.9 151.9 135

b2 µm 145.1 142.3 132.3 121.6

RMSE µm 0.08 0.11 0.06 0.06

Gaussian b1 µm 276.3 241.4 241.5 244.4

b2 µm 253.6 242.1 234.3 232.4

RMSE µm 0.07 0.05 0.08 0.10

Triangle b1 µm 165.6 137.5 138.1 129

b2 µm 128.2 132 122.6 106.5

RMSE µm 0.10 0.70 0.12 0.13

Table II.7: Results of the auto-correlation lengths of the elasticity tensor coe�cients using di�erent correlation

functions and a window size of 250 µm.
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Figure II.12: Auto- and cross-correlation of the elasticity tensor elements.

from the elasticity tensor coe�cients without any further assumption. Due to this the correlation structure

is obtained for the elasticity tensor coe�cients instead of the engineering constants. In a next step these

parameters are used to describe the material properties of the composite on the component level.

Using the moving window method, the auto- and cross-correlation is analyzed for a window size of 250 µm,

500 µm, and 750 µm. As there are closed solutions for the Fredholm integral equation given in Equation (II.19)

for an exponential, Gaussian and triangle correlation function the use of one of these kernels is preferable.

Table II.7 gives the results of the correlation lengths for these three correlation functions and the corre-

sponding root mean square error (RMSE). The results indicate, that all correlation functions approximate

the numerically obtained correlation behavior of the elasticity tensor coe�cients within a RMSE of less than

1 µm. Due to the common use of the exponential correlation function in the literature [47, 128, 169, 181],

this correlation function is selected for the following generation of random �elds using the Karhunen-Loève

expansion.

II.6.1.2 Generation of random �elds

Independent of the correlation function the Karhunen-Loève expansion always assume a linear correlation

between the parameters. For the numerical model of the elasticity tensor coe�cients of SFRC this assumption

is satis�ed not only for the auto-correlation but also the cross-correlation, as shown in Figure II.12.

One main parameter for the accuracy and convergence of the expansion of random �elds is the amount of

considered eigenvalues and hence, the number of terms used in the Karhunen-Loève expansion. Moreover,
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Figure II.13: A realization for the four independent elasticity coe�cients for the modeling of the material

properties of SFRC based on the correlation length derived from a window size of 250 µm and an

exponential correlation functions. All values in GPa.
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Elasticity coe�cient Mean value Standard deviation Minimal value Maximal value

GPa GPa GPa GPa

C11 12.17 2.20 4.02 20.1

C12 4.52 0.20 3.78 5.19

C22 8.09 0.53 6.20 10.1

C66 1.86 0.21 1.09 2.61

Table II.8: Results of the analysis of the exemplary random �elds with respect to possible negative realizations

due to the underlying Gaussian distribution.

the required amount of terms is strongly a�ected by the ratio of the correlation length and the dimension of

the random �eld [78]. Low ratios coincide with highly correlated random �elds, which allows one to reduce

the terms of the Karhunen-Loève expansion to represent the random �eld. However, for large domains or

small correlation lengths and hence, an increasing ratio, more terms should be considered. Since the ratio

of the correlation length and observed area is considerably large in this study 3000 terms are used during

the series expansion. This meets the magnitude of terms used in [189] for the numerical simulation of the

wave propagation in thin-walled structures, which is also characterized by a weak correlated random �eld and

hence, a large ratio of domain expansion to correlation length.

Figure II.13 shows examples of random �elds for the elasticity tensor elements, that are not equal to zero,

based on a window size of 250 µm and exponential correlation functions, when assuming a two-dimensional

model and �ber reinforced material. As shown in [145] the symmetry property still holds.

As mentioned before, for the representation of the elasticity coe�cients Gaussian random �elds are used.

This may lead to negative realization. To show, that in this case the use of Gaussian random �elds is appropriate

the generated �elds are analyzed in detail. For this Table II.8 provides the mean values, the standard deviation,

as well as the minimal and maximal values. For the generation of these exemplary random �eld the underlying

distribution is not modi�ed to avoid negative realizations. Due to the moderate standard deviation only positive

results are calculated, even if a Gaussian distribution is used for the elasticity coe�cients. Furthermore, the

results of this analysis may be checked for plausibility. The minimal and maximal values can be explained by

areas where almost no �ber is found and by areas with a relatively high �ber volume fraction, respectively.

Cases where C11 is smaller than C22 the �ber can be assigned to a variation of the �ber orientation.

II.6.1.3 Numerical model

The numerical model for the analysis of the material properties of SFRC is based on a tensile test specimen.

Since the standard observation length de�ned in [84] is 50mm the specimen is represented by a rectangle

with an edge length of 50mm x 3mm. Vertical and horizontal displacements are �xed on the left and lower

edge of the rectangle, respectively. As done in Section II.5.1 100MPa are applied on the right edge. Again all

simulations are carried out assuming a plain strain state as well as linear theory.

For the determination of an adequate element size a convergence study is performed. This is done by

increasing the number of elements in the vertical and horizontal direction until the variation of the resulting

Young’s modulus is less than 0.5%. The aspect ratio of the element is not a�ected by the convergence analysis

and therefore, is �xed with a value of 1. Table ?? gives the results for the convergence analysis based on the

Young’s modulus. The element size is varied between an edge length of 200mm up to 1mm. Therefore, the

smallest element size and hence, the distance between the integration points is comparable to the smallest

correlation length. Based on the obtained mean value the results indicate that an element size of 1mm x 1mm
is su�cient for the numerical simulation on the component level.

Compared to the obtained correlation length in Table II.7 the material information at the integration points
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Elements x Elements y Edge length Displacement u Young’s modulus Total dev. Step dev.

mm mm GPa % %

50 3 1.00 0.785 6.373 0 -

100 6 0.50 0.785 6.352 0.33 0.33

150 9 0.33 0.785 6.347 0.41 0.08

200 12 0.25 0.785 6.345 0.44 0.03

250 15 0.20 0.785 6.343 0.46 0.03

Table II.9: Results of the convergence study for the element size of the numerical model on the component

level.

Analysis Result Standard Deviation Deviation experiment

GPa GPa %

Experiment 9.75 0.27 -

250 KUBC 6.40 0.01 34.4

500 KUBC 5.87 0.01 39.8

750 KUBC 5.68 0.01 41.7

250 SUBC 4.04 0.01 58.6

500 SUBC 4.16 0.01 57.3

750 SUBC 4.20 0.01 56.9

Table II.10: Results of the experimentally obtained Young’s modulus and deviation to the previous observations.

are independent of each other. This means that a Karhunen-Loève expansion is not stringently necessary to

derive the random �elds representing the material properties. The information can also be generated by a

Monte Carlo sampling at each integration point. This circumstance allows one to neglect the cross-correlation

between the elasticity tensor elements, that is provided in [145]. However, the auto-correlation and hence,

the random �elds used in this section to represent the material properties of the SFRC are still derived by

Karhunen-Loève expansion. The simulations are carried out for all window sizes and boundary condition

types used in Section II.6.1.1 to analyze the correlation structure.

II.6.1.4 Results

The results of the numerical analysis based on the microstructural characteristics derived from a two-dimen-

sional micrograph are summarized in Table II.10. As expected the values based on an analysis with pure

displacement boundary conditions (KUBC) decrease with an increasing window size whereas values based on

pure traction boundary conditions (SUBC) increase with an increasing window size. This meets the multi-scale

modeling approach with the Voigt and Reuss bounds [70] for a SVE. The very small standard deviation can be

assigned to the element size, which has the same magnitude as the obtained correlation length.
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II.6.2 Experimental validation

II.6.2.1 Experimental Setup

The numerical results are validated experimentally by a standard tensile test. The tensile test specimens have

the dimensions of 140mm x 20mm x 3mm as shown in Figure II.2 (2). As depicted in Figure II.2 the specimens

are taken from a plate made by mold injection. The main orientation of the specimens coincides with the melt

�ow direction. In total 13 specimens are analyzed. To compare the results of the numerical simulation with

the experimentally obtained values, the Young’s modulus is determined for the linear elastic range. Therefore,

the Young’s modulus is calculated for a strain range of 0.05 % to 0.25 %. Based on the specimen geometry

this equals a load range of 150N to 750N and is characterized by purely linear-elastic material behavior. The

measurement length for the overall Young’s modulus of a specimen is 45mm.

II.6.2.2 Results and comparison

The results for the experimentally obtained Young’s modulus is given in Table II.10. For a comparison with the

numerical analyses the results of the modeling on the component level and their deviation to the experimental

results are included as well. The results of the numerical simulation based on the probabilistic characteristics

of the microstructure determined in Section II.4.1 show a signi�cant deviation from the experimental results of

34.3 % up to 58.4 %. However, the numerical data matches the results of the simulation on the mesoscale very

good. The Young’s modulus in �ber direction is approximated on the mesoscale with 6GPa in Section II.5.

This meets the numerical simulation conducted here with a minimal deviation of 2.2 % for the correlation

structure derived from a window size of 500 µm and pure displacement boundary condition. Therefore, the

main reason for the signi�cant deviation to the numerical simulation on the component level is assumed

in the use of probabilistic characteristics of the microstructure obtained by a two-dimensional micrograph.

This data is su�cient for numerical simulation of the material response on the mesoscale. However, for

the representation of the material properties on the component level, which is done by the generation of

homogeneous second-order random �elds with the Karhunen-Loève expansion, requires a di�erent set of

input variables.

II.6.3 Modeling based on three-dimensional microstructure characteristics

II.6.3.1 Application of the procedure on values taken from literature

As discussed in Section II.6.2.2 the results obtained by numerical simulation in Section II.6.1.3 and the results of

tensile tests presented in Section II.6.2 do not match. It is assumed that the main reason is the lack of information

about the three-dimensional micromechanical properties. To con�rm this conclusion, the presented procedure

is applied to three-dimensional microstructural data provided in [58]. In contrast to the analyses presented so

far, tensile test specimens made of PA 6 are used in [58]. However, in both cases the �ber mass fraction is

speci�ed with 30%.

In a �rst step the correlation functions as well as the three-dimensional microstructure information of the

elasticity tensor components are identi�ed by taking into account the slightly di�erent material parameters of

PA 6 compared to PBT. The material properties provided in Table II.11 are assumed dry as molded.

To generate the microstructure for the correlation function analysis the probabilistic characteristics of the

�ber length, �ber diameter, and �ber orientation are taken from [58]. The characteristics of the �ber length

and �ber orientation are given for tensile test specimens directly produced by mold injection. The probability

density function of the �ber length meets a two-parameter Weibull distribution [24, 44] given by

f (l|a, b) =
b
a (

l
a)

b−1

exp(−
l
a)

b

. (II.55)
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Material Young’s modulus Poisson’s ratio

GPa -

Glass 72 0.22

PA 6 2.9 0.39

Table II.11: Material properties of the matrix and �ber material of PA 6 GF 30 dry as molded.

Correlation function Value Unit C11 C12 C22 C66

Exponential b1 µm 242.9 177.7 166.5 187.7

b2 µm 179.4 181.7 178.9 181.7

RMSE µm 0.10 0.11 0.07 0.08

Mean GPa 12.10 4.514 8.088 1.851

Stand. dev. GPa 2.478 0.262 0.714 0.281

Table II.12: Results of the auto-correlation lengths of the elasticity tensor coe�cients using an exponential

correlation functions and a window size of 250 µm based on the microstructure characteristics

provided in [58] and the material properties of PA 6 GF 30.

Analysis Result Standard Deviation Deviation experiment

GPa GPa %

Experiment 9.2 0.1 -

250 KUBC 9.34 0.01 1.54

500 KUBC 8.53 0.01 7.28

750 KUBC 8.24 0.01 10.43

250 SUBC 6.00 0.01 34.8

500 SUBC 6.48 0.01 29.6

750 SUBC 6.74 0.01 26.7

Table II.13: Results of the numerically obtained Young’s modulus based on the microstructural characteristics

of PA 6 given in [58] and deviation to the experimentally obtained Young’s modulus.
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Correlation function Value Unit C11 C12 C22 C66

Exponential b1 µm 233.4 163.3 157.0 169.8

b2 µm 191.8 171.1 178.1 165.6

RMSE µm 0.10 0.12 0.10 0.10

Mean GPa 13.05 5.144 8.698 1.799

Stand. dev. GPa 2.953 0.267 0.749 0.285

Table II.14: Results of the auto-correlation lengths of the elasticity tensor coe�cients using an exponential

correlation functions and a window size of 250 µm based on the microstructure characteristics

provided in [58] and the material properties of PBT GF 30.

The Weibull parameters a and b are determined as

a = 292 b = 1.96. (II.56)

The corresponding mean of the �ber length is l̄ = 260 µm. The �ber orientation is described by an elliptic

probability density function [58]. Therefore,

f (�) =
ℎ2√

1 − ℎ21−ℎ22
ℎ21

cos2(�)
(II.57)

holds. Here, ℎ1 and ℎ2 are the semi-minor and semi-major axis, respectively. The semi axes ratio for this

probability density function measured by �CT is 22.1. The �ber diameter d is analyzed for tensile test specimens

cut out of a pre-produced plate. Since the �ber diameter is not in�uenced signi�cantly by the mold injection

process these values can be combined. As expected the �ber diameter shows a normal distribution. The

corresponding probability density function is written as

f (d) =
1

�
√
2�

exp
[
−
1
2 (

d − �
� )

2

]
(II.58)

with a mean value � = 10.9 µm and a standard deviation � = 0.9 µm. The derived information of the correlation

structure is summarized in Table II.12.

The results of the numerical simulation of a tensile test using the presented data for the representation of

the microstructure are provided in Table II.13. In addition, the numerically obtained Young’s modulus of the

material is characterized experimentally in [58] as well. Therefore, Table II.13 also holds the results of the

conducted experiments and the deviation between the numerical simulations and experiments.

The results presented in Table II.13 indicate that the introduced procedure for the numerical simulation of

SFRC on the component level including information of the three-dimensional microstructure leads to plausible

results. The numerical simulations based on random �elds characterized by correlation functions obtained for

a window size of 250 µm and the mean values for pure displacement boundary conditions show a minimal

deviation of 1.54 %. The deviation starts to increase with an increasing window size. This indicates that the

use of larger window sizes leads to a loss of information about the microstructure, that is necessary to obtain

the correct material response on the component level. Due to the larger aspect ratio of 23.9 the results also

reveal a more distinct anisotropy in contrast to the simulation based on the microstructure.

A further validation step is the comparison of an experimentally obtained local Young’s modulus distribution

with the spatial �uctuation of the Young’s modulus based on the modeling with random �elds. Unfortunately,

a local distribution of the Young’s modulus is not provided in [58]. Therefore, in a last step the presented
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Analysis Result Standard deviation Deviation experiment Min Max

GPa GPa % GPa GPa

Experiment 9.75 0.27 - 9.28 10.2

250 KUBC 9.74 0.01 0.10 9.42 10.1

Table II.15: Results of the numerically obtained Young’s modulus based on the microstructural characteristics

of PA 6 given in [58] in combination with the material properties of PBT GF 30 and deviation to

the experimentally obtained Young’s modulus.

Mean Std. 1 2 3 4 5 6 7 8 9 10

Experiment 9.48 1.26 10.4 6.9 9.95 10.9 11.2 9.34 9.48 8.15 9.94 -

Simulation 9.46 0.42 9.39 10.1 9.46 8.99 9.10 9.23 9.35 10.0 9.99 8.96

Table II.16: Local distribution of the material properties based on numerical simulations and experiments. All

values in GPa

characteristics are combined with the material properties of PBT GF 30.

II.6.3.2 Transfer of the microstructural characteristics to PBT GF 30

First a correlation analysis based on the new combination of microstructural and material properties is

conducted, Table II.14. As the previous analysis indicates that the representation of the microstructure with

random �elds for a correlation structure based on a window size of 250 µm shows the best �t, the �nal analysis

is limited to this con�guration. The results of the numerical and experimental analysis, given in Table II.15,

con�rm the presented procedure. The deviation between the numerically and experimentally obtained values

is less than 1%. Furthermore, the obtained minimal and maximal values show he same trend for the numerical

simulation as well as the experiments. These values indicate the Young’s modulus range for the analyzed

specimens.

However, a further important property is the local distribution of the material property within one specimen.

Therefore, the Young’s modulus distribution over the observation length is measured by dividing the original

measurement length into sections with a length of 5mm. For each section the Young’s modulus is obtained

individually on a numerical and experimental basis. The results are given in Table II.16. The mean values of

the chosen data sets �t very well. In contrast to this, the standard deviation of the experimentally obtained

data set is higher than the one obtained for the numerical results. This is also indicated by the range of the

values. The corresponding minimal and maximal values are marked in Table II.16. The reason for this is

determination of the correlation length on the mesoscale in combination with the used element size for the

numerical simulation.

II.7 Summary and Conclusion

The presented work consists of three steps that build together the proposed modeling approach for a tensile

test specimen made of SFRC. These are the analysis of the microstructure, the determination of the correlation

structure of the elasticity tensor elements and the generation of random �elds for the representation of the

material properties by the Karhunen-Loève expansion on the component level.

The analysis of the microstructure is based on a two-dimensional micrograph which reveals a layered

structure of the cross-section. Based on the data the cross-section can be divided into �ve layers, namely a

core layer, that is surrounded by a shell and a skin layer at the top and bottom. This meets the well-known
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orientation scheme due to mold injection process. Numerical simulation based on the derived probabilistic

characteristics of the �ber length, �ber diameter, �ber orientation as well as �ber volume fraction show that

the information about the layered structure in�uences the Young’s modulus of the analyzed cross-section. A

validation with experimentally obtained Young’s modulus by nanoindentation indicates, that a homogenization

based on the overall probabilistic characteristics underestimates the material properties of the cross-section.

In contrast to this the modeling based on a layered structure consisting of the core and shell layers shows

only a marginal deviation to an approach limited to the shell layers. Therefore, the representation of the

microstructure by the shell layers only appears su�cient and is used for the determination of the correlation

structure for the numerical simulation on the component level.

For the numerical simulation on the component level �rst the probabilistic characteristics based on a

two-dimensional micrograph of the shell layers is used to derive the correlation structure. However, a

comparison with conducted tensile tests show large deviations between the numerically and experimentally

obtained results for the Young’s modulus. In fact, the numerical results meet the Young’s modulus obtained

by nanoindentation instead. This leads to the conclusion that the numerical modeling on the component

level requires a full three-dimensional analysis of the microstructure as a tensile test is no longer reduced to

near surface measurements. This conclusion is proven by applying the presented approach to probabilistic

characteristics of a microstructure of SFRC obtained by �CT. The resulting minimal deviation of the numerical

simulation and the conducted experiment is about 1.5 %. Finally, the local distribution of the material properties

is investigated both numerically and experimentally. The results show the same trend. However, the spatial

�uctuation seems to be more prominent experimentally than for the numerical simulations. One reason might

be the used correlation lengths, that are smaller than the element size. This issue could be solved by deriving

the correlation length of each elasticity tensor component not by the moving window method in the mesoscale.

Instead the correlation lengths give additional independent parameters like the engineering constants. The

correlation lengths are then determined in the same way as the material properties by �tting the parameters to

experimental data. This approach is already successfully used in [188, 189], where the correlation length of the

Young’s modulus is determined in such a way that the phenomenon of the continuous wave mode conversion,

detected by the experimental observation of guided ultrasonic waves in carbon �ber reinforced plastics, can

be observed in numerical simulations as well. This approach will be combined with the use of non-Gaussian

random �elds.

It is concluded, that the presented procedure is suitable for the numerical simulation of components made of

SFRC. For an adequate representation on the mesoscale the probabilistic characteristics of a two-dimensional

cross-section is su�cient. The numerical simulation on the component level, however, require a knowledge of

the three-dimensional probabilistic properties of the microstructure.
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Abstract: Indentation tests are widely used to characterize the material properties of heterogeneous

material. So far there is no explicit analysis of the spatially distributed material properties

for short �ber-reinforced composites on the mesoscale as well as a determination of the

e�ective cross-section that is characterized by the obtained measurement results. Hence,

the primary objective of this study is the characterization of short �ber-reinforced com-

posites on the mesoscale. Furthermore, it is of interest to determine the corresponding

area for which the obtained material parameters are valid. For the experimental inves-

tigation of local material properties of short �ber-reinforced composites, the Young’s

modulus is obtained by indentation tests. The measured values of the Young’s modulus

are compared to results gained by numerical simulation. The numerical model represents

an actual microstructure derived from a micrograph of the used material. The analysis of

the short �ber-reinforced material by indentation tests reveals the layered structure of

the specimen induced by the injection molding process and the oriented material prop-

erties of the reinforced material are observed. In addition, the experimentally obtained

values for Young’s modulus meet the results of a corresponding numerical analysis.

Finally, it is shown, that the area characterized by the indentation test is 25 times larger

than the actual projected area of the indentation tip. This leads to the conclusion that

indentation tests are an appropriate tool to characterize short �ber-reinforced material

on the mesoscale.
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III.1 Introduction

Reinforced materials have become of high interest over the last decades due to the improved weight-speci�c

material properties. Those heterogeneous materials usually consist of two components, the matrix material

and reinforcing particles or �bers, respectively. One example here are short �ber-reinforced composites (SFRC),

where thermoplastic matrix materials are combined with �bers of 100 to 300 length. Due to the �nite length of

the reinforcing elements, these materials are capable of serial production processes like injection molding.

However, the manufacturing with injection molding results in a probabilistic microstructure of the component

and hence leads to a spatial �uctuation of the material properties.

Since these �uctuations on the mesoscale in�uence, the structural response on the component level the

representation of the varying material properties for numerical simulations of the component is of particular

interest. For an adequate veri�cation of proposed modeling approaches on the mesoscale experimental investi-

gations are essential. One testing technique, that is frequently used for small-scale testing is nanoindentation

[89]. By nanoindentation, the material properties are analyzed in the nm to µm domain using indentation

loads in the range of µN to mN. This allows one to not only characterize the material on the mesoscale but

also to derive a spatial distribution of the near-surface material properties [52]. With quasi-static indentation

tests test elastic as well as plastic material properties can be derived. The elastic material response is obtained

by measuring the Young’s modulus, whereas the plastic behavior is characterized by the hardness. Due to this

multivariate use, indentation tests are used in a wide range of applications for the analysis of heterogeneous

material properties. This includes the characterization of MEMS-devices [34, 36], biomedical material like

brain tissue [20, 175], dental restorative composites [133, 155], as well as nanocomposites [5, 89, 92]. For

�ber-reinforced polymers so far only the interphase between the two constituents are analyzed experimentally

by nanoindentation for example in [73, 90, 119]. A comprehensive review of nanoindentation applications for

polymer composites is provided in [49].

The results presented in the literature provide promising results on the analysis of the microstructural

properties of reinforced heterogeneous materials. But so far, in contrast to the macroscopic analysis as

shown in [29, 30], there is only little investigation on the combination of this experimental approach with

the characterization of SFRC on the mesoscale and corresponding numerical simulations. Therefore, in this

work �rst, the spatial distribution of the linear-elastic quasi-static material properties for a thermoplastic

matrix �lled with glass �bers on the mesoscale is experimentally obtained by indentation tests. In contrast

to the work presented in [73, 90, 119] not the interface properties and the characteristics of the constituents

are measured individually, but a region comparable to a statistic volume element is considered. The size of

this area de�ned by the projected area of the indentation tip at maximum load varies between 2500 µm2
and

7000 µm2
and hence, includes not only a single phase of the heterogeneous material but the constituents as

well as the interphase. Due to this, the experimentally obtained results are not only a�ected by the projected

area but also by the surrounding material. This study aims to determine the size of the e�ective cross-section,

analyzed by indentation tests on the mesoscale.

The structure of the presented work is as follows. First, the fundamentals of the multiscale approach are

introduced in Section III.2. Next, Section III.3 gives a brief overview of the theoretical framework for the

material characterization by indentation tests as well as the experimental setup and procedure of this study.

This is followed by the presentation of the experimental results in Section III.4. These results are discussed in

detail in Section III.5. This includes the numerical simulations as well as the determination of the e�ective

cross-section size. Finally, Section III.6 gives a summary and a conclusion of the presented work.

III.2 Multiscale approach

Usually, materials are assumed to be homogeneous when observed at the component level. However, the

microstructure of materials is mostly heterogeneous. This leads to the conclusion, that the material properties

of a volume element, taken from a component, depend on the volume’s edge length d . In case that the material

properties of the volume element are independent of its origin, one speaks of a representative volume element
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the used load case. This is equivalent to the fact, that

a RVE consists of a statistically sufficient amount of

inhomogenities to be represenative for the microstruc-

ture. Therefore, the material properties of this volume

can be replaced by a homogeneous representation. It

is obvious the the scale d must be much larger than

the size l of an inhomogenity and much smaller than

the component scale L. This approach is known as the

separation of scales, that is also formulated as [8,33,43]

l� d� L. (1)

The dimension l is assigned to the microscale, L to the

macroscale, and the edge length d of the RVE to the

mesoscale. The concept is also shown in Fig. 1.
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symmetry when using pyramidal indenter [20,40].

The indentation or reduced modulus is not equal to

the Young’s modulus of the specimen’s material, be-
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the indentation tip. Therefore, a correction of the ob-
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(RVE). A well-known de�nition of the RVE size is given in [70]. For an RVE the e�ective material properties are

independent of the used load case. This is equivalent to the fact, that an RVE consists of a statistically su�cient

number of inhomogeneities to be representative of the microstructure. Therefore, the material properties of

this volume can be replaced by a homogeneous representation. It is obvious that the scale d must be much

larger than the size l of an inhomogeneity and much smaller than the component scale L. This approach is

known as the separation of scales, which is also formulated as [28, 129, 190]

l ≪ d ≪ L. (III.1)

The dimension l is assigned to the microscale, L to the macroscale, and the edge length d of the RVE to the

mesoscale. The concept is also shown in Figure III.1.

III.3 Indentation tests

III.3.1 Theory

For the experimental determination of the linear-elastic quasi-static material properties by indentation tests the

slope of the force-displacement curve of the unloading process is evaluated in order to derive the indentation

modulus, see Fig. III.2. Hence, the indentation modulus, which is also referred to as the reduced modulus, is

expressed by [125, 135]

Er =
d P
d ℎ

=
1
�

√
�
2

S√
Ap(ℎc)

, (III.2)

where S is the sti�ness of the contact, Ap the projected area of the indentation tip for a contact depth ℎc , and �
an empirical correction factor of the indenter uniaxial symmetry when using pyramidal indenter [65, 173].

The indentation or reduced modulus is not equal to the Young’s modulus of the specimen’s material, because

the measurement is a�ected by the material of the indentation tip. Therefore, a correction of the obtained

indentation modulus is necessary. Regarding the Poisson’s ration �i and the Young’s modulus Ei of the

indentation tip the Young’s modulus of the specimen Es is obtained by evaluating

Es =
1 − �2s
1
Er −

1−�2i
Ei

(III.3)
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Young’s modulus Poisson ratio Density

GPa - kg/m3

Glass 72 0.22 2500

PBT 2.6 0.41 1300

Table III.1: Material properties of the �ber and matrix material.

It is obvious that for the determination of the Young’s modulus the Poisson’s ratio �s of the analyzed material

must be known or needs to be approximated �rst. The tip material is usually diamond or sapphire. The

presented framework was developed for homogeneous material. However, in context of determining the

apparent material properties of a heterogeneous material, it seems appropriate to use these formulas since the

apparent material properties are a homogeneous representation of a heterogeneous material on the mesoscale.

The de�nition of the indentation modulus in Eq. (III.2) shows that the result of an indentation test is

in�uenced signi�cantly by the geometry of the indentation tip. There is a variety of shapes available for material

characterization by indentation tests. This includes pyramids, �at punch, and conospherical indentation tips.

Most common is a three-sided triangular based pyramid, the Berkovich tip [12], which is also used in this

study. The pyramidal shape is characterized by a nominal angle of 65.3° between the face and the normal to

the base at apex as well as an angle of 76.9° between edge and normal. The radius of the tip is less than 0.1 µm
[15]. Corresponding to the geometry the projected area of a perfectly sharp Berkovich tip is given by [35]

Ap = �ℎ2c tan
2 ' = 24.5ℎ2c , (III.4)

where ' is the e�ective semi-angle of 70.32° [23].

Since imperfections in�uence the true projected area of a Berkovich tip signi�cantly, instead of using

Eq. (III.4) a calibration function is mostly used to approximate the projected area. This function is expressed as

[125]

Ap(ℎc) = 24.56ℎ2c + C1ℎ
1
c + C2ℎ

1/2
c + C3ℎ1/4c + ⋯ + C8ℎ1/128c . (III.5)

Finally, the empirical correlation factor � needs to be determined. It is shown in [125, 135], that the value

of � usually varies between 1.02 and 1.08. This results in a deviation of up to 3 % regarding the indentation

modulus. Due to this the value for � is set to one in this study as done in [93].

The used Berkovich tip is made of diamond with a Young’s modulus of 1143GPa and a Poisson ratio of

0.0691 [91].

III.3.2 Experimental procedure

For the characterization of the material properties of SFRC on the mesoscale cuboids with an edge length of

20mm x 5mm x 3mm are used. The specimens are cut out of a quadratic plate of 300mm x 300mm x 3mm
produced by injection molding. The used material is a polybutylenterephthalat (PBT) �lled with glass �bers.

The �ber mass fraction is speci�ed with 30% (PBT GF 30) and the material properties of the two components

are given in Tab. III.1. Due to the manufacturing process, the reinforcement of the matrix by the �bers is

directional for the component, so that the material properties are non-isotropic and, hence, depending on the

direction. Because of that, di�erent orientations of the specimens with respect to the main melt �ow direction

of the initial plate are analyzed. They are cut out perpendicular to and in the direction of the main melt �ow

direction. This allows one to derive the linear-elastic quasi-isotropic material properties in the three main

directions namely with the main �ow direction, perpendicular to it, and in the thickness direction. Figure III.4

gives an overview of the used specimens. There is also a coordinate system introduced, that is used throughout

this study.

For the characterization of the material properties for PBT GF 30 the indentation or reduced modulus is
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tion of the indentation modulus can be observed. The

mean value and the standard deviation for all specimens

and the two load cases are summarized in Tab. 2. In

addition the minimal and maximal value of each mea-

surement series is provided. Fig. 3 gives an overview of

the spatial distribution of the indentation modulus for

each analysis.

4 Discussion

4.1 Numerical simulation

To be able to put the experimentally obtained values

into perspective the results are compared to numeri-

cally obtained values of the Young’s modulus. The nu-

merical simulations are only carried out for the x and

z direction. But the conclusions can be also be trans-

ferred to the y direction. The corresponding numerical

simulations are based on the microstructure of the used

material, that is derived from a two-dimensional micro-

graph with a size of 3.37 mm x 3 mm. To this micro-

graph the same grid is applied as used for the experi-

mental measurements. This leads to a grid of 10 x 11

measurement points. Each measurement point is inter-

pret as the center of the indentation of the Berkovic

tip. After unloading the indentation mark covers an

area of approximately 9000µm2. Hence an square with

an edge length of 95µm x 95 µm is extracted from the

micrograph at each measurement point and the corre-

sponding material properties are represented by arrays

[10]. This arrays are passed to the integration points of

the numerical model of a square with the identical edge

length of 95 µm x 95 µm. With this numerical model the

Young’s modulus of the each extracted cross-section is

determined by applying a load of 100 N on the right and

Fig. 3 Specimens for experimental investigation and numerical validation.

teristics. The measurement points are arranged in a

grid with a vertical and horizontal distance between

each point of 250 µm. Since the experimental procedure

is validated by numerical simulations based on a two-

dimensional micrograph with a size of 3.37 mm x 3 mm

the number of measurement points is selected in such

a way that an identical area is covered. To minimize

boundary effects a distance of 250 µm to each speci-

men boundary is kept. In accordance with the distance

of the measurement points to the bounds and between

each other the measurement points are arranged in a

Figure III.3: Spatial distribution of the numerically obtained indentation modulus for each load case and

direction.
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spatial distribution as well as the statistical charac-

teristics. The measurement points are arranged in a

grid with a vertical and horizontal distance between

each point of 250 µm. Since the experimental procedure

is validated by numerical simulations based on a two-

dimensional micrograph with a size of 3.37 mm x 3 mm

the number of measurement points is selected in such

a way that an identical area is covered. To minimize

boundary effects a distance of 250 µm to each speci-

men boundary is kept. In accordance with the distance

of the measurement points to the bounds and between

each other the measurement points are arranged in a

grid of 13 x 11 points, see Fig. 2. Hence, in total 143

measurements are performed.

At each of these points first the indentation modu-

lus is determined for a maximum load of 500 mN and

1500 mN, respectively. The used range for the approx-

imation of the indentation modulus is set to 98 % and

40 % of the maximum load. As discussed in Sec. 2.1 the

indentation area function Ap(hc) of the used Berkovich

tip is calibrated before obtaining the indentation mod-

ulus with respect to Eq. (1).

3 Results

Based on the nanoindentation measurements it is possi-

ble to derive a mean values and the corresponding stan-

dard deviation for the analysis of the material proper-

ties in one direction. Furthermore, the spatial distribu-

tion of the indentation modulus can be observed. The

mean value and the standard deviation for all specimens

and the two load cases are summarized in Tab. 2. In

addition, the minimal and maximal value of each mea-

surement series is provided. Fig. 4 gives an overview of

Figure III.4: Specimens for experimental investigation and numerical validation.
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Max. load Direction Mean Standard deviation Min Max Range

mN GPa GPa GPa GPa GPa

500 x 7.35 1.01 5.07 10.39 5.31

500 y 5.64 0.72 3.10 9.03 5.94

500 z 6.83 1.61 1.87 12.06 10.18

1500 x 7.44 0.75 5.69 9.69 4.00

1500 y 5.68 0.38 4.68 6.96 2.28

1500 z 6.62 1.50 1.74 12.54 10.8

Table III.2: Results of the experimentally obtained indentation modulus.

measured at several points to obtain the spatial distribution as well as the statistical characteristics. The

measurement points are arranged in a grid with a vertical and horizontal distance of 250 µm between each

point, see Figure III.3. Since the experimental procedure is validated by numerical simulations based on a

two-dimensional micrograph with a size of 3.37mm x 3mm the number of measurement points is selected

in such a way that an identical area is covered. To minimize boundary e�ects a distance of 250 µm to each

specimen boundary is kept. In accordance with the distance of the measurement points to the edges and

between each other the measurement points are arranged in a grid of 13 x 11 points, see Figure III.3. Hence, in

total 143 measurements per grid are performed.

At each of these points �rst, the indentation modulus is determined for a maximum load of 500mN and

1500mN, respectively. The used range for the approximation of the indentation modulus is set to 98 % and

40 % of the maximum load. As discussed in Section III.3.1, the indentation area function Ap(ℎc) of the used

Berkovich tip is calibrated before obtaining the indentation modulus with respect to Eq. (III.2).

III.4 Results

Based on the experimentally obtained indentation modulus mean values and the corresponding standard

deviations for the analysis of the material properties in each direction are derived. The results are summarized

in Table III.2. In addition, the minimal and maximal value of each measurement series is provided. Figure III.5

gives an overview of the spatial distribution of the indentation modulus for each analysis.

III.5 Discussion

Below �rst the experimentally obtained results are discussed in detail in Section III.5.1. This is followed by a

numerical analysis based on the microstructure of the specimen in Section III.5.2. The discussion is concluded

by a comparison of the results obtained by experimental investigation and numerical analysis in Section III.5.3.

III.5.1 Experimental results

The main aspects can be derived from the results provided in Tab. III.2 in combination with the microstructural

properties of the cross-section given in Table III.3. First, the measured values indicate that, compared to a

tensile test specimen on the component level, there is only a small degree of anisotropy due to the reinforcing

�bers on the mesoscale. The main reason here is the considerably small aspect ratio of the detected �bers.

Based on a mean �ber length of 46.6 µm and a mean diameter of 9.6 µm the aspect ratio is 4.85, whereas a three-

dimensional characterization on the component level results in an aspect ratio of up to 25 [58]. Furthermore,

the obtained mean value of the Young’s modulus for each direction appears to be independent of the maximal

indentation force used. This meets the results presented in [15]. Finally, the standard deviation and the range
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Parameter Value

l̄ Mean �ber length 46.6 µm
d̄ Mean �ber diameter 9.6 µm
's Fiber mass fraction shell 0.28
'c Fiber mass fraction core 0.33

Table III.3: Microstructural characteristics of the specimen taken from [145].

Experimental characterization of SFRC on the mesoscale by nanoindentation 7

Table 2 Results of the experimentally obtained indentation modulus.

Max. load Direction Mean Standard deviation Min Max Range

500 mN x 6.33 GPa 0.88 GPa 4.37 GPa 8.98 GPa 4.61 GPa

500 mN y 4.28 GPa 0.63 GPa 2.66 GPa 7.80 GPa 5.14 GPa

500 mN z 5.89 GPa 1.40 GPa 10.44 GPa 1.61 GPa 8.83 GPa

1500 mN x 6.41 GPa 0.65 GPa 4.90 GPa 8.37 GPa 3.47 GPa

1500 mN y 4.89 GPa 0.33 GPa 4.03 GPa 6.00 GPa 1.97 GPa

1500 mN z 5.70 GPa 1.31 GPa 1.49 GPa 10.9 GPa 9.41 GPa

Melt flow direction

Skin (randomly)

Shell (parallel)

Core (perpendicular)

Skin (randomly)

Shell (parallel)

x

y

Fig. 5 Fiber orientation schemes due to mold injection pro-

cess.

Using these values the Young’s Modulus of the differ-

ent layers and tested orientations are approximated us-

ing the material model of Halpin-Tsai [7,8]. Further-

more the corresponding fiber orientation is taken into

account. Since the analysis in x-direction coincide with

the main flow direction the Young’s modulus for the

shell layer is derived for a fiber orientation of 0°, where

as the Young’s modulus for the core layer is calculated

assuming an orientation of 90°. For the analytical de-

termination of the Young’s modulus regarding the in-

Table 3 Microstructural characteristics of the specimen

taken from [17] and results for the Young’s modulus approx-

imated by using the material model of Halpin-Tsai.

Parameter Description Value Unit

l̄ Mean fiber length 46.6 µm

d̄ Mean fiber diameter 9.6 µm

ϕs Fiber mass fraction shell 0.28 -

ϕc Fiber mass fraction core 0.33 -

Ec
z Young’s modulus 7.65 GPa

Es
z Young’s modulus 4.00 GPa

Ec
x Young’s modulus 4.47 GPa

Es
x Young’s modulus 6.42 GPa

dentation test in z-direction it is done the other way

round. Here, the orientation for the shell layer is 90°

and for the core layer 0°, respectively. The results are

also provided in Tab.3.

Comparing the results of the experimental investi-

gation and the analytical treatment shows a good agree-

ment for the indentation test at 1500 mN. For the in-

Figure III.6: Fiber orientation schemes consisting of �ve di�erent layers due to injection molding process,

compare [154].

of the obtained indentation modulus decrease with an increasing indentation force. Since the indentation force

correlates with the indentation depth and hence, the projected area, the characterized cross-section is larger

for a higher indentation force. In combination with the decreasing standard deviation and range, this allows

one to assign the conducted experiments to the mesoscale in context of the multi-scale approach [28, 190].

Components manufactured by an injection molding process show a layered structure in thickness direction

due to di�erent melt �ow velocities and shear forces [76]. As shown in Figure III.6, usually the cross-section

is characterized by three or �ve individual layers, namely skin, shell, and core layers [19, 41, 43, 113, 154].

Each of these layers shows a di�erent main �ber orientation. For the core layer, located in the middle of

the cross-section, the �ber is orientated mainly perpendicular to the main melt �ow direction, whereas the

adjacent shell layers show a �ber orientation, that coincides with the main melt �ow direction. The skin

layers at the upper and lower surface are only used within the �ve-layer characterization. In these thin layers,

the �bers are usually randomly orientated. Since the material properties are highly in�uenced by the �ber

orientation as shown in [141] the layers have di�erent material properties.

This variation of the material properties and hence, the layered structure of the cross-section can be clearly

observed in the experimental results of the indentation test in the z-direction. In the center of the cross-section,

the obtained Young’s modulus is signi�cantly higher in comparison to the remaining cross-section. This

also meets the results of the microstructural analysis of the cross-section presented in [145]. However, this

characteristic of the cross-section is not detected by the results shown in Figure III.5 for the indentation test

in the x-direction. At �rst, this contradicts the results of the measurement in the z-direction as well as the

�ndings regarding the cross-section layout due to an injection molding process as described in [19, 41, 43, 113,

154] and the results of the cross-section analysis in [145]. This is resolved by analyzing the obtained values

more in detail. Therefore, the mean value is calculated for each layer. The information about the corresponding

coordinates is derived from the results of the indentation tests in the z-direction. The values measured at

y ≤ 1.25mm and 1.75mm ≤ y ≤ 2.75mm are assigned to the shell layers, whereas the experimentally obtained
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Direction Layer E at 500mN E at 1500mN '
GPa GPa

x Core 6.72 6.90 0.33
x Shell 7.41 7.49 0.28
z Core 10.4 10.5 0.33
z Shell 6.48 6.23 0.28

Table III.4: Mean values of the indentation modulus.

values at y = 1.25mm are assigned to the core layer. The results are provided in Table III.4. Furthermore, the

corresponding �ber mass fraction ' taken from the microstructural analysis in [145] is given.

First of all, again the mean values of the measurement results at 500mN and 1500mN match very well

for each layer, which meets the results presented in [15]. The results also indicate a layered structure of the

cross-section not only based on the experiments conducted perpendicular to the main melt �ow (z-direction)

but also in the main �ow direction (x-direction). However, the di�erence between the shell and core layers is

less prominent in the melt �ow direction (x-direction) and hence, cannot be observed in Figure III.5. There are

two main reasons for the more pronounced di�erence of the mean indentation modulus between the shell and

core layers perpendicular to the main �ow direction (z-direction). First, the �ber mass fraction is not identical

for the shell and core layers as shown in Table III.3 and Table III.4. Due to the higher �ber mass fraction of the

core layer in combination with a 0° �ber orientation the di�erence to the shell layer with a lower �ber mass

fraction and a �ber orientation of 90° is more signi�cant in contrast to an interchanged combination. Second is

the orientation within the core and shell layers. The shell layers show an overall orientation characteristic in

melt �ow direction whereas the �bers in the core layer are mostly orientated perpendicular to the melt front.

However, the orientation characteristics are not identical when transforming one by 90° [145]. Because of the

di�erent �ber mass fraction and slightly di�erent �ber orientation in these layers, the mean value for the shell

layer in a �ber direction of 0° and the corresponding value of the core layer di�er signi�cantly.

III.5.2 Numerical simulation

It is expected that the experimentally obtained values for the indentation modulus are not only a�ected by

the projected area Ap but also its surroundings. Therefore, the e�ective cross-section of the indentation

test is analyzed by numerical simulations. The term e�ective cross-section is interpreted as the area that is

characterized by the indentation test. In other words, the surface of the material around the indentation center,

which in�uences the results of the indentation test, de�nes the e�ective area. The numerical simulations are

based on a two-dimensional micrograph of the used material. Since the micrograph represents the x-y-plane

the numerical validation is exemplarily done for these two directions.

The validation process consists of two steps. First, the overall properties on the mesoscale are derived by

obtaining the Young’s modulus for the complete micrograph with a size of 3.37mm x 3mm in both, the x-

and y-directions by numerical simulations of tensile tests. For the determination of the Young’s modulus, the

following boundary conditions are applied. For the analysis in the x-direction a horizontal load of 100MPa
is applied to the right edge, whereas for the analysis in y-direction a vertical load of 100MPa is applied

to the upper edge of the numerical model, which represents the micrograph. In both cases, the horizontal

displacement is �xed at the left edge and the vertical displacement is �xed at the lower edge, see Figure III.7.

The generation of the numerical model is described in detail in [145] and will, therefore, only discussed brie�y

here. To be able to analyze the overall material properties of the micrograph by numerical simulation the

obtained image is transferred to an array that holds a zero or one for each pixel of the image, indicating

whether the pixel represents matrix or �ber material. Based on these additional arrays are constructed holding
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Max. load Direction mean ℎc Ac le
mN µm µm2

µm

500 x 10.1 2499 50.0

500 y 9.97 2435 49.3

1500 x 16.6 6751 82.2

1500 y 16.6 6751 82.2

Table III.5: Summary indentation characteristics.
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5.2 Numerical simulation

It is expected that the experimentally obtained values

for the indentation modulus are not only affected by

the projected area Ap but also its surroundings. There-

fore, the effective cross-section of the indentation test is

analyzed by numerical simulations. The term effective

cross-section is interpreted as the area that is character-

ized by the indentation test. In other words, the surface

of the material around the indentation center, which in-

fluences the results of the indentation test, defines the

effective area. The numerical simulations are based on a

two-dimensional micrograph of the used material. Since

the micrograph represents the x-y-plane the numerical

validation is exemplary done for these two directions.

The validation process consists of two steps. First

the overall properties on the mesoscale are derived by

obtaining the Young’s modulus for the complete mi-

crograph with a size of 3.37 mm x 3 mm in both di-

rections by numerical simulations of tensile tests. For

the determination of the Young’s modulus the follow-

ing boundary conditions are applied. For the analysis

in x-direction a horizontal load of 100 MPa is applied to

the right edge, whereas for the analysis in y-direction a

vertical load of 100 MPa is applied to the upper edge.

In both cases the horizontal displacement is fixed at the

left edge and the vertical displacement is fixed at the

x

y

Fig. 6 Numerical models used for the determination of the

Young’s Modulus by tensile tests.

Table 5 Summary indentation characteristics.

Max. load Direction mean hc Ac le

500 mN x 10.1 µm 2499 µm2 50.0 µm

500 mN y 9.97µm 2435 µm2 49.3 µm

1500 mN x 16.6 µm 6751 µm2 82.2 µm

1500 mN y 16.6 µm 6751 µm2 82.2 µm

lower edge, see Fig. 6. More details about the numerical

procedure can be found in [34].

Second is the analysis of the effective cross-section.

This is done by extracting squares with different edge

lengths at different locations from the original micro-

graph. The squares are referred to as windows. The

window size gives the edge length of the correspond-

ing square. In this case the same grid of measurement

points is applied to the micrograph as used for the ex-

perimental analysis in Sect. 3. This leads to a grid of

12 x 11 measurement points. Each measurement point is

Figure III.7: Numerical models used for the determination of the Young’s Modulus by tensile tests.

the material properties of linear-elastic material, the Young’s modulus, Poisson’s ratio, and the density for

each coordinate. The numerical model itself is a rectangle of the same size as the micrograph discretized by a

mapped mesh. To model the microstructure of the SFRC the arrays are used to pass the material properties

directly to the integration points.

Second is the analysis of the e�ective cross-section. This is done by extracting squares with di�erent edge

lengths at di�erent locations from the original micrograph. These squares are referred to as windows and the

window size gives the edge length of the corresponding square. In this case, the same grid of measurement

points is applied to the micrograph as used for the experimental analysis in Section III.3. This leads to a grid

of 12 x 11 measurement points. Each measurement point is interpreted as the center of indentation by the

Berkovich tip and with respect to the numerical analysis as the center of an extracted window. Based on the

experimentally obtained contact depth, which depends on the maximum load, the corresponding projected area

Ap is approximated by evaluating Eq. (III.4). A square with an edge length of le =
√
Ap gives the smallest value

of the e�ective cross-section and therefore, is used as an initial window size for the numerical analysis. The

results, provided in Table III.5, indicate that the projected area is only in�uenced by the maximum load and not

by the direction of the indentation test, which allows one to use the same window sizes for the analysis in both

directions. Based on this the smallest window size analyzed by numerical simulation has an edge length of 50
With an overall size of 3.37mm x 3mm and a minimum distance of 250 µm to the micrograph boundaries the

maximum window size, that can be extracted, has an edge length of 500 µm. With these boundaries window

sizes with an edge length of 50 µm to 500 µm in 50 µm steps are investigated. At each point of the grid and for

each window size a square with the corresponding edge length is extracted. The microstructure and hence, the

corresponding material properties are again represented by arrays, as done in [145]. The information of the

material properties, stored in these arrays, are passed to the integration points of the numerical model of a

square with identical edge length. For the analysis of the e�ective cross-section, the Young’s modulus in x- and

y-direction are determined by applying the same two load cases as done before. Furthermore, it is considered

that the indentation modulus in the y-direction is only measured at the surface of the specimen. Therefore,

with respect to the micrograph, the Young’s modulus in the y-direction is only derived at the measurement

points located at the upper and lower row of the grid. For more details, see Figure III.4. In contrast to this, the
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Max. load Direction Mean Standard deviation Min Max Range

mN GPa GPa GPa GPa GPa

500 x 6.33 0.88 4.37 8.98 4.61

1500 x 6.41 0.65 4.90 8.37 3.47

Table III.6: Results of the experimentally obtained Young’s modulus in x-direction.

Young’s modulus in the x-direction is obtained for all extracted cross-sections.

The results of the numerical simulations are depicted in the �rst row of Figure III.8. The diagrams show the

results of both performed investigations. This includes the Young’s modulus of the complete cross-section as

well as the mean value for each window size and the corresponding minimum and maximum. Furthermore,

the standard deviation is indicated by error bars. On the left-hand side, the results for the analysis in the melt

�ow direction (x-direction) are shown. The diagrams in the right column give the results for the analysis in

the thickness direction (y-direction). For the numerical simulation in the x-direction the range, as well as the

standard deviation of the obtained Young’s modulus decrease continuously with an increasing window size

and the maximum and minimum, converge to the mean value. Furthermore, the mean values are constant

within the standard deviation over all window sizes and meet the Young’s modulus of the whole micrograph.

Based on this observation the numerical simulation can also be clearly assigned to the mesoscale with respect

to the multi-scale modeling approach. The results for the analysis in thickness direction indicate a similar

trend. However, the minimum and maximum don’t show a monotonously increasing and decreasing behavior,

respectively. The main reason is the low number of analyzed cross-sections in comparison to the analysis in

the melt �ow direction. Instead of 132 only 24 cross-sections are used due to the extraction limited to the

near-surface area.

A detailed summary of the results is provided in Appendix III.A.

III.5.3 Comparison

For the comparison of the numerically obtained values and the measurement results, the Young’s modulus

needs to be derived from the indentation modulus. As discussed in Section III.3.1 for this the Poisson’s ratio of

the specimen material needs to be approximated �rst. Based on the microstructural properties of the material

provided in Table III.3 and the material model by Halpin-Tsai [61, 62] the Young’s modulus and the Poisson’s

ratio are predicted. The framework of the material model by Halpin-Tsai is given in Appendix III.B. For the

Young’s modulus, a value of 6.21GPa is obtained. The Poisson’s ratio is approximated at 0.379 which is used

to derive the Young’s modulus of the specimen from the indentation modulus in the x-direction. Due to the

oriented material properties, this Poisson’s ratio cannot be used for the remaining two testing directions,

which is also indicated by the mismatch of the mean indentation modulus in each direction. The results are

provided in Table III.6. Comparing the calculated Young’s modulus in Table III.6 with the analytical value

shows a good agreement. Therefore, the use of the predicted Poisson’s ratio of 0.379 appears to be suitable

for the determination of the specimen’s Young’s modulus. Furthermore, the local variation of the Poisson’s

ratio due to the changing �ber volume fraction has only a small impact on the resulting Young’s modulus.

For a �ber volume fraction range of 0 % up to 44 %, which is equal to a maximum �ber mass fraction of 60 %,

the Poisson’s ratio lays between 0.326 and 0.42. Calculating the Young’s modulus using these values leads to

an upper and lower bound of 6.61GPa and 6.15GPa. With respect to the resulting value of 6.33GPa given in

Table III.6, this equals an error of 4 % which is covered by the standard deviation.

The comparison between the experimentally obtained values and the results of the numerical analysis are

done individually for each load case and each load direction. First, in the second row of Figure III.8 is the

comparison of the indentation test at 500mN in the main �ow direction (x-direction) on the left-hand side

and in the thickness direction (y-direction) on the right-hand side. In addition to the diagrams in the �rst

112



Paper III Experimental characterization of SFRC on the mesoscale by indentation tests

50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

Y
o
u
n
g
’s

M
o
d
u
lu
s
[G

P
a
]

Load in melt flow direction (x-direction)

Numerical results

50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

Load in thickness direction (y-direction)

Numerical results

50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

Y
o
u
n
g
’s

M
o
d
u
lu
s
[G

P
a
]

Comparison with experiment at 500mN

50 100 150 200 250 300 350 400 450 500
2

3

4

5

6

7

8

9

10

Comparison with experiment at 500mN

50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

Window size [µm]

Y
o
u
n
g
’s

M
o
d
u
lu
s
[G

P
a
]

Comparison with experiment at 1500mN

50 100 150 200 250 300 350 400 450 500
2

3

4

5

6

7

8

9

10

Window size [µm]

Comparison with experiment at 1500mN

Num. whole micrograph:

Num. effective cross-section: Mean Max Min

Experiments: Mean Max Min

Num. whole micrograph:

Num. effective cross-section: Mean Max Min

Experiments (Ei): Mean Max Min

Figure III.8: Results of the numerical simulation in x− and y−direction and comparison with experimental

results.
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row, the experimentally obtained mean values, as well as the minimal and maximal measured value for the

Young’s modulus, are added (for the analysis in y-direction the indentation modulus is used). Furthermore, the

standard deviation is indicated. To be able to compare the standard deviation of the experimental results with

the standard deviation of the numerical analysis the error bars of the experimental results are added to the

numerically obtained mean values. Therefore, at each window size, two error bars are depicted at the numerical

mean value. One represents the standard deviation resulting from the numerical analysis (black) and a second

corresponding to the experimental investigation (red). The Young’s modulus derived from experimentally

obtained indentation modulus, the Young’s modulus characterizing the complete microstructure represented

by a two-dimensional micrograph, and the mean value regarding the e�ective cross-section size analysis show

only small deviations for the investigation in the x-direction. This holds for both indentation forces. In contrast

to this in the y-direction the experimental results are higher than the values obtained by numerical simulation.

The main reason here is the use of the indentation modulus instead of the Young’s modulus. In addition to this,

the center point of the extracted window has a distance of 250 µm to the surface of the micrograph. Hence, the

ratio of the shell and skin layers in the extracted window may di�er from the e�ective cross-section of the

indentation test and may also lead to a slight deviation between the results.

In the next step, the size of the e�ective cross-section is determined by the window size where the standard

deviations show the best match. For the experimental investigation in melt �ow direction at 500mN this is the

case for a window size of 250 µm. In contrast to this at a load of 1500mN the corresponding window size is

400 µm, as depicted in the third row of Figure III.8. This meets the expectation because with an increasing

maximum load the indentation depth increases and hence, the e�ective area should do so as well. Comparing

these values with the edge length le of the projected area given in Table III.5 leads in both cases to a factor of 5

between the window size and the edge length, which corresponds to a factor of 25 between the projected area

and the e�ective cross-section. The same correlation is found for the results in the thickness direction.

Another approach for the determination of the e�ective cross-section is the comparison of the maximal and

minimal obtained values of both investigations. In this case, the window size, where the numerical obtained

values coincide with the experimental measuring results, gives the e�ective cross-section. However, the test

results of the investigation in x-direction reveal that this procedure indicates not a speci�c value but a range

for the e�ective cross-section. Furthermore, the values obtained based on the minimum and maximum do not

necessarily coincide. For the test at 500mN, for example, the maximal value of the numerical analysis and

the experimental investigation indicates an e�ective cross-section of approximately 200 µm to 250 µm, which

meets the conclusion based on the standard deviation. This is also indicated by the minimal value. In contrast

to this, the test with a maximal indentation force of 1500mN reveals a discrepancy between the e�ective

cross-section based on the minimal and maximal value. For the maximal value, an e�ective cross-section

edge length of 300 µm to 350 µm is derived whereas the minimal value indicates an edge length of 500 µm.

One reason for this is the sensitivity of the minimum and maximum on the number of samples, as discussed

before. This can also be observed for the analysis in the thickness direction. Due to the limited number of

extracted windows, the comparison of the minimal and maximal values is not suitable to derive the e�ective

cross-section size.

In summary, the e�ective cross-section is determined su�ciently based on the comparison of the standard

deviation obtained by numerical simulation and experimental investigation. A prediction of the e�ective

cross-section based on the minimal and maximal obtained values appears to be not suitable.

III.6 Conclusion

The presented work consists of two parts. First is the experimental characterization of a SFRC made of PBT

�lled with glass �bers and a �ber mass fraction of 30 % with special regard to the determination of the Young’s

modulus. The experimentally obtained results are validated by analytical treatment and numerical simulations

in a second step to determine the e�ective cross-section size.

The material characterization of SFRC by indentation tests along the three major axis that is along and
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perpendicular to the main �ow direction of the injection molding process as well as in thickness direction

reveals the layered structure of the cross-section due to di�erent melt �ow velocities during manufacturing.

Furthermore, the deviation of the obtained means for the Young’s modulus for the two di�erent indentation

loads stays within the standard deviation. This meets the observations described in [15]. In contrast to this,

the results for the di�erent analyzed orientations di�er, which is assigned to the oriented material properties

of reinforced material. However, the anisotropy is not very profound due to the small aspect ratio of the

reinforcing �bers.

The numerical simulations for the determination of the Young’s modulus are based on the microstructural

characteristics of the used material. They con�rm the results of the indentation tests. Furthermore, the

numerically obtained results for di�erent window sizes clearly indicate that the presented approach is assigned

to the mesoscale because the minimal and maximal value derived by the numerical simulation converges to

the mean value for increasing window size and the standard deviation also shows a decreasing development

with increasing window size.

Comparing the experimentally obtained standard deviation with the standard deviation of the numerical

simulations for di�erent window sizes reveals, that the ratio between the indentation area and the e�ective

cross-section of the indentation test is independent of the maximum indentation load. In this study, experiments

are conducted with a maximum load of 500mN and 1500mN. In both cases, the standard deviation of the

numerical simulation meets the experimentally obtained value for window sizes 25 times larger than the

indentation area.

It is concluded that indentation tests are a suitable procedure to determine the material properties of SFRC

on the mesoscale. This does not only involve the overall material properties but also the spatial distribution.

The obtained values characterize the material for an e�ective cross-section that is 25 times larger than the

projected area of the used Berkovich tip for a given indentation depth. Furthermore, the procedure is adaptable

to other �ber volume fractions. In this case, the ratio between the e�ective cross-section and the projected area

might be di�erent due to the di�ering reinforcement level and the change in the microstructural properties.
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III.A Numerical results

In Table III.7 the mean value, standard deviation, as well as minimal and maximal values of the Young’s

modulus are provided for each window size and both load cases.

III.B Theoretical framework Halpin-Tsai

The following de�nition of the engineering constants by Halpin and Tsai is taken from [61, 174]. The

longitudinal and transverse Young’s modulus are obtained by

E11/22 =
1 + ��'
1 − �'

Em, (III.6)
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Window size Direction Mean Standard deviation Min Max Range

µm GPa GPa GPa GPa GPa

50 x 6.14 2.73 3.13 16.2 13.1

100 x 6.15 1.88 3.38 14.2 10.8

150 x 6.52 1.74 3.88 11.8 7.88

200 x 6.00 1.05 4.16 9.82 5.65

250 x 5.97 0.82 4.28 8.53 4.25

300 x 6.11 0.82 4.28 8.51 4.22

350 x 6.23 0.77 4.42 8.16 3.74

400 x 5.88 0.61 4.55 7.78 3.23

450 x 6.03 0.55 4.79 7.54 2.74

500 x 5.94 0.47 4.84 7.45 2.61

Whole x 6.26 - - - -

50 y 5.20 1.64 3.60 9.57 5.97

100 y 5.20 0.93 3.54 7.40 3.86

150 y 5.70 0.95 4.27 8.10 3.83

200 y 5.22 0.60 4.45 6.52 2.07

250 y 5.24 0.43 4.60 6.37 1.77

300 y 5.39 0.39 4.81 6.73 1.91

350 y 5.56 0.38 4.95 6.87 1.92

400 y 5.23 0.28 4.86 6.13 1.27

450 y 5.39 0.24 4.99 6.07 1.07

500 y 5.24 0.20 4.94 5.68 0.74

Whole y 5.41 - - - -

Table III.7: Results of the numerically obtained Young’s modulus.
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where

� =
Ef
Em − 1

Ef
Em + �E11/22

(III.7)

and

�E11 =
2L
D

�E22 = 2. (III.8)

Here, the index f represents the material properties of the �ber, whereas the index m indicates the matrix

material. The shear modulus is given by

G12/23 =
1 + ��'
1 − �'

Gm (III.9)

with

� =
Gf
Gm − 1

Gf
Gm + �G12/23

(III.10)

and

�G12 = 1 �G23 =
Km
Gm

Km
Gm + 2

. (III.11)

The compression modulus Km reads

Km =
Em

3 − 6�m
. (III.12)

The remaining Poisson’s ration �12 is calculated by the elementary mixture rules for �ber reinforced composites

with the �ber volume fraction ', which can be found in [4].

�12 = '�12f + (1 − ')�12m. (III.13)
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Abstract: For the numerical simulation of short �ber-reinforced composites and the correct analysis of the

deformation, information about the plastic behavior and its spatial distribution is essential. When

using purely deterministic modeling approaches information of the probabilistic microstructure

is not included in the simulation process. One possible approach for the integration of stochastic

information is the use of random �elds, which requires information about the correlation

structure of all material input parameters. In this study the correlation structure for �nite strain

elasto-plastic material behavior of short �ber-reinforced composites is analyzed. This approach

combines the use of already established procedures for linear-elastic material behavior with

a homogenization method for plasticity. The obtained results reveal a complex correlation

structure, which is approximated with triangle and exponential correlation functions in�uenced

by the window size. Due to the dependence of the hyperelastic and plastic material parameters

on the �ber mass fraction, the strain-energy density function coe�cients are cross-correlated

with the yield strength of the composite. With this knowledge at hand, in a subsequent work

numerical simulations of tensile tests are conducted that cover the elastic and plastic domain

and include spatially distributed material properties.
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IV.1 Introduction

Short �ber-reinforced composites (SFRC) are thermoplastic materials that are reinforced by short �bers or

other particles. In contrast to the reinforcing elements, which usually show a brittle behavior, the thermoplastic

matrix materials are characterized by a distinctive plastic deformation when allowing �nite deformations

[26, 152, 153]. Hence, the consideration of elasto-plastic material behavior is important for the modeling of

SFRC to ensure an accurate prediction of the structural response under load. Furthermore, due to the spatial

distribution and probabilistic characteristics of the reinforcing elements the material properties vary also over

the spatial coordinates [57, 126, 141, 189]. Current modeling approaches address only one of these two aspects,

either the local �uctuation of the material parameters of linear-elastic material behavior is investigated, or a

modeling approach for the nonlinear material behavior is performed considering homogenization methods

[1, 22, 85, 118]. A common approach for an elasto-plastic material model is the multiplicative decomposition

of the deformation gradient as introduced by Lee [98] and Mandel [111]. Based on this approach, Simo et al.

derived the framework of the �nite strain elasto-plasticity by combining the multiplicative decomposition of

the deformation gradient with hyperelastic strain-energy density functions [159, 160, 162]. Since then, this

approach has been used widely, for example by Reina et al. [148, 149]. On the other hand, homogeneous

second-order random �elds are one possibility to model spatial distributed stochastic quantities like material

properties of reinforced materials [57, 126, 141, 189]. Combining the �nite strain elasto-plasticity with the use of

random �elds requires knowledge of the correlation structure of the strain-energy density function coe�cients

and the yield strength. When the correlation structure of the auto- and cross-correlation is established, random

�elds can be synthesized to represent the �uctuation of the nonlinear material properties on the component

level without distinct modeling of the microstructure. Initial investigations of the correlation structure of

material properties are provided by Sena et al. [157], which is limited to a checker board pattern. A second

analysis is provided by Rauter et al. [144] focusing on the linear elastic domain.

Hence, the overall objective of this study is the numerical simulation of components made of SFRC including

the spatial distribution of the plastic deformation described by the multiplicative decomposition of the deforma-

tion gradient in combination with hyperelastic material models for transversely isotropic symmetry. Therefore,

the modeling approach presented in previous work by the author [141], which includes the spatial distribution

of material properties but is limited to linear elasticity, will be extended to elasto-plastic material behavior.

The work is divided into two parts. The �rst part, presented here, deals with the analysis of the correlation

structure of the material properties. This knowledge is later used to generate second-order homogeneous

random �elds representing the spatial distribution of the material properties characterizing the elastic and

plastic material behavior. Afterwards, these random �elds are applied to a numerical model for the simulation

of tensile tests covering the elastic and plastic domain. To validate the results, numerically obtained values are

compared to experimental measurements in a subsequent work by the author [143].

Ensuing from this objective, the structure of the presented work is as follows. Section IV.2 holds the

main aspects of the theoretical background including the fundamentals of the multi-scale and probabilistic

modeling, �nite strain elasto-plastic material behavior, and the homogenization of plastic material properties.

In Section IV.3 the apparent overall material properties of the nonlinear material behavior are derived on

the mesoscale by numerical simulations. The results of the correlation analysis are presented in Section IV.4.

Finally, Section IV.5 gives a summary and conclusion.

IV.2 Theoretical background

This section comprises the basics concerning the stochastic framework, elasto-plastic material behavior and a

homogenization method for plastic material properties.
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IV.2.1 Stochastic framework

IV.2.1.1 Apparent material properties

All materials and especially reinforced materials show di�erent characteristics when observed at di�erent

scales. Reinforced materials are strongly heterogeneous on the microscale. However, for numerical simulations

on the component level, usually, homogeneous material properties are assumed. Therefore, the component is

characterized by e�ective material properties that replace the spatially distributed by homogeneous material

properties that are independent of the location. This scale transition from the microscale to the macroscale

is achieved by homogenization. The main concept behind this homogenization is the representative volume

element (RVE) [188], which was �rst introduced by Hill [70]. The RVE is a volume that consists of a statistically

su�cient number of inclusions, and therefore, represents the e�ective behavior of the material. This implies

that the size l of the inclusion or a microstructural characteristic must be much smaller than the size d of

the RVE [64]. In addition, the RVE must be much smaller than the component with the dimension L. This

separation of scales can be formulated as [28, 129, 190]

l ≪ d ≪ L, (IV.1)

where l is assigned to the microscale, L to the macroscale, and d to the edge length of the RVE.

To ensure the correct calculation of the e�ective material properties by numerical simulations Hill’s condition

[69] must be satis�ed, given by

⟨� ∶ �⟩ = ⟨�⟩ ∶ ⟨�⟩. (IV.2)

This condition expresses the equivalence between the local and global e�ective material properties of a

heterogeneous material [69, 70]. The e�ective material properties for an RVE are written as

⟨�⟩ = ℂe� ∶ ⟨�⟩ (IV.3)

and

⟨�⟩ = Se� ∶ ⟨�⟩, (IV.4)

where ⟨⋅⟩ gives the volume average

⟨⋅⟩ =
1
V ∫

V
⋅ d V . (IV.5)

Hence, the strains � and stresses � are microstructural quantities, whereas ⟨�⟩ and ⟨�⟩ are related to the

macroscopic scale. Furthermore, ℂe�
and Se�

are the e�ective sti�ness and compliance tensor [190].

Suitable transformation of Eqs. (IV.3) and (IV.4) links the macroscopic quantities ⟨�⟩ and ⟨�⟩ with the

boundary values [190]. For the resulting boundary value problem, di�erent types of boundary conditions can

be established. Applying the average strain theorem and the average stress theorem to Eqs. (IV.3) and (IV.4)

gives kinematic uniform boundary conditions of the kind �0 and static uniform boundary conditions of the

kind �0 [81].

Applying the boundary value problem on an RVE with simultaneous ful�llment of Hill’s condition leads to

three di�erent kinds of boundary conditions [66, 67]

u = �0 ⋅ x ∀x ∈ )V , (IV.6)

t = t0 ⋅ x ∀x ∈ )V , (IV.7)

and

[t − t0 ⋅ x] ⋅ [u − �0 ⋅ x] = 0 ∀x ∈ )V . (IV.8)

In the context of continuum mechanics Eq. (IV.6) gives a boundary condition of Dirichlet type, since pure

kinematic boundary conditions with the constant macroscopic strain �0 are de�ned on the complete surface,
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whereas Eq. (IV.7) is a boundary condition of Neumann type, because pure traction boundary conditions,

with a constant macroscopic stress t0 are de�ned on the complete surface. A combination of these boundary

condition types is given in Eq. (IV.8). For an RVE, the obtained material properties based on these boundary

conditions are equal and hence, the material is assumed to be homogeneous. However, if the volume is smaller

than the RVE one speaks of apparent overall properties [66, 67, 81]. In this case the extraction on the mesoscale

is referred to as a statistical volume element (SVE) [130]. To determine the material properties for an SVE, the

same procedure is used as for the e�ective material properties. However, now the results depend on the size of

the extracted volume and the boundary conditions.

IV.2.1.2 Correlation

Combining the approach of apparent overall material properties with homogeneous second-order random �elds

on the component level enables one to model the structural behavior of inhomogeneous material properties

induced by the probabilistic characteristics of the microstructure without the need of a scale transition [129].

To synthesize these homogeneous second-order random �elds, the correlation structure must be known, which

describes the point-to-point information of a stochastic quantity. For a continuous random �eld Z(!, x) this is

described by the covariance de�ned as

Cov[Z1, Z2] = E[Z1Z2] − �1�2. (IV.9)

Here, Z1 and Z2 are observations of the random �eld at di�erent locations xi , E is the expectation operator, and

�1 and �2 are the expected values of the random variables Z1 and Z2, respectively. Usually, the dimensionless

correlation parameter �12 is used, which is obtained by dividing Eq. (IV.9) by the standard deviations �i of the

random variables. The standard deviation is de�ned as the square root of the variance, which is the second

central moment

�Z(x) =
√
Var[Z(x)]. (IV.10)

Hence, the dimensionless correlation parameter reads

�12 = �Z1,Z2 =
Cov[Z1, Z2]

�1�2
. (IV.11)

If the random variables Z1 and Z2 belong to the same random �eld Eqs. (IV.9) and (IV.11) give the auto-

covariance and auto-correlation of the random �eld, otherwise it is referred to as the cross-covariance and

cross-correlation, respectively. However, for most applications the random �eld is given by a discrete number

of realizations !i , because the probability density function is unknown. In this case, instead of the expected

value the spatial average is used

Z(x) =
1
N

N
∑
i=1

Z(!i , x) (IV.12)

and rewriting the variance leads to

s2(x) = Z(x)2 − Z(x)2. (IV.13)

Consequently, the dimensionless correlation parameter for a discrete number of realizations !i is calculated

by evaluating

�12 = �Z1,Z2 =
[Z1 − Z1][Z2 − Z2]

s1s2
. (IV.14)

For the synthesizing the random �elds, the dimensionless correlation parameter is approximated by a

correlation function. Examples for typically used correlation functions are the exponential correlation function

[48, 128, 169]

�(�1, �2) = exp
− |�1|
b1
− |�2|
b2 , (IV.15)
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the triangle correlation function

�(�1, �2) =

{
(1 −

|�1 |
b1 )(1 −

|�2 |
b2 ) if |�1| ≤ b1, |�2| ≤ b2

0 else

, (IV.16)

and the Gaussian correlation function

�(�1, �2) = exp
−(

�1
b1 )

2
−(

�2
b2 )

2

. (IV.17)

Here, b1 and b2 are the correlation lengths with respect to the coordinate �1 and �2, respectively.The functions

given in Eqs. (IV.15) and (IV.16) have the advantage that they lead to analytical solutions for the eigenvalue

problem, that needs to be solved when using the Karhunen-Loève expansion for the generation of random

�elds for a rectangular domain [48, 136, 169]. One technique to extract the relation between the information at

di�erent locations xi is the moving window method [8, 51, 156]. Within this method a window of prede�ned

size is used to extract segments of a larger microstructure. Since the material parameters of an SVE are assigned

to the spatial coordinates and are no longer identical at each material point, the local �uctuation of the material

properties can be derived.

IV.2.2 Elasto-plastic material behavior

The modeling approach of plasticity in combination with �nite deformation is based on the multiplicative

decomposition of the deformation gradient, which is introduced be Lee [98] and Mandel [111]

F = Fel ⋅ Fpl. (IV.18)

Here, Fel holds the elastic and Fpl the plastic deformation, respectively. Based on this approach, Simo et al.

derived the framework of the �nite strain elasto-plasticity by combining the multiplicative decomposition

of the deformation gradient with hyperelastic strain-energy density functions [159, 160, 162]. Hence, for the

material modeling of SFRC a strain-energy density function is required that considers transversely-isotropic

material behavior. Usually these potentials are divided into two parts, one representing the isotropic response

Ψiso and a second part for the transversely-isotropic behavior Ψtrn

Ψ = Ψiso + Ψtrn. (IV.19)

In addition to the strain invariants for isotropic behavior I1, I2, and I3, for the description of transversely-

isotropic material behavior the pseudo-invariants I4 and I5 are required. For a symmetric second-order tensor

B these two are de�ned by

I4 = a ⋅ B ⋅ a and I5 = a ⋅ B2 ⋅ a, (IV.20)

where the vector a gives the �ber orientation of the material.

The isotropic behavior is mostly given by well-known potentials of Neo-Hooke or Mooney-Rivlin [7, 10,

120, 151]. In this work, the Neo-Hooke potential in terms of the right Cauchy-Green tensor C is used [10]

ΨNeo(C) =
1
2
Λ(J − 1)2 − � ln(J ) +

1
2
� (tr C − 3) . (IV.21)

Here, J is the Jacobian determinant and Λ and � are the Lamé coe�cients. This potential already leads to

a strain-dependent elasticity tensor and therefore, induces nonlinear material behavior. The corresponding

elasticity tensor reads

ℂNeo = ΛJ (2J − 1)C−1 ⊗ C−1 + 2 [� − ΛJ (J − 1)] G, (IV.22)
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with

Gijkl = (C−1)ik(C−1)jl . (IV.23)

For the representation of transversely-isotropic material behavior there exist several strain-energy density

functions [87, 124, 140, 147]. However, most of these potentials are either not fully nonlinear, because the

resulting sti�ness tensor is independent of the deformation [87, 147] or include more than �ve independent

material parameters [124, 140]. Therefore, in this study the potential given by Bonet et al. [16] is used, because

it is fully nonlinear, but uses only �ve independent material parameters when combining the transversely-

isotropic part with the isotropic potential given in Eq. (IV.21). The transversely-isotropic part of the potential

reads

Ψtrn(C) = [� + � (tr C − 3) + 
(I4 − 1)] (I4 − 1) −
1
2
�(I5 − 1), (IV.24)

where � , � , and 
 are independent material parameters. The use of this strain-energy density function in

combination with Eq. (IV.21) leads to a fully nonlinear representation of the material, since both parts of the

potential result in a strain-dependent elasticity tensor. Based on the full potential the elasticity tensor for the

transversely-isotropic material as a function of the deformation is given by

ℂfull = ΛJ (2J − 1)C−1 ⊗ C−1 + 2 [� − ΛJ (J − 1)] G
+ 8
a ⊗ a ⊗ a ⊗ a + 4�(a ⊗ a ⊗ C−1 + C−1 ⊗ a ⊗ a) − �A − 4�(I4 − 1)G, (IV.25)

where

Aijkl = aial�jk + �ikajal . (IV.26)

To determine the �ve material parameters Λ, �, � , � , and 
 of the strain-energy density function the elasticity

tensor is linearized by evaluating at zero strain for a �ber orientation in x-direction. In matrix notation this

leads to

Cfull =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

8(
 + �) + Λ + 2� − 2� 4� + Λ 4� + Λ 0 0 0
4� + Λ Λ + 2� Λ 0 0 0
4� + Λ Λ Λ + 2� 0 0 0
0 0 0 2� 0 0
0 0 0 0 2� − � 0
0 0 0 0 0 2� − �

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (IV.27)

which holds the transversely-isotropic symmetry.

IV.2.3 Homogenization of plastic material properties

To derive the apparent overall plastic material properties a homogenization method is used, that allows one to

determine, the yield function and subsequently the yield strength of a reinforced composite [102]. In this case

the e�ective local potential of the phase r for a nonlinear composite is expressed as

u(r)(x, �) = stat
�0,k0≥0

{
u0(x, �) − V (r)(x, �0, k0)

}
. (IV.28)

Here, u0 is the local potential of a linear comparison composite [138], which has the same microstructure

as the nonlinear composite, and �0 and k0 are the corresponding shear and bulk moduli, respectively. The

functions V (r)(�0, k0) are so called error functions given by [139]

V (r)(x, �0, k0) = stat�

{
u0(x, �) − u(r)(x, �)

}
. (IV.29)
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In a next step the macroscopic potential of the composite is obtained by

Ũ (�) = min
�∈ ⟨u(x, �)⟩ = stat

�∈ ⟨u(x, �)⟩ , (IV.30)

where  = {�, div � = 0 in Ω, ⟨�⟩ = �} . (IV.31)

Introducing Eq. (IV.28) in Eq. (IV.30) and interchanging the stationary operators leads to the de�nition of the

e�ective macroscopic potential of the nonlinear composite. Considering a composite consisting of two phases,

with constant material properties and a volume fraction of c(r) results in

Ũ (�) = stat
�(s)0 ,k(s)0 ≥0

{

Ũ0(�) −
2
∑
r=1

c(r)V (r)(�0, k0)

}

, (IV.32)

with Ũ0 being the e�ective potential of the linear comparison composite.

Applying the procedure to SFRC both phases are assumed to be isotropic. Furthermore, the plastic deforma-

tion is exclusively assigned to the matrix material, since the reinforcing �bers show brittle fracture after linear

elastic behavior. Therefore, �rst, the stress potential used for both phases, is given by

U (r)(�) =
1

2k(r)
�2m + �

(r)(�e), (IV.33)

where �m is the hydrostatic stress component and the function �(r)(�e) gives the distortional response of the

corresponding phase, which depends on the equivalent shear stress �e . For the linear-elastic inclusion phase

(r = 2) a linear distortional response is assumed

�(2)(�e) =
1

2�(2)
� 2e . (IV.34)

In contrast to this the matrix material (r = 1) is characterized by a plastic deformation for stresses above the

yield strength in shear � (1)y

�(1)(�e) =
� 2e
2�(1)

+
(� (1)y )2

2�(1)

{
2

n + 1 [(
�e
� (1)y )

n+1

− 1
]
−
[(

�e
� (1)y )

2

− 1
]

}

H(�e − � (1)y ). (IV.35)

Here, H is the Heaviside function and n gives the hardening exponent. The dilational response for both

phases is assumed to be linear. In conclusion, the SFRC is modeled as a two-phase composite consisting of

an elasto-plastic matrix material with power-law hardening behavior and linear-elastic inclusions. For the

hardening coe�cient 1 ≤ n ≤ ∞ holds, where n = 1 indicates linear-elastic and n = ∞ rigid-ideally plastic

behavior, respectively [82].

Following the procedure introduced by Li et al. [102] the error functions are bounded only in case k(1)0 =
k(1), k(2)0 = k(2), and �(2)0 = �(2) hold, which is simultaneously the best choice considering Eq. (IV.32). Selecting

these values the error functions reduces to

V (1)(x, �(1)0 , k(1)0 ) = stat�e>0

{
� 2e
2�(1)0

− �(1)(�e)

}

(IV.36)

and

V (2) = 0, (IV.37)
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respectively, which enables one to rewrite the e�ective potential from Eq. (IV.32)

Ũ (�) = stat
�(1)0 ≥0

{
Ũ0(�) − c(1)V (1)(�(1)0 )

}
. (IV.38)

At this stage not only the distortional response �(1)(�e) but also the error function V (1)
can be separated

for the linear (�(1)0 ≥ �(1)) and the nonlinear case (�(1)0 < �(1)). With this, the convexity of V (1)
in 1/�(1)0 , and the

assumption of the monotone increasing behavior of Ũ0 with 1/�(1)0 it can be shown that the e�ective potential

is quadratic. Subsequently, the composite shows a linear response if

)Ũ0
)�(1)0

(�)
|||||�(1)0 =�(1)

+
c(1)

2 (
� (1)y

�(1))

2

> 0 (IV.39)

is satis�ed and in case

)Ũ0
)�(1)0

(�)
|||||�(1)0 =�(1)

+
c(1)

2 (
� (1)y

�(1))

2

< 0 (IV.40)

holds the composite shows ductile deformation. Following these two conditions Li et al. [102] proposed a yield

function given by

Φ(�) = −
[
)Ũ0
)�(1)0

(�)
||||�(1)0 =�(1)

+
c(1)

2 (
� (1)y

�(1))

2

]
. (IV.41)

Since the inclusions show linear-elastic material behavior, the yield function only depends on the material

properties of the matrix material. Furthermore, it is independent of the hardening exponent. The initial yield

strength is derived by solving Φ = 0, which requires only linear-elastic simulations, because the derivative of

the e�ect potential Ũ0 with respect to �(1) is based on the linear comparison composite. Beside this, the yield

strength shows anisotropic behavior.

IV.3 Determination of the apparent material properties

IV.3.1 Methodology

To simulate the elasto-plastic behavior of a component made of SFRC the parameters of the strain-energy

density function and the yield strength are required, since the matrix is assumed to show ideal-plastic behavior.

Hence, the apparent values of these material properties are derived from arti�cial microstructures. This is done

separately for the hyperelastic and plastic material properties. For the hyperelastic properties, the parameters

of the strain-energy density function are determined based on numerically obtained sti�ness matrices, which

requires a linearization at zero strain. However, due to the reduction to a two-dimensional simulation, the

sti�ness matrix holds only four independent values. Therefore, an additional equation is required to receive

unique solutions for all �ve independent coe�cients of the strain-energy density function. Because of that, �rst,

the engineering constants are calculated from the the compliance matrix obtained by numerical simulation.

Due to the plane strain assumption the elements of the compliance matrix are a function of all �ve independent

engineering constants E1, E2, �12, �23, and G12 of a transversely-isotropic material.

This problem is solved by utilizing the �ber volume fraction. Since, the arti�cial microstructures are based

on a binary image [141] the �ber volume fraction of each extraction is derived by dividing the number of

pixels representing �bers by the number of all pixels of the extraction. With this information at hand the �ber

volume fraction of the numerical model is known and the Poisson’s ratio �23 can be approximated by using

the Halpin-Tsai material model [61, 62]. Now it is possible to determine the remaining constants E1, E2, �12,
and G12. With all this information at hand, the sti�ness matrix of transversely isotropic material behavior

is established before using its elements to compute the parameters of the strain-energy density function by
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Component E � �
GPa - kg/m3

Glass 72 0.22 2500

PBT 2.6 0.41 1300

Table IV.1: Material properties.

evaluating Eq. (IV.27). A detailed summary of the used framework is provided in Appendix IV.A.

For the determination of the yield strength, the homogenization procedure presented in Section IV.2.3 is

used. To evaluate the yield condition

[
)Ũ0
)�(1)0

(�)
||||�(1)0 =�(1)

+
c(1)

2 (
� (1)y

�(1))

2

]
= 0 (IV.42)

a linear-elastic numerical model of the linear comparison composite is solved for di�erent values of �(1),
characterizing the matrix material. Based on the obtained derivative of the e�ective potential Ũ0 the apparent

yield strength of the microstructure can be calculated. It is equal to the stress for which Eq. (IV.42) is valid.

IV.3.2 Numerical model

In the work of Rauter et al. [141] a modeling approach is introduced to determine the apparent material

properties of SFRC for linear-elastic material behavior. This procedure is adapted to an elasto-plastic material

response as shown below. As done by Rauter et al. [141] based on the probabilistic information of the

�ber length, �ber diameter, and �ber orientation distribution 500 arti�cial microstructures with a size of

2500 µm×2500 µm are generated. The center coordinates of each �ber are provided by a Monte Carlo sampling,

whereas the �ber properties are sampled with respect to their individual probability density function, which are

taken from Günzel [58]. Next, for each microstructure 33 windows of the size 250 µm×250 µm, 500 µm×500 µm,

and 750 µm × 750 µm are extracted in accordance with Figure IV.1, see also previous work by the author [141].

The distance between the windows is equal to a quarter of the window size in vertical and horizontal direction.

Along the diagonal, the distance is

√
2/4 times the window size. This ensures the ability to determine the

two-dimensional correlation function accurately. Next, the microstructures are translated into an array, which

contains the material properties for every point. Finally, the material properties of the microstructure are

passed to the integration points of the numerical model. For both constituents, only linear-elastic material

behavior is required. The corresponding material parameters of Polybutylene terephthalate (PBT) matrix

material and of glass are given in Table IV.1. The �ber mass fraction is set to 30 % (PBT GF 30).

The numerical model is generated in accordance with the �ndings in Rauter et al. [141]. For the determination

of the strain-energy density function coe�cients and the yield strength, the same model is used. Since this

two-dimensional model is a cross-section of a three-dimensional tensile test specimen, a plane strain state

is assumed. This is reasonable, because the cross-section of SFRC manufactured by mold injection shows a

layered structure [41, 43, 154]. In the middle is a core layer, which is characterized by an out-of-plane �ber

orientation, that induces a resistance of the tensile test specimen against shrinking. To include this e�ect

without an explicit modeling of this layer, the plane strain assumption is used. Therefore, only the shell layers

are considered as shown by Rauter et al. [141].

IV.3.3 Results

In this section the results for the parameters of the strain-energy density function, the yield strength, and the

correlation analysis are presented.
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Figure 2. Stress strain curve for PBT GF 30
under uniaxial loading.

3.3 Results

In this section the results for the parameters of the strain energy density function, the yield
strength and the correlation analysis are presented.

3.3.1 Hyperelasticity

In Tab. ?? and Tab. ?? the mean value and the standard deviation for the parameters of
the strain energy density function are given. Since the numerical simulation are performed by
applying pure displacement boundary conditions the mean values show a decreasing tendency
with increasing windowsize. Furthermore, the standard deviation increases. These observations
meet the expectation simulations on the meso scale. In addition the Young’s Modulus in hor-
izontal direction is provided to validate the results with experimental investigations of tensile
tests performed with specimens made of PBT GF 30. The experimentally obtained mean value
based on ?? measurements is 10.25GPa, which fits very well to the numerical values. Hence,
the results for the parameters of the strain energy density function appears to be reasonable.

Table 2. Mean values strain density function coefficients.

Window size λ [GPa] µ [GPa] α [GPa] β [GPa] γ [GPa] E11 [GPa]
250 µm 5.62 1.34 -1.16 -0.20 1.35 11.9
500 µm 5.43 1.24 -1.13 -0.14 1.19 10.5
750 µm 5.38 1.20 -1.10 -0.13 1.13 10.0

7

Figure IV.1: Moving window method applied to the arti�cial microstructure. All measures in µm.

Sample Λ � � � 
 E11
GPa GPa GPa GPa GPa GPa

Mean

250 µm 5.62 1.34 1.16 -0.20 1.35 11.9

500 µm 5.43 1.24 1.13 -0.14 1.19 10.5

750 µm 5.38 1.20 1.10 -0.13 1.13 10.0

Experiment - - - - - 9.75

250 µm 0.492 0.192 0.239 0.081 0.475 3.85

Standard- 500 µm 0.224 0.097 0.131 0.033 0.244 1.96

deviation 750 µm 0.140 0.064 0.090 0.020 0.148 1.26

Experiment - - - - - 0.27

Table IV.2: Mean values and standard deviations of the strain density function coe�cients.

IV.3.3.1 Hyperelasticity

In Table IV.2 the mean value and the standard deviation for each parameter of the strain-energy density function

is given. Since the numerical simulations are performed by applying pure displacement boundary conditions

the mean of the absolute values show a decreasing tendency with increasing window size. Furthermore, the

standard deviation increases with an decreasing window size, as expected . These observations meet the

expectation of simulations on the mesoscale. In addition, the Young’s modulus in horizontal direction is

provided to validate the results with experimental investigations of tensile tests performed with specimens

made of PBT GF 30. The experimentally obtained mean value based on 13 specimens is 9.75GPawith a standard

deviation of 0.27GPa. A comparison with the numerically obtained values shows, that for all window sizes the

numerical values cover the experimental results. Hence, the results for the parameters of the strain-energy

density function appears to be reasonable.

IV.3.3.2 Plasticity

In Table IV.3 the mean value and standard deviation of the obtained yield strength is given for each window size.

For a validation of the results, Figure IV.2 gives the strain-stress curve for a tensile test specimen made of PBT
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Sample Mean yield strength Standard deviation

MPa MPa

250 µm 151.7 57.1

500 µm 130.3 24.2

750 µm 125.7 14.7

Table IV.3: Results yield strength.
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Figure IV.2: Stress strain curve for PBT GF 30 under uniaxial loading in melt �ow direction, values taken from

the data sheet of the manufacturer [21].

GF 30, taken from the data sheet of the manufacturer [21]. Assuming ideal plastic behavior, the experimentally

obtained yield strength �ts very well with the numerical results for the di�erent window sizes.

Furthermore, in Figure IV.3 the spatial distribution of the yield strength is shown. First, Figure IV.3a gives

an exemplary microstructure of the size 2500 µm × 2500 µm, where the center points of each extracted window

with an edge length of 750 µm is indicated. In the context of SFRC the �ber mass fraction 'm is commonly

used. It can be computed from the �ber volume fraction by evaluating

'm =
�m'

�f ' + �m(1 − ')
. (IV.43)

Subsequently, in Figure IV.3b and Figure IV.3c for each of these windows the �ber mass fraction and the

resulting yield strength are provided, respectively. Since the reinforcing �bers are modeled with linear elastic

material behavior and hence, they do not show any plastic deformation, it is expected that with an increasing

amount of �bers in an extracted window the yield strength increases. This expectation can be validated by

Figure IV.3b and Figure IV.3c. Windows with a higher �ber mass fraction show a signi�cantly increasing yield

strength. Based on the comparison with experimental results as well as the correlation between the �ber mass

fraction and the obtained yield strength, the homogenization procedure appears to be applicable to SFRC.

IV.4 Correlation

IV.4.1 Overall behavior

For the analysis of the correlation between the coe�cients of the strain-energy density function and the yield

strength �rst, in Figure IV.4 the parameters for a window size of 750 µm are plotted against each other. If the

two parameters of a plot are not correlated, the realizations give a random cloud of points. On the other hand,
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Figure IV.3: Example for the analysis of the yield strength for a window size of 750 µm.

the Λ − 
 parameter pair shows a distinct correlation, which is indicated by the alignment of the individual

points on the diagonal. The stronger the correlation, the more pronounced is the concentration of the points,

until they all lie on a straight line, as can be seen for the auto-correlations. One further example for a strong

cross-correlation is the � − � parameter pair. This strong correlation meets the theoretical framework of the

hyperelastic strain-energy density function. In Appendix IV.A the relation between the strain-energy density

function coe�cients and the components of the elasticity tensor is given. Following Eq. (IV.48), the parameters

� and � are directly linked to each other. The same holds for the parameter group of 
 , �, Λ, � , and � . Since 

is a function of �, Λ, � , and � , these parameters should be signi�cantly correlated to 
 . This is con�rmed in

Figure IV.4. Finally, Figure IV.4 shows that the symmetry �ij = �ji required by the de�nition is ful�lled and

that the coe�cients of the strain-energy density function and the yield strength are coupled by a complex

correlation structure.

As already shown by Rauter et al. [141] for the linear elastic material parameters, the correlation depends

on the window size. First, due to the de�nition of the di�erent correlation functions, as given in Eqs. (IV.15) to

(IV.17), the correlation length is bounded to the window size. However, not only the correlation length bi but

also the correlation strength given by the cross-correlation parameter a is in�uenced by the window size. In

Figure IV.5 three di�erent scenarios are depicted, that are obtained by evaluating Eq. (IV.11) for each window

size. For better comparability, the coordinates �1 and �2 are normalized by the window size. The parameter

pair 
 − � shows an independent cross-correlation strength with respect to the window size. Furthermore,

the coe�cient a is close to one for completely overlapping windows, which indicates a very pronounced

cross-correlation. This also meets the distribution of the realizations in Figure IV.4, where the points are

strongly aligned on the diagonal.

In the middle, the coe�cient pair � − � is given. Here, the cross-correlation shows a signi�cant in�uence

of the window size on the parameter a. With an increasing window size, the parameter a also increases. In

contrast to this, the parameter pair � and �y show the opposite behavior. With an increasing window size

the parameter a decreases, which leads to a reduction of the correlation. This behavior is also observed for

linear-elastic material properties, as shown in previous work [141]. Furthermore, in this case the value of the

dimensionless correlation parameter is negative, which is induced by the di�erent sign of the parameters �
and �y . As given in Table IV.2 the values of � are negative, whereas the values of �y are positive.

IV.4.2 Correlation length

In a next step the correlation length is determined for each parameter pair. Therefore, �rst, the three di�erent

correlation functions given by Eqs. (IV.15) to (IV.17) are �tted with the calculated dimensionless correlation

parameter. Based on the coe�cient of determination R2, the best �t is selected to analyze the correlation

129



Paper IV Correlation analysis of the elastic-ideal plastic material behavior of SFRC

4.5 5.0 5.5 6.0 6.5
4.5

5.0

5.5

6.0

6.5

λ
[G

Pa
]

0.8 1.0 1.2 1.4 1.6
4.5

5.0

5.5

6.0

6.5

0.5 1.0 1.5
4.5

5.0

5.5

6.0

6.5

−0.05−0.15−0.25
4.5

5.0

5.5

6.0

6.5

0.5 1.0 1.5 2.0
4.5

5.0

5.5

6.0

6.5

0.05 0.10 0.15 0.20
4.5

5.0

5.5

6.0

6.5

4.5 5.0 5.5 6.0 6.5
0.8

1.0

1.2

1.4

1.6

µ
[G

Pa
]

0.8 1.0 1.2 1.4 1.6
0.8

1.0

1.2

1.4

1.6

0.5 1.0 1.5
0.8

1.0

1.2

1.4

1.6

−0.05−0.15−0.25
0.8

1.0

1.2

1.4

1.6

0.5 1.0 1.5 2.0
0.8

1.0

1.2

1.4

1.6

0.05 0.10 0.15 0.20
0.8

1.0

1.2

1.4

1.6

4.5 5.0 5.5 6.0 6.5
0.5

1.0

1.5

α
[G

Pa
]

0.8 1.0 1.2 1.4 1.6
0.5

1.0

1.5

0.5 1.0 1.5
0.5

1.0

1.5

−0.05−0.15−0.25
0.5

1.0

1.5

0.5 1.0 1.5 2.0
0.5

1.0

1.5

0.05 0.10 0.15 0.20
0.5

1.0

1.5

4.5 5.0 5.5 6.0 6.5

−0.05

−0.15

−0.25

β
[G

Pa
]

0.8 1.0 1.2 1.4 1.6

−0.05

−0.15

−0.25
0.5 1.0 1.5

−0.05

−0.15

−0.25 −0.05−0.15−0.25

−0.05

−0.15

−0.25
0.5 1.0 1.5 2.0

−0.05

−0.15

−0.25
0.05 0.10 0.15 0.20

−0.05

−0.15

−0.25

4.5 5.0 5.5 6.0 6.5
0.5

1.0

1.5

2.0

γ
[G

Pa
]

0.8 1.0 1.2 1.4 1.6
0.5

1.0

1.5

2.0

0.5 1.0 1.5
0.5

1.0

1.5

2.0

−0.05−0.15−0.25
0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

0.05 0.10 0.15 0.20
0.5

1.0

1.5

2.0

4.5 5.0 5.5 6.0 6.5
0.05

0.10

0.15

0.20

λ [GPa]

σ
y

[G
Pa

]

0.8 1.0 1.2 1.4 1.6
0.05

0.10

0.15

0.20

µ [GPa]
0.5 1.0 1.5

0.05

0.10

0.15

0.20

α [GPa]
−0.05−0.15−0.25

0.05

0.10

0.15

0.20

β [GPa]
0.5 1.0 1.5 2.0

0.05

0.10

0.15

0.20

γ [GPa]
0.05 0.10 0.15 0.20

0.05

0.10

0.15

0.20

σy [GPa]

Figure IV.4: Correlation of the parameter pairs for a window size of 750 µm.
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Figure IV.5: Dimensionless correlation parameters �
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� , and ���y for each window size.
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Figure IV.6: Cross-correlation coe�cient a for all window sizes.

length in a second step. The results of R2 for each window size and each correlation function are provided

in Appendix IV.B. The results of the curve �t for the auto-correlation indicate that the triangle correlation

function is the best �t for the parameters Λ, � , 
 , and �y , whereas the exponential correlation function �ts the
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Figure IV.7: Analysis of the correlation length for each auto- and cross-correlation.

parameters � and � best. Consequently it is expected that the exponential correlation function is the best option

for the cross-correlation of these two parameters. The remaining parameter pairs should be approximated

best by triangle cross-correlation function, because the corresponding auto-correlation functions of these

parameters are given by a triangle correlation function, which is con�rmed by the R2 values of the performed

curve �ts given in Appendix IV.B.
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For a detailed analysis of the auto- and cross-correlation, Figures IV.6 and IV.7 illustrate the results of the

cross-correlation parameter a and the correlation lengths, respectively. The coe�cient a describes the strength

of the correlation between two parameters. Hence, for small absolute values of a the parameters are not

correlated, which results in a random cloud of points in the corresponding diagram of Figure IV.4. For each

window size and each parameter pair, the mean value and the 95% con�dence interval is given. The dashed

lines in Figure IV.6 indicate a cross correlation coe�cient of |a| = 0.5. First, the dependence of a on the window

size, as discussed before, is observable. Furthermore, the parameter pairs Λ − � and � − � are only very weakly

cross-correlated, which is con�rmed in Figure IV.4. For the remaining parameters, the correlation lengths

b1 and b2 are calculated for both the auto- and cross-correlation, see Figure IV.7. Furthermore, dashed and

dotted lines are added to indicate the window size lw and a correlation length of 0.4lw . As done before, for each

parameter pair the mean value and the 95% con�dence interval are plotted. The results show, that with an

increasing window size, the distance between b1 and b2 decreases. Furthermore, for an approximation with the

triangle function the values converge to the edge length of the analyzed window. For the exponential function

the value is 0.4lw . However, it is important to note that this correlation analysis gives only the behavior of the

correlation with respect to the window size and hence, is a qualitative statement. Since the correlation length

can be interpreted as an additional independent material parameter its value, which is required to synthesize

random �elds for the representation of the spatial distributed material parameters, needs to be derived from

experimental investigations.

IV.5 Summary and Conclusion

In this work an approach is presented to extract the correlation structure of the �nite strain elasto-plastic

material properties of SFRC given by the �ve independent parameters of the transversely-isotropic strain-

energy density function and the yield strength. Due to the linearization of the strain-energy density function

at zero strain and the use of a homogenization procedure for the determination of the yield strength only

linear-elastic simulations are required to obtain the apparent overall material properties for extractions of

the microstructure at di�erent locations. The obtained results are validated by experimental data, taken from

literature. Furthermore, the expected link between the �ber mass fraction and the yield strength is con�rmed.

With this data the dimensionless correlation parameter is calculated for the auto- and cross-correlation

between the parameters of the strain-energy density function and the yield strength. It is shown, that the

parameters are strongly correlated. Furthermore, the correlation shows a complex dependence on the window

size. There are parameter pairs that are not in�uenced by the size of the microstructural extractions, others

show a signi�cant increasing and decreasing behavior, respectively. This is also supported by the results of the

cross-correlation parameter a.

Analyzing the development of the correlation function and the corresponding correlation lengths, reveals

that most correlations are described best by a triangle function, only two auto-correlation functions and

the corresponding cross-correlation are assigned to exponential correlation functions. This in�uences also

the results of the correlation lengths due to the di�erent function de�nitions. The results show, that for an

increasing window size the correlation lengths bi converge to the window size lw for a triangle function and to

0.4lw for an exponential correlation function, respectively. Therefore, only one value needs to be determined

based on experimental data to obtain the di�erent correlation lengths for the generation of second-order

random �elds.

Summarizing, it can be concluded that the presented approach is suitable to derive the correlation structure

for �nite strain elasto-plastic material description of SFRC. The results of the correlation analysis are deployed

in a subsequent study [143]. With the information about the correlation structure at hand second-order random

�elds are synthesized to represent the spatial distribution of the hyperelastic and plastic material properties of

tensile tests specimens made of SFRC and hence, incorporate the probabilistic nature of the microstructure on

the component level.
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IV.A Determination of the apparent hyperelastic material properties

Due to the �ve independent components of the elasticity tensor, a reduction of the material parameters

automatically violates the symmetry properties induced by transversely isotropic behavior. Despite the fact,

that the reduction of the elasticity tensor to a two-dimensional representation under plane strain assumption

is independent of C44, it is still a function of all �ve independent engineering constants. The compliance matrix

for plane strain assumption is calculated from the three-dimensional representation by

Sstrain =
⎡
⎢
⎢
⎢
⎣

S11 − S213
S22 S12 − S12S13

S22 0
S12 − S12S13

S22 S22 − S223
S22 0

0 0 S66

⎤
⎥
⎥
⎥
⎦

, (IV.44)

where the elements of the three-dimensional compliance matrix can be derived directly from the engineering

constants. As mentioned before, due to the plane strain assumption all �ve independent engineering constants

are required to obtain the compliance matrix for a plane strain assumption. The following relations hold

S11 =
1
E1

S12 = −
�21
E2

= −
�12
E1

S22 =
1
E2

S23 = −
�23
E2
. (IV.45)

Since the two-dimensional modeling does not hold any information about the material properties in thickness

direction, the out-of-plane Poisson’s ratio �23 is determined following the microstructural characteristics of

the material by using the material model of Halpin-Tsai [61, 62]. If �23 is known the remaining engineering

constants can be calculated by evaluating

Sstrain

11 =
1
E1
−
�221
E2

Sstrain

12 = −
�21
E1

−
�21�23
E2

Sstrain

22 =
1
E2
−
�223
E2

Sstrain

66 =
1
G12

(IV.46)
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Window size Correlation function Λ � � � 
 �y

250 µm
Exponential 0.89 0.90 0.90 0.90 0.90 0.90

Triangle 0.96 0.76 0.45 0.96 0.98 0.97

Gaussian 0.95 0.80 0.82 0.92 0.96 0.93

500 µm
Exponential 0.84 0.89 0.87 0.88 0.87 0.91

Triangle 0.96 0.74 0.36 0.98 0.98 0.96

Gaussian 0.96 0.81 0.79 0.94 0.96 0.94

750 µm
Exponential 0.79 0.89 0.81 0.85 0.86 0.91

Triangle 0.92 0.72 0.37 0.95 0.97 0.95

Gaussian 0.92 0.81 0.71 0.92 0.94 0.94

Table IV.4: Results R2 curve �t auto-correlation.

which leads to

E1 =
1

Sstrain

11 + �221
E2

E2 =
1 − �223
Sstrain

22

G12 =
1

Sstrain

66
�21 = −

Sstrain

12 E2
1 + �23

. (IV.47)

To derive the coe�cients of the strain-energy potential in a �nal step �rst the sti�ness tensor for a three-

dimensional representation is determined based on the known engineering constants. Afterwards the coe�-

cients can be calculated by evaluating

Λ = C23 � =
1
2
(C22 − Λ)

� = C66 − 2� � =
1
4
(C12 − Λ) 
 =

C11 − 2� − Λ − 2�
8

− �. (IV.48)

IV.B Results of the coe�cient of determination

In Tables IV.4 and IV.5 the results of R2 for the auto-correlation and the cross-correlation curve �ts are provided,

respectively. There are no values of R2 given for the cross-correlation of the parameter pair Λ − � , because

they are not connected by a cross-correlation.
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Parameter 250 µm 500 µm 750 µm
Expo. Tria. Gaus. Expo. Tria. Gaus. Expo. Tria. Gaus.

Λ

� 0.87 0.88 0.85 0.88 0.87 0.89 0.86 0.89 0.88

� 0.90 0.96 0.95 0.87 0.97 0.96 0.84 0.95 0.92


 0.91 0.97 0.97 0.88 0.98 0.96 0.85 0.95 0.93

�y 0.84 0.92 0.93 0.86 0.94 0.93 0.83 0.93 0.92

�

� 0.60 0.67 0.63 0.82 0.75 0.83 0.82 0.75 0.75

� 0.91 0.95 0.91 0.90 0.97 0.94 0.85 0.93 0.89


 0.93 0.97 0.96 0.90 0.98 0.95 0.88 0.96 0.94

�y 0.89 0.97 0.96 0.88 0.97 0.95 0.88 0.96 0.95

�
� 0.12 0.10 0.11 0.73 0.76 0.74 0.75 0.84 0.82


 0.75 0.81 0.78 0.89 0.94 0.93 0.88 0.95 0.93

�y 0.83 0.86 0.83 0.88 0.94 0.92 0.87 0.93 0.92

�

 0.91 0.97 0.97 0.88 0.97 0.96 0.86 0.95 0.94

�y 0.85 0.92 0.93 0.85 0.93 0.92 0.83 0.93 0.92


 �y 0.88 0.97 0.97 0.89 0.98 0.96 0.88 0.97 0.96

Table IV.5: Results R2 curve �t cross-correlation.
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Abstract: For the numerical simulation of components made of short �ber-reinforced composites the

correct prediction of the deformation including the elastic and plastic behavior and its spatial

distribution is essential. When using purely deterministic modeling approaches the information

of the probabilistic microstructure is not included in the simulation process. One possible

approach for the integration of stochastic information is the use of random �elds. In this study

numerical simulations of tensile test specimens are conducted utilizing a �nite deformation

elastic-ideal plastic material model. A selection of the material parameters covering the elastic

and plastic domain are represented by cross-correlated second-order Gaussian random �elds

to incorporate the probabilistic nature of the material parameters. To validate the modeling

approach tensile tests until failure are carried out experimentally, that con�rm the assumption

of spatially distributed material behavior in both the elastic and plastic domain. Since the

correlation lengths of the random �elds cannot be determined by pure analytic treatments,

additionally numerical simulations are performed for di�erent values of the correlation length.

The numerical simulations endorse the in�uence of the correlation length on the overall behavior.

For a correlation length of 5mm a good conformity with the experimental results is obtained.

Therefore, it is concluded, that the presented modeling approach is suitable to predict the elastic

and plastic deformation of a set of tensile test specimens made of short �ber-reinforced composite

su�ciently.
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V.1 Introduction

The use of short �ber-reinforced composites (SFRC) has increased signi�cantly over the years. Due to the

speci�c strength and sti�ness in comparison to conventional polymers and the applicability for mold injection

production processes they are of special interest, e.g. in the automotive industry [38]. However, the mold

injection process as well as the �nite length of the reinforcing elements cause a microstructure of probabilistic

nature that signi�cantly a�ects the mechanical properties [141] and thus the structural responds. Following

this, a probabilistic modeling approach appears to be promising to exploit the lightweight potential in the best

possible way.

To reduce the computational costs the main challenge here is the incorporation of microstructural information

without its explicit modeling. One stochastic technique to model spatial data are random �elds [75, 108, 176],

that are also used in the context of material modeling. Soize and Guilleminot developed a comprehensive

framework starting with non-Gaussian positive-de�nite matrix-valued random �elds [163] and tensor-valued

random �elds for a meso-scale stochastic model of anisotropic elastic microstructures [164]. Based on this

work by Soize the approach was extended by Guilleminot et al. covering the stochastic �uctuations in �ber-

reinforced composites on the mesoscale [56, 57], random interphases from atomistic simulations of polymer

nanocomposites [97] and a multiscale approach for heterogeneous materials with non-Gaussian random �elds

[55]. Beside this random �elds are widely used, e.g. for geosystems [22], thin-walled composite cylinders [31],

three-dimensional concrete microstructures [167],and the representation of the continuous mode conversion

observed by the propagation of guided ultrasonic waves in thin-walled structures made of �ber-reinforced

composite [189]. A �rst application of random �elds in the context of nonlinear behavior for isotropic material

is provided by Zheng et al. [185]. The application to SFRC is limited to the linear elastic domain so far [141].

However, SFRC show prominent nonlinear behavior, because the matrix material enters the plastic domain

even at operation loads [77]. Hence, to predict the structural response correctly even at low stress levels

information about the plastic deformation must be considered. Since the plastic deformation are localized

initially the required nonlinear modeling approach needs to include information about the probabilistic nature

of the microstructure causing spatially distributed material properties [146].

Beside the work on random �elds for the probabilistic material modeling, the modeling of SFRC at the

di�erent scales mostly focuses on homogenization approaches and does not consider the spatial distribution

of the material properties on the component level. The determination of a representative volume element

(RVE) for random composites is discussed by Savvas et al. [156] by combining the extended �nite element

method with a Monte Carlo sampling. Breuer et al. [17, 18] applied the RVE to SFRC including arti�cial neural

networks. Zhang et al. investigate the strain rate dependence of SFRC based on RVEs [184] and Jia et al. apply

the RVE concept to cyclic mechanical and thermal loading [85].

Hence, the main objective of this research is the incorporation of the probabilistic material characteristics of

SFRC into a modeling approach covering the elastic and plastic domain on the component level. The presented

work is linked to a correlation structure study of the elastic-ideal plastic material behavior [142], where the

moving window method [8, 51, 156] is utilized for the elastic domain and a homogenization method is used

to derive the local apparent plastic material parameters [138, 139], respectively. Here, the obtained results

are now employed for the numerical simulation of SFRC on the component level including an experimental

validation. Therefore, �rst cross-correlated random �elds are generated to describe the spatial distribution and

the probabilistic nature of the material properties introduced by the stochastic attributes of the microstructure.

In a second step a transversely-isotropic elastic-ideal plastic material model including �nite deformation is

established and implemented in COMSOL Multiphysics
®

to simulate tensile tests for specimens made of SFRC.

For validation of the presented modeling approach incorporating the spatial distribution and probabilistic

characteristics of elastic and plastic material properties uniaxial tensile tests are conducted experimentally.

Subsequently, the structure of the presented work is as follows. In Section V.2 the experimental investigation

is given. This includes a detailed description of the specimens and the experimental setup and procedure,

respectively. This is followed by the generation of cross-correlated random �elds in Section V.3. After the
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Figure V.1: Details of the specimens geometry and the measurement points. All measures in mm, t = 3mm

implementation of an algorithm in Multiphysics
®

covering elasto-plastic material behavior in Section V.4, the

random �elds are used in Section V.4 to incorporate spatially distributed material properties into the numerical

modeling procedure. Finally, Section V.6 gives a summary and conclusion.

V.2 Experiments

This section gives detailed information about the experimental investigation of the elastic and plastic properties

of specimens made of SFRC by tensile tests. First, the specimen speci�cations are given before presenting the

experimental setup and procedure. The section is concluded with an overview of the experimental results

covering the elastic and plastic domain.

V.2.1 Specimens

In this work the elastic and plastic deformation for specimens made of Ultradur B 4300 G6 [21], a polybutylene

terephthalate (PBT) matrix material �lled with glass �bers, is investigated. The �ber mass fraction is set to

30%, which is equal to a �ber volume fraction of 18.2%. The specimens are cut out of a larger plate that was

manufactured by mold injection. The size of this plate is 300mm × 300mm and has a thickness of 3mm. The

geometry of the tensile test specimens is de�ned in accordance with DIN-ISO-527-1 [84]. However, due to

the plate dimensions the size of the specimen type 1B is slightly adapted. Figure V.1 gives an overview of the

initial plate, the position of each specimen and its exact dimensions.

V.2.2 Experimental setup and procedure

For the tensile tests covering the elastic and plastic deformation until failure a Zwick-Roell Z050 tensile testing

machine is used. With this testing machine a load of up to 50 kN can be applied. As suggested by DIN-ISO-527-1
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E �failure �failure

Number of mean std mean std mean std

specimens GPa GPa MPa MPa % %

Experiments 8 7.95 0.87 96.1 6.22 1.97 0.14

Data sheet 1 9.69 - 135 - 2.5 -

Table V.1: Experimental results obtained by tensile tests in the elastic and plastic domain.

for plastics the tensile test is performed displacement driven with a speed of 1mm/min. The stain is captured

by a contact-less laser extensometer with an initial measurement length of 50mm. Furthermore, to analyze the

spatial distribution of the material properties additional measurement points within the original measurement

length are added. They have a distance of 5mm, see Figure V.1.

For the elastic characterization of the material the Young’s modulus is derived from the measured stress-

strain data. It is determined by computing the slope of the curve between a strain level of 0.1% and 0.2%. For

the plastic deformation the strain at failure and the maximum stress level are obtained from the measurement

data. This is done based on the data for a measurement length of 50mm for all specimens. In addition, to

analyze the spatial distribution qualitatively the data is obtained for sections of 15mm for one specimen.

Hence, three non-overlapping di�erent sections of the initial measurement length are examined individually.

V.2.3 Results

Figure V.2 summarizes the results of the conducted tensile tests in the elastic and plastic domain. On the

left hand side the stress-strain curve for each specimen based on the measurement length 50mm is plotted.

Furthermore, the diagram holds data provided by the manufacturer [21]. The stress-strain curves clearly reveal

the prominent plastic deformation of SRFC even at low stress levels. However, in comparison with the data

sheet the experimentally obtained stress and strain level at failure are signi�cantly lower. This also holds for

the slope of the curve in the elastic domain. For a better overview the corresponding values of the Young’s

Modulus as well as the stress and strain level at failure are collected in Table V.1. For each parameter the mean

value and the standard deviation are provided.

The di�erences between the experimental data and the data provided by the manufacturer are most likely

related to the manufacturing process of the specimen. It signi�cantly in�uences the microstructural character-

istics like �ber length and �ber orientation of the specimen and the quality of the �ber-matrix bonding.

In the second diagram the focus is set on the spatial distribution of the material properties. For one specimen

the stress-strain curve is not only determined for a measurement length of 50mm but also for three sections of

15mm length each. The sections don’t overlap and are within the original measurement length. The di�erent

curves reveal that the plastic deformation is distributed over the specimen, con�rming the assumption of

spatially distributed material properties induced by the �nite length of the reinforcing elements and the

probabilistic characteristics of the microstructure.

V.3 Generation of cross-correlated random �elds

V.3.1 Methodology

V.3.1.1 Random �elds

Random �elds Z(!, x) represent spatially distributed random variables Z(!). To describe a random �eld

completely the function of the mean value �(x), the variance �2(x) and correlation coe�cient �(x, x′) are

required.
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Figure V.2: Experimental results and comparison with data sheet.

Utilizing random �elds in the context of material modeling it is important to note, that material parameters

are of positive nature. This does not necessarily apply to the coe�cients of strain-energy density functions.

However, it is indispensable for the yield strength, which contradicts the found normal distribution of the

yield strength [142]. Therefore, when using Gaussian random �elds and hence, assume normal distributed

underlying random variables, negative realizations are possible [47, 169]. In conclusion the use of Gaussian

random �elds for the representation of material properties in context of multi-scale modeling of heterogeneous

material is controversial [163]. With non-Gaussian random �elds negative realizations can be avoided and

hence, a stochastic solution of second-order and the positive nature of the elasticity coe�cient is guaranteed

[27, 54, 55, 97, 110, 172].

Non-Gaussian random �elds M(!, x) are de�ned by

M(!, x) = {Z(!, x)}, (V.1)

where  is a non-linear mapping operator and Z(!, x) a centered, homogeneous Gaussian random �eld[55].

With respect to the following work, where the concept of random �elds is used within the �nite element

method framework only discretized random �elds are used, requiring a �nite sampling. Consequently, as long

as negative values are excluded, the di�erence between the results based on non-Gaussian �elds and Gaussian

�elds may not di�er signi�cantly. Therefore, the work presented here is based on homogeneous Gaussian

random �elds, which also allows one to use the well-known techniques presented below.

V.3.1.2 Generation of random �elds by numerical methods

Initially, random �elds are continuous functions with respect to the spatial coordinates. However, to be able

to utilize this concept within the framework of material modeling and numerical simulations by the �nite

element method (FEM) a discrete representation is necessary. Over the years many di�erent methods were

developed for this purpose. Examples are the midpoint method [32, 182], the spatial averaging [177], and

the shape function method [88, 104, 105]. Commonly used approaches are based on the series expansion

technique [96]. Spanos et al. [165] extended the work by expressing random �elds by a spatial decomposition

of the correlation functions derived by the well-known Karhunen-Lòeve expansion (KLE) [106]. The spatial

decomposition obtained by the KLE for a mean free random �eld with a standard deviation equal to one is

given by Cho et al. [25]

Z(!, x) =
∞
∑
n=0

√
�n�n(x)Zn(!). (V.2)
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Here, Zn(!) are uncorrelated, standard normal distributed random variables and �n and �n(x) are the eigenvalues

and eigenfunctions of the correlation function kernel, that can be obtained by solving a Fredholm integral

equation of second kind. Since the integral equation

∫
Ω
Cov[x′, x]�n(x) d x =

∞
∑
n=1

�n�n(x′) (V.3)

has closed solutions only for a few types of correlation functions de�ned on a rectangular domain [14], e.g.

the exponential correlation function [47, 128], numerical methods are often required. This is especially the

case for multidimensional �elds [101]. By deploying numerical integration methods the eigenfunctions �n(x)
as a solution of the Fredholm integral is approximated by a set of functions ℎi

�n(x′) ≈ �̂n(x′) =
N
∑
i=1

dni ℎi(x
′), (V.4)

where the parameters dni are unknown and need to be determined. One technique here is the expansion

optimal linear estimate (EOLE) developed by Li et al. [101]. It is based on the linear estimation theory and

belongs to the group of series expansion methods. Furthermore, it can be shown that the EOLE is equivalent

to the Nyström method [6] with uniform distributed integration points [14]. Within the Nyström method the

integral eigenvalue problem is written as

N
∑
i=1

wi Cov[xn, xi]�̂j(xi) = �̂j �̂j(xn), (V.5)

which can be reorganized in matrix notation as

CWyj = �̂jyj . (V.6)

TheN ×N matrix C is symmetric positive semi-de�nite and holds the elements cn,i = Cov[xn, xi], the integration

weights wi are stored in the diagonal matrix W of the size N × N and yj is a column matrix with the entries

yj,n = �̂j(xn). Assuming a uniform distribution of the points xi over the domain Ω and a equispaced structured

grid, respectively, all integration weights wi are the same. In this case the matrix W reads

W = wI, (V.7)

with I being the identity matrix and w = |Ω|/N . This leads to

Cyj = �̂∗jyj , (V.8)

giving the equivalent of Eq. (V.6) for the EOLE, with the eigenvalues �̂∗j and eigenfunctions yj of the covariance

matrix C. The eigenvalues of the EOLE are related to the eigenvalues of the Nyström method by

�̂∗j =
N
|Ω|

�̂j . (V.9)

Finally, for normalized eigenvectors the truncated KLE approximated by the EOLE reads

Z(!, x) =
M
∑
j=1

Zi(!)√
�̂∗j

N
∑
i=1

yj,i Cov[x, xi]. (V.10)
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V.3.1.3 Cross-correlated random �elds

In the context of nonlinear material modeling the correlation is of complex nature, because the individual

parameters are approximated best by di�erent correlation functions and the parameters are strongly cross-

correlated [142, 144]. Therefore, to achieve a proper representation of the material properties, the generated

random �elds must include the information about the cross-correlation. Cho et al. introduce two di�erent

algorithms for the expansion of multi-correlated processes, namely the multiple uncorrelated Karhunen-Loève

expansion (muKL) and the multiple correlated Karhunen-Loève expansion (mcKL) [25]. The main di�erence

between these two procedures lays in the generation of the used random variables. In context of the muKL all

correlated processes are described by a single set of uncorrelated random variables [25]. In contrast to this

the mcKL provides multiple sets of mutually correlated random variables for the discretization of correlated

processes. Since the modeling of nonlinear material behavior requires a set of random variables for each

parameter the mcKL is applicable in this context.

Within this algorithm the same equations as for uncorrelated random �elds are used and solved. However, in

an additional step the uncorrelated random variables and eigenfunctions are transformed to obtain correlated

random variables and eigenfunctions, respectively, that meet the given correlation structure. Here, �rst the

matrix K is introduced. The matrix is de�ned as

K ij
km = E[Z i

k Z
j
m], (V.11)

where Z i
k and Z j

m are a set of zero-mean uncorrelated random variables for processes i and j, respectively.

Using Eq. (V.2) the cross-covariance between the processes i and j is written as [50]

Cij = E[fi(!, x) fj(!, y)]

=
∞
∑
k,m=1

K ij
km

√
�ik�

j
m�ik(x)�

j
m(y). (V.12)

The result is an integral equation similar to the one for the auto-correlation shown in Section V.3.1.2. Following

Eq. (V.3) the elements of K are obtained by solving

K ij
km =

1√
�ik�

j
m

∫
Ω1

∫
Ω2
Cij(x, y)�ik(x)�

j
m(y) d y d x. (V.13)

In a �nal step the matrix K is used to determine sets of correlated random variables for each process. It is

assumed that K is positive de�nite, which allows a Cholesky decomposition given by [50]

K = RRT . (V.14)

Applying R on a set of random variables leads to

Z̃ = R−1Z, (V.15)

where

E[Z̃Z̃T ] = I. (V.16)

This means that Z̃ contains only uncorrelated random variables. In reverse by applyingR on a set of uncorrelated

random variables Z̃ gives a set of correlated random variables that represent cross-correlated random �elds.

The same procedure is also applicable to obtain cross-correlated eigenfunctions.
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Parameter Mean Standard deviation Correlation function Correlation length ratio

GPa GPa -

Λ 5.38 0.140 Triangle 1

� 1.20 0.064 Exponential 0.4

� 1.10 0.090 Exponential 0.4

� -0.13 0.020 Triangle 1


 1.13 0.148 Triangle 1

�y 0.126 0.015 Triangle 1

Table V.2: Mean values and standard deviations of the strain density function coe�cients for a window size of

750 µm, taken from Rauter et al. [142].

V.3.2 Application to the elastic-ideal plastic material behavior of SFRC

In this section the presented framework for the generation of cross-correlated random �elds is used to represent

the material properties of elastic-ideal plastic material behavior of SFRC. The information of the correlation

structure are derived and discussed in detail by Rauter et al.study [142]. It is shown, that the correlation

structure of the material parameters is approximated best by a combination of the triangle correlation function,

de�ned as

�(�1, �2) =

{
a (1 −

|�1 |
b1 )(1 −

|�2 |
b2 ) if |�1| ≤ b1, |�2| ≤ b2

0 else

, (V.17)

and an exponential correlation function [48, 128, 169]

�(�1, �2) = a exp
− |�1|
b1
− |�2|
b2 . (V.18)

The parameter a indicates the strength of the correlation between two parameters, �1 and �2 hold the spatial

coordinates and b1 and b2 are the corresponding correlation lengths, respectively. In case of an auto-correlation

a is equal to one, in case of a cross-correlation a can take values between −1 and 1.
The values of a are set in accordance with the results obtained by Rauter et al. [142]. In this initial study the

numerical simulation of the elastic-ideal plastic material behavior of SFRC only two parameters are described

by spatially distributed material properties to reduce the complexity of the nonlinear numerical simulations.

To ensure that both the elastic and plastic domain are captured by the stochastic multiscale approach one

parameter of the strain-energy density function, which is related to the elastic domain and the yield strength

are represented by random �elds. Based on this, the routine can be reduced to two parameters capturing the

cross-correlation of Λ and �y . The matrix holding the factor a for each material parameter combination reads

a =
[
1.00 0.53
0.53 1.00]

. (V.19)

In addition to the parameter a the required mean values, standard deviations and correlation lengths are

provided in Table V.2. Since the correlation length cannot be determined solely on numerical data, the values

are normalized to the correlation length of the parameter Λ. For more details about the material model and

the provided data the reader is kindly referred to Section V.4.1 and the correlation analysis presented by the

authors [142], respectively.

With this information at hand realizations of random �elds for these two material parameters are generate

using the numerical methods for two-dimensional cross-correlated homogeneous second-order random �elds
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Figure V.3: Representation of the spatially distributed material parameters of elastic-ideal plastic material

behavior by cross-correlated homogeneous second-order Gaussian random �elds.

presented in Section V.3.1. In accordance with the numerical simulation of the tensile test in Section V.4 and

the experimental procedure in Section V.2 the domain has a size of 50mm × 3mm. One realization of the

parameter set is presented in Figure V.3. The correlation length of Λ is set to lx = 20mm and ly = 3mm in

horizontal and vertical direction, respectively.

In addition, the quality of the procedure is analyzed. Therefore, in total 1000 realizations for each parameter

are generated. Based on the obtained data the correlation structure is derived and compared to the results

presented in the former study by the author [142]. Figure V.4 holds the results for Λ and �y . The �rst two

diagrams give the analytic auto-correlation functions of Λ and �y , based on the results obtained in a previous

correlation analysis [142], and the correlation function based on the 1000 realizations, respectively. In the

last diagram the cross-correlation function is plotted. For a better overview the correlation function plots are

limited to the horizontal direction. In addition to this Figure V.5 gives histograms of these two parameters

based on all 1000 realizations. As discussed before, in this work the material parameters are represented by

Gaussian random �elds. Since Gaussian random �elds allow negative values in general the distribution of the

sampled yield strength is analyzed more in detail. Based on the 1000 realizations and a discretization truncated

after 2000 terms, in total 2e6 values are sampled for the yield strength. The corresponding mean value and

standard deviation are 125.6MPa and 14.7MPa, which meets the values provided in Table V.2. Furthermore, the

minimal and maximal sampled values are 194.7MPa and 64.0MPa, respectively. Since the probability density

function of the yield strength was not modi�ed to avoid negative values, the moderate standard deviation of

the Gaussian distribution results only in positive realizations of the random variable. Therefore, the use of

second-order Gaussian random �elds appears to be appropriate to incorporate spatially distributed material

properties into the numerical simulation procedure.

Subsequently, the results for the correlation functions as well as the material parameter distributions show

a very good agreement with the analytic values. Hence, the selected procedure is suitable to represent the

locally varying material properties of elastic-ideal plastic material behavior of SFRC by random �elds.

V.4 Numerical simulation

In this section the spatially distributed material properties described by cross-correlated second-order Gaussian

random �elds are combined with an algorithm for elastic-ideal plastic material behavior. The main objective

is the integration of the locally varying material properties, which are observed during the experimental

investigations in Section V.2, into a numerical modeling procedure. Therefore, �rst the framework and
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Figure V.4: Correlation analysis of the generated cross-correlated random �elds.
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Figure V.5: Histograms of the sampled values of Λ and �y .

constitutive equations for transversely-isotropic elastic-ideal plastic material behavior and its implementation

in COMSOL Multiphysics
®

is presented. The developed algorithm is then validated in detail before combining

the algorithm with the material properties de�ned by random �elds. In a last step the in�uence of the correlation

length on the standard deviation of the obtained results is analyzed and an optimal value is selected for which

the numerically obtained results and the experimental measurements coincided best.

V.4.1 Framework of elastic-ideal plastic material behavior

V.4.1.1 Constitutive equations

The constitutive model of elastic-ideal plastic material behavior comprises the following equations

- elastic constitutive equation,

- �ow rule,

- and yield condition,

which need to satisfy the Kuhn-Tucker complementary conditions and the consistency condition [161]. The

plastic constitutive model introduced here, is based on the work provided by Hashiguchi et al. [63] and Eidel

et al. [39]. It is adapted to transversely-isotropic material by using the strain energy density function by Bonet

et al. [16]. Furthermore, hardening is not considered. Hence, the material is assumed to show ideal plastic

behavior [142].

Since the modeling approach covers �nite deformation the constitutive model needs to be formulated with

respect to the nonlinear continuum mechanical framework. Therefore, the deformation is described by the

multiplicative decomposition of the deformation gradient, also known as Kröner-Lee decomposition. The
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FIGURE 4 Configuration definition within the nonlinear continuum mechanic framework.

the intermediate configuration and with Fpl from the intermediate to the current configuration, as shown in Fig. 5. Accordingly
J = JelJpl with J = det F =

√
det C (20)

holds, with C being the right Cauchy-Green tensor, defined in the reference configuration, which also splits into an elastic and
a plastic part by

C = Cel ⋅ Cpl. (21)
Assuming J2-plasticity and hence, plastic incompressibility, leads to

det Cpl = (Jpl)2 = 1 (22)
and

det C = J 2 = (Jel)2 = det C̄el, (23)
respectively. With respect to the introduced configurations Cpl contains the plastic deformation in the reference configuration
and C̄el gives the elastic deformation in the intermediate configuration, which is indicated by the bar.
A crucial part of the plasticity framework is the plastic flow rule providing information about the irreversible deformation of a

body. The fundamental equation is the second law of thermodynamic provided by the Clausian-Duhem-inequality for isothermal
processes, which is written as28

−Ψ̇ + S ∶ 1
2
Ċ ≥ 0, (24)

Figure V.6: Con�guration de�nition within the nonlinear continuum mechanic framework.

decomposition is given by [94, 98, 99, 111]

F = Fel ⋅ Fpl. (V.20)

Here, Fel holds the elastic and Fpl the plastic deformation, respectively. Since the deformation gradient is used

to map continuum mechanical quantities from the reference to the current con�guration and vice versa, this

decomposition reveals the de�nition of an additional con�guration, the so called intermediate con�guration

[94, 98, 161]. As shown in Figure V.6, with Fpl the quantities are mapped from the reference to the intermediate

con�guration and with Fel from the intermediate to the current con�guration. Accordingly

J = JelJpl with J = det F =
√
det C (V.21)

holds, with C = FT ⋅ F being the right Cauchy-Green tensor, de�ned in the reference con�guration. It also

splits into an elastic and a plastic part written by the decomposition [107]

C = FT

pl
⋅ Cel ⋅ Fpl, (V.22)

where

Cel = FT

el
⋅ Fel, Cpl = FT

pl
⋅ Fpl (V.23)

Assuming J2-plasticity and hence, plastic incompressibility, leads to

det Cpl = (Jpl)2 = 1 (V.24)

and

det C = J 2 = (Jel)2 = det C̄el, (V.25)

respectively. With respect to the introduced con�gurations, C̄el , which is located in the intermediate con�gu-

ration, contains the elastic deformation whereas Cpl is assigned to the reference con�guration and includes

the plastic deformation.

A crucial part of the plasticity framework is the plastic �ow rule providing information about the irreversible

deformation of a body. The fundamental equation is the second law of thermodynamics provided by the
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Clausian-Duhem-inequality for isothermal processes, which is written as [178]

− Ψ̇ + S ∶
1
2
Ċ ≥ 0, (V.26)

where the dot indicates the derivative with respect to time, S is the second Piola-Kirchho� stress tensor and

Ψ a Helmholz free energy. Introducing a Helmholz free energy as a function of C the associate rate can be

expressed by

Ψ̇ = Ψ̇el =
)Ψel

)C̄el

∶ ̇̄Cel. (V.27)

Since in this case, both kinematic and isotropic hardening are omitted, only the part Ψel of the Helmholz free

energy Ψ, which is assigned to the elastic deformation, contributes to Eq. (V.26). Following the multiplicative

decomposition of F the derivative of the right Cauchy-Green tensor with respect to time is obtained by [39]

Ċ = FT

pl [Ċel + 2 (Cel ⋅ Lpl)s] Fpl (V.28)

with the plastic velocity gradient in the intermediate con�guration

L̄pl = Ḟpl ⋅ F−1pl
. (V.29)

Combining the inequality in Eq. (V.26) and the time derivative of C, which must hold for arbitrary thermo-

dynamic processes, one can derive �rst the constitutive equation for elastic deformation, which de�nes the

second Piola-Kirchho� stress tensor S̄ in the intermediate con�guration

S̄ = 2
)Ψel

)C̄el

(V.30)

and second the reduced form of the Clausian-Duhem inequality [39, 178]

M̄ ∶ Lpl ≥ 0, (V.31)

again omitting isotropic and kinematic hardening. In this formulation the Mandel stress tensor M̄ is introduced.

It is de�ned as

M̄ = C̄el ⋅ S̄ (V.32)

and stands in the intermediate con�guration.

The inequality in Eq. (V.26) is satis�ed by the associate �ow rule [39, 178]

Lpl = �̇
)�
)M̄

, (V.33)

assuming an isotropic yield function � [39]. In this work the framework of J2-plasticity is used. Therefore, the

yield function is introduced as a von Mises criterion by [63]

fyield =
√
3
2
||M̄dev|| − �yield, (V.34)

where �yield is the reference yield stress for uniaxial loading and hence, an independent material parameter,

and ||M̄dev|| denotes the norm of the deviatoric part of the Mandel stress. Substituting the von Mises yield

function in Eq. (V.34) into Eq. (V.33) leads to [63, 178]

Lpl = �̇
M̄dev

||M̄dev||
. (V.35)
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With this framework at hand the �ow rule is written as [39]

Ḟpl = Lpl ⋅ Fpl = �̇
M̄dev

||M̄dev||
⋅ Fpl. (V.36)

To solve this equation an implicit backward Euler-type tensor exponential based time integration scheme is

used. Following this procedure the updated plastic part of the deformation gradient is obtained by [39, 116]

Fpl,n+1 = Qpl,n+1Fpl,n (V.37)

with the exponential function

Qpl,n+1 = exp [Δ�
M̄dev,n+1

||M̄dev,n+1|| ]
. (V.38)

The subscripts n and n + 1 denote the corresponding steps, where n indicates the initial and n + 1 the updated

values.

The presented framework of elastic-ideal plastic deformation is applied to transversely-isotropic material

behavior characterizing SFRC in a next step. Therefore, the constitutive equations are used within the context

of the �nite element method. The resulting routine can be divided into four steps, which are presented in

detail below.

V.4.1.2 Solution procedure

Elastic predictor In the initial step the deformation of the body is assumed to be purely elastic, which is

described in the intermediate con�guration, as shown before. Following the work of Simo et al., who derived

the framework of the �nite strain elasto-plasticity by combining the multiplicative decomposition of the

deformation gradient with hyperelastic strain-energy density functions [159, 160, 162], the elastic deformation

is obtained by evaluating the hyperelastic strain-energy density function Ψel with respect to the elastic part of

the deformation.

In this study, the elastic material behavior of SFRC is described by the potential [16]

Ψel(C̄el) =
1
2
Λ(J − 1)2 − � ln(J ) +

1
2
� (tr C̄el − 3) + [� + � (tr C̄el − 3) + 
(I4 − 1)] (I4 − 1) −

1
2
�(I5 − 1). (V.39)

Here, Λ, �, � , � and 
 are the independent material parameters characterizing the transversely-isotropic

material behavior. In addition to the well-known invariants I1, I2, and I3 for the description of isotropic material

behavior [3, 109], the quantities I4 and I5 give the pseudo-invariants, which are de�ned for a symmetric

second-order tensor B by [74, 166]

I4 = a ⋅ B ⋅ a and I5 = a ⋅ B2 ⋅ a. (V.40)

The vector a gives the �ber orientation, and therefore, holds the transversely-isotropic characteristics of the

material. In this case it is assumed, that the �bers are mainly orientated along the tensile test specimen. Hence,

a1 = 1 and a2 = a3 = 0 hold.

With respect to the used transversely-isotropic potential and the tensor derivatives, given by

)I4
)B

= a ⊗ a
)I5
)B

= a ⋅ B ⊗ a + a ⊗ B ⋅ a

)B
)B

= Is =
1
2
(�ik�lj + �il�jk)

)B−1

)B
= −

1
2
(B−1ik B

−1
lj + B

−1
il B

−1
jk ), (V.41)

the second Piola-Kirchho� stress tensor in the intermediate con�guration reads

S̄ = �(I − C̄−1
el
) + �J (J − 1)C̄−1

el
+ 2�(I4 − 1)I + 2[� + �(tr C̄el − 3) + 2
(I4 − 1)]a ⊗ a − �(C̄el ⋅ a ⊗ a + a ⊗ C̄el ⋅ a). (V.42)
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Checking yield condition To be able to evaluate the yield condition, provided in Eq. (V.34), in the interme-

diate con�guration, the deviatoric part of the Mandel stress must be computed to derive the corresponding

von Mises stress.

If the resulting von Mises stress is lower than the yield strength of the material, the body shows only elastic

deformation. Therefore, no further action is required. The stress measure can be updated with the trial value

obtained by the elastic predictor step. If, however, the von Mises stress is larger than the yield strength, the

body shows not only elastic but also plastic deformation. In this case the determination of the resulting plastic

deformation is covered by the plastic corrector step.

Plastic corrector step (returnmapping) Since the yield condition is given in the intermediate con�guration,

this also holds for the computation of the updated plastic part of the deformation gradient.

As shown before an associative plastic �ow rule introduced by Eidel et al. [39] is used to describe the

evaluation of the plastic deformation. With this framework at hand the return mapping procedure in case of

plastic deformation leads to the following system of equations, cf. Eq. (V.37)

YF
pl
= Fpl,n+1 − Qpl,n+1 ⋅ Fpl,n = 0,

Yf
yield

=
√
3
2
M̄dev,n+1 ∶ M̄T

dev,n+1 − Fn+1 = 0, (V.43)

which needs to be solved to obtain the updated quantities at the step n + 1 for the plastic deformation. Since

the plastic part of the deformation gradient depends solely on the plastic multiplier Δ�, see Eqs. (V.37) and

(V.38) a Newton-scheme algorithm is used to determine the updated components of the plastic deformation

gradient. Therefore, the yield criterion is iteratively solved with respect to Δ� and the procedure is stopped,

when a maximum number of iterations or a converged solution is reached by satisfying the condition

||Yf
yield

|| < tol. (V.44)

Furthermore, the required derivative is calculated numerically by deploying a one-sided di�erence scheme

f
′
(x) =

f (x + ℎ) − f (x)
ℎ

. (V.45)

Updating With the obtained value of Δ� satisfying the yield condition the updated plastic deformation

gradient Fpl,n+1 can be calculated by evaluating Eqs. (V.37) and (V.38). Next the resulting second Piola-Kirchho�

stress tensor in the intermediate con�guration is derived. Therefore, the updated elastic part of the deformation

gradient is computed and introduced in Eq. (V.42). COMSOL Multiphysics
®

requires the computation of the

second Piola-Kirchho� stress tensor and the consistent tangent modulus tensor with respect to the reference

con�guration. Hence, a pull-back operation

S = F−1
pl
⋅ S̄ ⋅ F−T

pl
. (V.46)

is applied to obtain the second Piola-Kirchho� stress tensor in the reference con�guration. The last step is the

computation of the consistent tangent modulus tensor. The corresponding procedure is provided in detail in

the next section.

V.4.1.3 Variational formulation and consistent tangent modulus tensor

For a body  the local form of the balance of momentum with respect to the reference con�guration reads

Div P + �0b = �0ü. (V.47)
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Here, P is the �rst Piola-Kirchho� stress tensor, �0 is the density, b are the volume forces and u is the

displacement �eld. To solve this di�erential equation Neumann and Dirichlet boundary conditions are used.

They are given by

u = ū on ) (V.48)

P ⋅ N = t̄ on )� , (V.49)

where ) is the boundary surface of  and N gives the normal to the boundary surface )� . To ensure, that

the boundary conditions cover the complete surface of the body ) = ) ∪ )� and ) ∩ )� = ∅ hold.

Applying standard variational calculus on Eq. (V.47) and P = F ⋅ S leads to

F (u, �u) = ∫
1
2
S ∶ �CdV + ∫ �0(ü − b) ⋅ �udV − ∫

)�

t̄ ⋅ �udS = 0 (V.50)

for the equilibrium state of the body . Based on the de�nition

C = FT ⋅ F (V.51)

the virtual right Cauchy-Green deformation tensor, expressed with respect to the virtual deformation gradient

�F = Grad �u, is given by

�C = (�FT ⋅ F + FT ⋅ �F) (V.52)

To solve this nonlinear equation within the FEM framework a standard Newton-Raphson iteration scheme is

used. To ensure a quadratic convergence rate a consistent linearization of the principal of virtual displacement

in Eq. (V.50) is crucial. Therefore, in this work the pertubation technique developed by Miehe [117] is used.

This approach is widely in use and has been extensively investigated with respect to convergence properties

and the application within the �nite strain framework [39, 114, 115]. Due to the symmetry of S the linear

increment of F can be formulated as

ΔF(u, �u, Δu) =
1
2 ∫(�C ∶ ΔS + Δ�C ∶ S)dV , (V.53)

where Δ�C = (ΔFT ⋅ �F + �FT ⋅ ΔF) is the linearized virtual right Cauchy-Green deformation tensor given in

terms of the incremental deformation gradient ΔF = GradΔu. To obtain the incremental second Piola-Kirchho�

stress tensor ΔS the consistent tangent modulus tensor is required. In the reference con�guration it is expressed

by

ℂ = 2
)S
)C

, (V.54)

which can be written as

ℂ = 2
ΔS
ΔC

=
3
∑

i,j,k,l=1
2
ΔSij
ΔCkl

Ei ⊗ Ej ⊗ Ek ⊗ El . (V.55)

The incremental change of the right Cauchy-Green tensor is obtained by applying a pertubation technique to

the deformation gradient. Following this, the incremental change of the right Cauchy-Green tensor is given by

ΔC = Δ (FT ⋅ F) = FT ⋅ ΔF + (ΔF)T ⋅ F (V.56)

with

ΔFkl (�) =
�
2
{
(F−T

n+1
⋅ Ek) ⊗ El + (F−T

n+1
⋅ El) ⊗ Ek

}
. (V.57)

Subsequently, the perturbed deformation gradient reads

Fn+1(�) = Fn+1 + ΔF(�). (V.58)
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Variable Symbol Description

FlOld Fn Input: Deformation gradient at previous step

Fl Fn+1 Input: Deformation gradient at current step

tempOld Tn Input: Temperature at previous step

temp Tn+1 Input: Temperature at current step

K e Input: Local material coordinate system

delta − Input: reserved for future use

nPar n Input: Number of material model parameters

par − Input: Array with the material model parameters

sPK Sn+1 Output: Second Piola-Kirchho� stress tensor given in Voigt order

J J Output: Jacobian of stress with respect to deformation gradient as a 6-by-9 matrix

of partial derivatives of components of sPK with respect to components of F

Table V.3: List of input and output variables for a general stress deformation routine in COMSOL Multiphysics
®

.

Variable Symbol Description

nStates1 − Input: Size of state array

states1 Fpl,n Input: Plastic part of deformation gradient at previous step

Table V.4: List of state variables used in the algorithm for the elastic-ideal plastic material behavior in COMSOL

Multiphysics
®

.

With this the corresponding perturbed incremental right Cauchy-Green tensor can be calculated, which

enables one to compute the stresses by applying the presented return mapping algorithm. This leads to the

stress increment

ΔS = S(Fn+1(�)) − S(Fn+1) (V.59)

and hence, the consistent tangent modulus tensor by evaluating Eq. (V.55)

V.4.2 Implementation in COMSOL Multiphysics®

V.4.2.1 Algorithm

Using an external material option in COMSOL Multiphysics
®

requires the generation of a C-based dll, which

can be loaded via the COMSOL Multiphysics
®

interface. With respect to the presented elastic-ideal plastic

material behavior in Section V.4.1 the general stress deformation routine is used. The input and output

parameter for a general stress deformation subroutine for the implementation in COMSOL Multiphysics
®

are

provided in Table V.3. In addition to these variables optional variables can be stored utilizing state variables.

Table V.4 gives an overview of the state variables used in the presented algorithm for the elastic-ideal plastic

material behavior of SFRC.

With these de�nitions and the framework provided in Section V.4.1 an algorithm is established to compute

the second Piola-Kirchho� stress tensor and the Jacobian matrix of the second Piola-Kirchho� stress tensor

with respect to deformation gradient. The structure of the developed routine is depicted in Figure V.7. The

main routine eval reads the input variables, calls the subroutine retmap, which is responsible for the return

mapping procedure and updates all output and state variables. A detailed overview of the routine is provided

by Algorithm 1. In addition Algorithm 2 and Table V.5 hold all information about the subroutine retmap.
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eval Main routine:
- reads input variables
- calls retmap for the return mapping
- provides the output 

retmap

calc_dev

matexp

Performing the return-mapping procedure

Evaluation of the yield function

calcNormM

calcS_intermediate

calcS_intermediate

Computation of the tensor exponential

Computation norm of Mandel stress tensor 

Computation 2. Piola-Kirchhoff stress tensor refering
to the intermediate configuration 

Computation 2. Piola-Kirchhoff stress tensor refering
to the intermediate configuration 

Algorithm: 1
In- and Output: Tab. 3 & 4

Algorithm: 2
In- and Output: 5

Algorithm: 5
In- and Output: Tab. A3

Algorithm: 6
In- and Output: Tab. A4

Algorithm: 4
In- and Output: Tab. A2

Algorithm: 3
In- and Output: Tab. A1

Algorithm: 3
In- and Output: Tab. A1

Figure V.7: Structure of the implemented algorithm
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FIGURE 8 Two-dimensional numerical model.

RAUTER AND REINA 13

Algorithm 1 Main routine implemented in COMSOL Multiphysics for the calculation of S and J
1: procedure EVAL(see Tables 2 and 3)
2: read material parameters
3: read state variables
4: initialize Jacobian and identity matrix
5: compute S̄n+1 in intermediate configuration and Fpl,n+1 calling Algorithm 3 ⊳ Eq. (40)
6: compute Sn+1 by pull back of S̄n+1
7: save Sn+1 in Voigt notation
8: update state variable Fpl,n+1
9: compute pertubed deformation gradient
10: compute S̄n+1 in intermediate configuration
11: compute Spl,n+1 by pull back of S̄n+1
12: compute Lagrangian algorithmic tangent moduli
13: transform ℂ to C in Voigt notation
14: compute Jacobian by calling COMSOL Multiphysics utilize function csext_jac_con
15: return
16: end procedure

50mm

3m
m

y

x

ux

FIGURE 5 Two-dimensional numerical model.FIGURE 9 Two-dimensional numerical model.

are plotted over the displacement, respectively. Following the theoretical framework provided in Sect. 4.1 it is important to note,
that the vonMises stress is given in the intermediate configuration where as the second Piola-Kirchhoff stress tensor stands in the
reference configuration. The solid lines give the results of the implemented material model in COMSOL Multiphysics and the
small circles belong to the results obtained by the external material routine. As indicated by the diagrams on the right hand side,
that provide the deviation of the external material routine to the implemented material model in percent, the two simulations
show good agreement. The transversely-isotropic material model experiences an increasing deviation at large displacements.

Figure V.8: Two-dimensional numerical model.

Details of all remaining routines indicated in Figure V.7 are given in Appendix V.A.

V.4.2.2 Validation of the algorithm

For the validation process a two-dimensional numerical model under plane strain assumption representing the

cross-section of a tensile test specimen is used. The size of the numerical model is 50mm × 3mm. In Figure V.8

the numerical model and the corresponding boundary conditions are depicted. To reduce convergence issues

during the plastic deformation the simulation is displacement driven. Beside that, the numerical model is

discretized by 4-node-elements with a size of 0.25mm × 0.25mm. Hence over the thickness the cross-section is

discretized with 12 and along the cross-section with 200 elements.

Due to the fact, that COMSOL Multiphysics
®

experiences some issues when combining a user de�ned

hyperelastic strain energy density function with plasticity the provided algorithm is validated in two steps. In

a �rst step the external material algorithm is validated based on the well-known hyperelastic Neo-Hookean

material model [10]. Therefore, the strain-energy density function within the presented algorithm is adapted
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Algorithm 1 Main routine implemented in COMSOL Multiphysics
®

for the calculation of S and J
1: procedure eval(see Tables V.3 and V.4)

2: read material parameters

3: read state variables

4: initialize Jacobian and identity matrix

5: compute S̄n+1 in intermediate con�guration and Fpl,n+1 calling Algorithm 2 ⊳ Eq. (V.42)

6: compute Sn+1 by pull back of S̄n+1 ⊳ Eq. (V.46)

7: save Sn+1 in Voigt notation

8: update state variable Fpl,n+1
9: compute perturbed deformation gradient ΔF(�) ⊳ Eq. (V.57)

10: compute S̄n+1 in intermediate con�guration ⊳ Eq. (V.42)

11: compute Sn+1 by pull back of S̄n+1 ⊳ Eq. (V.46)

12: compute Lagrangian consistant tangent modulus tensor ⊳ Eq. (V.55)

13: reorganize ℂ in Voigt notation

14: compute Jacobian by calling COMSOL Multiphysics
®

utilize function csext_jac_con
15: return
16: end procedure

Algorithm 2 Return-mapping algorithm implemented in COMSOL Multiphysics
®

for the calculation of S̄ and

Fpl

1: procedure retmap(see Tables V.3 and V.4)

2: compute ||M̄dev|| by calling Algorithm 4

3: evaluate yield condition by calling Algorithm 5 ⊳ Eq. (V.34)

4: if fyield > 0 then
5: initialize Newton iteration

6: evaluate yield condition for current value of Δ� by calling Algorithm 5 ⊳ Eq. (V.34)

7: while ||fyield|| ≥ 1e − 4 and niter ≤ nmax do
8: compute Δ� + �
9: evaluate yield condition for current value of Δ� + � by calling Algorithm 5 ⊳ Eq. (V.34)

10: compute
)f

yield

)Δ� by numerical di�erentiation

11: update Δ�
12: evaluate yield condition for updated value of Δ� by calling Algorithm 5 ⊳ Eq. (V.34)

13: end while
14: compute ||M̄dev|| by calling Algorithm 4 for �nal value of Δ�
15: compute directional tensor for plastic evolution

16: compute tensor exponential by calling Algorithm 6 ⊳ Eq. (V.38)

17: update Fpl ⊳ Eq. (V.37)

18: end if
19: compute Fel ⊳ Eq. (V.20)

20: compute C ⊳ Eq. (V.51)

21: compute S̄n+1 in intermediate con�guration by calling Algorithm 3 ⊳ Eq. (V.42)

22: return
23: end procedure
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Variable Symbol Description

F F Input: Deformation gradient

Fpl Fpl,n Input: Plastic part of deformation gradient

Fpl Fpl,n+1 Output: Updated plastic part of deformation gradient

Sint S̄ Output: Second Piola-Kirchho� stress tensor with respect to the intermediate con�gu-

ration

lam Λ Input: Material parameter

mu � Input: Material parameter

alpha � Input: Material parameter

beta � Input: Material parameter

gamma 
 Input: Material parameter

sigYs �yield Input: Yield stress

Table V.5: List of input and output variables for the subroutine retmap COMSOL Multiphysics
®

.

Table V.6: Material parameters validation with Neo-Hookean material model.

Λ � � � 
 �Y
GPa GPa GPa GPa GPa MPa

Neo-Hookean 5.38 1.20 - - - 50

Transversely-isotropic 5.38 1.20 1.10 -0.13 1.13 -

to the one implemented in COMSOL Multiphysics
®

for the Neo-Hookean material model given by

ΨNeo =
1
2
�(I1 − 3) − �ln(J ) +

1
2
Λ[ln(J )]2. (V.60)

Subsequently two numerical simulations are performed. One with the implemented Neo-Hookean hyperelastic

material model and a second one with the provided external material algorithm. In both cases ideal plasticity and

a plain-strain state are assumed. The corresponding material properties are provided in Table V.6. Furthermore,

a total displacement of ux = 1mm corresponding to a strain of 2% is applied to ensure plastic deformation. In

a second step the strain-energy density function provided by Bonet[16] is passed to COMSOL Multiphysics
®

as an user-de�ned potential. Since this cannot be be combined with ideal plastic behavior due to convergence

issues, this is only simulated assuming elastic deformation. The results are compared again to the results

provided by Algorithm 1. The corresponding material parameters are also provided in Table V.6.

The results are depicted in Figure V.9. The �rst row gives the result for the isotropic Neo-Hookean simulation,

the second row holds the results for the transversely-isotropic simulations. The diagrams on the left hand

side contain stress-strain curves. The von Mises stress is plotted in black and the horizontal component of the

second Piola-Kirchho� stress is plotted in gray, respectively. Following the theoretical framework provided

in Section V.4.1 it is important to note, that the von Mises stress is given in the intermediate con�guration

where as the second Piola-Kirchho� stress tensor stands in the reference con�guration. The solid lines give

the results of the implemented material model in COMSOL Multiphysics
®

and the small circles belong to

the results obtained by the external material routine. As indicated by the diagrams on the right hand side,

that provide the deviation of the external material routine to the implemented material model in percent,

both validation steps show good agreement. Both comparisons experiences an increasing deviation at large
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Figure V.9: Numerical validation of the implemented general stress-deformation algorithm in COMSOL

Multiphysics
®

.

displacements, which is still very small.

V.5 Application to tensile test specimen

In this last step the presented modeling approach is used to incorporate the spatial distributed elastic-ideal

plastic material behavior of SFRC into a numerical simulation of tensile tests. As mentioned before the

probabilistic characteristics of the material parameters are analyzed in a former study of the authors [142]. The

main results are summarized in Table V.2 for a window size of 750 µm, which show the best approximation for

the simulation on the component level [145]. In this section the numerical model is brie�y introduced, the

numerical results are shown and corresponding results are discussed in detail including a comparison with

the experimental data presented in Section V.2. This includes the analysis of the in�uence of the correlation

length on the standard deviation of the obtained results and the selection of an optimal correlation length for

which the numerical results and the experimental measurements coincide best.

V.5.1 Numerical model

The numerical model used to validate the novel modeling approach on the component level based on tensile

test specimens is identical to the one used in Section V.4.2.2. As already discussed in Section V.3.2 only one

parameter of the strain-energy density function and the yield strength are represented by cross-correlated

second-order Gaussian random �elds. This reduces the complexity at this state of the investigations. Since in

this case the standard deviation of the material parameter Λ does not cover the total standard deviation of

elasticity tensor element C11, which is signi�cantly related to the structural behavior under uniaxial tension,

the corresponding value is set to 1.74GPa. Furthermore, the experimental data clearly reveal that local plastic

deformation occur even at low stress levels. This is related to the yield strength of the matrix material and to
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Figure V.10: Discretizations of cross-correlated homogeneous second-order Gaussian random �elds to represent

the spatially distributed material parameter Λ for di�erent values of lx .

plastic deformation induced by stress peaks at the edges of the reinforcing elements. In addition, the maximal

stress level of the data sheet and hence, the results of the homogenization is not reached. Therefore, the mean

value and the standard deviation are adjusted and set to 100MPa and 31MPa, respectively. The remaining

parameters are assumed to be homogeneous and are set to the mean values obtained by a previous correlation

analysis [142]. Furthermore, a plain strain state is employed. This is eligible because the microstructure of

SFRC consists of layers with di�erent main �ber orientation [46, 154]. The core layer, which is located in the

center of the cross-section, is characterized by a �ber orientation perpendicular to the main �ow direction of

the injection mold process. With respect to the specimens used in this study the �bers within the small core

layer are perpendicular to the load direction and hence, inhibit the out-of-plane deformation.

Further crucial parameters for the numerical simulation are the correlation lengths of the random �elds.

Since the correlation length signi�cantly in�uences the local distribution of the material properties it is

strongly linked to the standard deviation of the numerical results. Therefore, in this study di�erent values

are used to analyze the in�uence more in detail. In Figure V.10 realizations of for the strain-energy density

function parameter Λ are depicted for a correlation length in horizontal direction of lx = 5mm, lx = 10mm,

and lx = 20mm. In vertical direction the correlation length is set to ly = 3mm. The e�ect of the correlation

length on the random �eld is clearly observable. In analogy to the description of oscillations the correlation

length can be interpreted as the wavelength of the dominant eigenfunctions.

In this work the numerical simulation are performed for horizontal correlation length of lx = 5mm,

lx = 10mm, and lx = 15mm. The correlation length in vertical direction is set to 0.3mm for all simulations.

The value is chosen to allow plastic deformation at di�erent locations as it is observed during the experimental

investigations. In combination with the ideal plastic modeling approach the resulting stress-strain relation

approximates the experimental data for reinforced material. Would the correlation length be identical to the

specimen’s thickness of 3mm the plastic deformation is limited to the region where the yield strength is
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lx = 15mm lx = 10mm lx = 5mm Experimental data

Strain level mean std mean std mean std mean std

% MPa MPa MPa MPa MPa MPa MPa MPa

0.2 16.6 0.1 16.6 0.1 16.6 0.1 16.1 1.8

0.5 41.6 0.3 41.4 0.3 41.3 0.2 38.7 3.7

1.0 80.0 1.2 78.6 1.6 76.9 1.7 70.0 5.8

1.5 99.2 5.2 97.7 2.6 92.0 3.9 88.5 6.8

2.0 102.3 7.2 101.8 2.4 94.7 4.9 95.8 6.3

Table V.7: Deviation of the second Piola-Kirchho� stress tensor component for the examined correlation

lengths at di�erent strain levels and comparison with the experimental data.

reached �rst, because the surrounding material cannot take higher stress levels. The obtained results would

then be characterized purely by the ideal plastic behavior of the matrix material.

The numerical simulations are carried out for eight di�erent realizations per correlation length. Hence, in

total 24 simulations are conducted. The results are presented below.

V.5.2 Results

The results of the numerical simulations are summarized in Figure V.11. Furthermore, a comparison of the

numerical data with the experimental results is included. The diagrams on the left hand side contain the

stress-strain curve (black), taken from the data sheet [21], the experimental data (gray), see Section V.2, and the

numerically obtained results (colored) for correlation lengths of lx = 5mm, lx = 10mm, and lx = 15mm from

top to bottom. The diagrams on the right hold again the stress-strain curve (black), taken from the data sheet

[21] and the numerical data (gray). One data set is highlighted. The corresponding stress-strain curve is based

on a measurement length of 50mm. For these specimens the spatial distribution of the material properties is

qualitatively investigated by deriving the results for three sections of 15mm each.

For a better comparability Table V.7 holds some additional information. For strain levels of 0.2 %, 0.5 %, 1.0 %,

1.5 %, and 2.0 % the mean stress as well as standard deviations are computed for the numerical and experimental

data. For all numerical results the stress refers to the horizontal component of the second Piola-Kirchho�

stress tensor.

V.5.3 Discussion

The diagrams provided in Figure V.11 reveal that the numerical obtained stress-strain curves clearly show the

expected elasto-plastic behavior. Despite the fact, that the material behavior is modeled based on the assumption

of an elastic ideal-plastic material model, the resulting stress-strain curves show an overall good agreement

with the experimental data. This is related to the localized plastic deformation and the rearrangement of the

applied loading. In addition the diagrams disclose, that the numerical results show a better agreement with

the experimental data for a decreasing correlation length. This is also indicated by the values provided in

Table V.7. For a decreasing correlation length the mean stress state converges to the experimentally obtained

values, for a correlation length of 5mm the results show an overall good agreement. The deviation between

the mean stress states at the di�erent strain levels for the experimental and numerical results is covered by the

standard deviation. However, despite the good overall conformity, the results indicate two shortcomings. First,

the experimentally obtained stress range at strain levels up to 1 % is not covered by the numerical simulation.

This might be due to reduction of parameters that are represented by random �elds. Second, even though

the composite material does not show explicitly ideal plasticity, the plastic deformation within the numerical
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Figure V.11: Results of the numerical simulation in comparison with the experimentally obtained results and a

stress-strain curve provided by the manufacturer [21].
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simulations starts at higher strain levels as indicated by the experimental results. This might be resolved by

reducing the yield strength locally or taking into account hardening e�ects.

The modeling approach is further endorsed by the results on the right hand side by two important aspects.

First, the modeling approach leads to a plastic deformation covering the whole specimen and hence, does not

show localized plastic deformation. Second, when dividing the measurement length into small sections, each

section show a slightly di�erent behavior. Both phenomena are con�rmed by the experimental investigation.

All in all, it can be stated, that the presented modeling approach is a very appropriate method to incorporate

the spatial distribution of the elastic and plastic material properties of SFRC.

V.6 Summary and conclusion

In this work a probabilistic modeling approach for the elasto-plastic material behavior at �nite strain based on

second-order Gaussian random �elds is introduced. The description of the material behavior is based on the

Kröner-Lee decomposition. Following this, the strain-energy density function introduced by Bonet et al. [16] is

combined with a classical J2-plasticity formulation assuming ideal plastic behavior. Since this material model is

not available in commercially available �nite element codes, �rst an algorithm covering transversely-isotropic

elastic-ideal plastic material behavior is developed and implemented in COMSOL Multiphysics
®

. The validation

based on the well-known Neo-Hookean material model in the elastic and plastic domain as well as utilizing a

user-de�ned strain-energy density function in the elastic domain show an excellent conformity.

Therefore, in a second step, based on the correlation analysis done in a previous study [142] cross-correlated

second-order Gaussian random �elds are generated to represent spatial distribution the strain-energy density

function parameter Λ and the yield strength induced by the probabilistic characteristics of the microstructure.

The remaining parameters are assumed to be homogeneous at this state of the study. With the spatially

distributed material properties tensile tests for specimens made of PBT-GF-30 are simulated. Even though

the initial modeling approach is based on elastic-ideal plastic material behavior the spatial distribution of

two material parameters leads to localized plastic deformation covering the whole measurement length. This

causes a strain dependent reduction of the material sti�ness.

To validate the numerical results and the presented modeling approach uniaxial tensile tests are conducted to

characterize the elastic and plastic deformation of PBT-GF-30. The obtained stress-strain curves are compared

to the numerical results. It is shown that with an decreasing correlation length the numerical data matches

the experimental results quite well. The deviation at large strain can be assigned to assumption of ideal

plasticity. Furthermore, this initial investigation does not show a signi�cant deviation between the results of

di�erent realizations at a low strain level. The reasons are the reduction of complexity by representing only

one parameter of the strain-energy density function by a random �eld and the limitation of Gaussian random

�elds. To ensure only positive values for the yield strength low values are underestimated.

Summarizing, it can be concluded that the presented initial probabilistic approach is suitable for the numerical

simulation of the elasto-plastic material behavior of SFRC at �nite strain including its spatial distribution on

the component level without the need of an explicit microstructural modeling. Future work will focus on the

implementation of specimen unloading, hardening, non-Gaussian random �elds and the representation of

additional parameters by stochastic methods.
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Variable Symbol Description

Cel C̄el Input: Elastic part of right Cauchy-Green tensor

lam Λ Input: Material parameter

mu � Input: Material parameter

alpha � Input: Material parameter

beta � Input: Material parameter

gamma 
 Input: Material parameter

tol_inv − Input: Tolerance for numerical matrix inversion

S S̄ Output: Second Piola-Kirchho� stress tensor with respect to the intermediate

con�guration

Table V.8: List of input and output arguments for Algorithm 3 (CalcS_intermediate).

Variable Symbol Description

F F Input: Deformation gradient

Fpl Fpl Input: Plastic part of deformation gradient

Mdev M̄dev Input: Deviatoric part of Mandel stress with respect to the intermediate con�gura-

tion

lam Λ Input: Material parameter

mu � Input: Material parameter

alpha � Input: Material parameter

beta � Input: Material parameter

gamma 
 Input: Material parameter

tol_inv − Input: Tolerance for numerical matrix inversion

dnormx ||M̄dev|| Output: Norm of deviatoric part of Mandel stress with respect to the intermediate

con�guration

Table V.9: List of input and output arguments for Algorithm 4 (calcNormM).
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V.A Supporting routines

For the implementation of the elastic-ideal plastic routine in COMSOL Multiphysics
®

several subroutines

are used to calculate the second Piola-Kirchho� stress tensor in the intermediate and reference con�gura-

tion, respectively. Furthermore, the subroutine to calculate the exponential functions matexp provided by

Hashiguchi et al. [63] written in Fortran is transferred into C. Beside this subroutines COMSOL Multiphysics
®

provides a library of utility functions for various tensor operations, computing principle and equivalent stresses.

These routines are not explained here, a detailed overview is given in the documentation [168].
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Variable Symbol Description

dp Δ� Input: Plastic multipier

F F Input: Deformation gradient

Fpl Fpl Input: Plastic part of deformation gradient

lam Λ Input: Material parameter

mu � Input: Material parameter

alpha � Input: Material parameter

beta � Input: Material parameter

gamma 
 Input: Material parameter

sigYs �yield Input: Yield stress

dev fyield Output: Value of yield function

Table V.10: List of input and output arguments for Algorithm 5 (calc_dev).

Algorithm 3 Subroutine implemented in COMSOL Multiphysics
®

for the calculation of S̄
1: procedure calcS_intermediate(see Table V.8)

2: compute �ber orientation matrix A = aaT

3: compute J , C̄−1
el

, det C̄el, tr C̄el, and I4 ⊳ Eqs. (V.21), (V.22), and (V.40)

4: compute S̄ ⊳ Eq. (V.42)

5: end procedure

Algorithm 4 Subroutine implemented in COMSOL Multiphysics
®

for the calculation of ||Mdev||
1: procedure calcNormM(see Table V.9)

2: compute �ber orientation vector a and matrix A = aaT

3: compute F−1
pl

, Fel ⊳ Eq. (V.20)

4: compute C ⊳ Eq. (V.51)

5: compute S̄ by calling Algorithm 3 ⊳ Eq. (V.42)

6: compute M̄ and M̄dev ⊳ Eq. (V.32)

7: compute ||M̄dev||
8: end procedure

Algorithm 5 Subroutine implemented in COMSOL Multiphysics
®

for the evaluation of fyield

1: procedure calc_dev(see Table V.9)

2: compute ||M̄dev|| by calling Algorithm 4

3: compute directional tensor of plastic evolution

4: compute tensor exponential by calling Algorithm 6 ⊳ Eq. (V.38)

5: update Fpl ⊳ Eq. (V.37)

6: compute ||M̄dev|| by calling Algorithm 4

7: evaluate fyield ⊳ Eq. (V.34)

8: end procedure
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Variable Symbol Description

nmax − Input: Maximum number of terms of the series representation

etol − Input: Convergence tolerance

a − Input: Matrix

aexp − Output: Tensor exponential function

Table V.11: List of input and output arguments for Algorithm 6 (matexp).

Algorithm 6 Subroutine implemented in COMSOL Multiphysics
®

for the calculation of the tensor exponential

function, adapted from Hashiguchi et al. [63]

1: procedure matexp(see Table V.10)

2: initialize Identity matrix as �rst element of the series expansion

3: initialize temp and A
4: initialize factorial

5: set temp to initial solution

6: do
7: compute Tn and its norm

8: compute n!
9: add Tn to temp

10: compute current solution by adding n-th order term to A
11: check convergence

12: while res > tol and n < nmax
13: end procedure
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